
1

CSCI 104
Inheritance

Mark Redekopp

David Kempe

Sandra Batista

2

Recall: Constructor Initialization

• You can still assign values in the constructor but realize that the
default constructors will have been called already

• So generally if you know what value you want to assign a data
member it's good practice to do it in the initialization list

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

You can still assign data

members in the {…}

But any member not in the initialization list will

have its default constructor invoked before the

{…}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{ }

This would be the preferred approach especially for

any non-scalar members (i.e. an object)

3

INHERITANCE

4

Object Oriented Design Components

• Encapsulation

– Combine data and operations on that data into a single
unit and only expose a desired public interface and
prevent modification/alteration of the implementation

• Inheritance

– Creating new objects (classes) from existing ones to specify
functional relationships and extend behavior

• Polymorphism

– Using the same expression to support different types with
different behavior for each type

5

Inheritance
• A way of defining interfaces, re-using classes and

extending original functionality

• Allows a new class to inherit all the data members and
member functions from a previously defined class

• Works from more general
objects to more specific objects

– Defines an "is-a" relationship

– Square is-a rectangle is-a shape

– Square inherits from Rectangle which
inherits from Shape

– Similar to classification of organisms:
• Animal -> Vertebrate -> Mammals -> Primates

Parent/

Base

Child /

Derived

Grandchild

6

Base and Derived Classes

• Derived classes inherit
all data members and
functions of base class

• Student class inherits:
– get_name() and
get_id()

– name_ and id_ member
variables

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private:
string name_; int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);
private:
int major_; double gpa_;

};

class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

class Student

7

Base and Derived Classes
• Derived classes inherit

all data members and
functions of base class

• Student class inherits:
– get_name() and get_id()

– name_ and id_ member
variables

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private:
string name_; int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};

int main()
{

Student s1("Tommy", 1, 9);
// Student has Person functionality
// as if it was written as part of
// Student
cout << s1.get_name() << endl;

}

class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

class Student

8

Inheritance Example

• Component
– Draw()

– onClick()

• Window
– Minimize()

– Maximize()

• ListBox
– Get_Selection()

• ScrollBox
– onScroll()

• DropDownBox
– onDropDown()

Component

Window ListBox

ScrollBox DropDown

Box

Inheritance Diagrams

(arrows show derived

to base class

relationships)

9

CONSTRUCTORS AND INHERITANCE

10

Constructors and Inheritance
• How do we initialize base

class data members?

• Can't assign base class
members if they are private

class Person {
public:
Person(string n, int ident);
...

private:
string name_;
int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
...

private:
int major_;
double gpa_;

};

Student::Student(string n, int ident, int mjr)
{

name_ = n; // can we access name_ and id_?
id_ = ident;
major_ = mjr;

}

11

Constructors and Inheritance
• Constructors are only called when

a variable is created and cannot
be called directly from another
constructor

– How to deal with base
constructors?

• Also want/need base class or
other members to be initialized
before we perform this object's
constructor code

• Use initializer format instead

– See example below

Student::Student(string n, int ident, int mjr) :
Person(n, ident)

{
cout << "Constructing student: " << name_ << endl;
major_ = mjr; gpa_ = 0.0;

}

class Person {
public:
Person(string n, int ident);
...

private:
string name_;
int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
...

private:
int major_;
double gpa_;

};

Student::Student(string n, int ident, int mjr)
{
// How to initialize Base class members?
Person(n, ident); // No! can’t call Construc.

// as a function

}

12

Constructors & Destructors
• Constructors

– A Derived class will automatically call its Base class
constructor BEFORE it's own constructor executes,
either:

• Explicitly calling a specified base class constructor in the
initialization list

• Implicitly calling the default base class constructor if no
base class constructor is called in the initialization list

• Destructors

– The derived class will call the Base class destructor
automatically AFTER it's own destructor executes

• General idea

– Constructors get called from base->derived (smaller to
larger)

– Destructors get called from derived->base (larger to
smaller)

base

(1)

child

(2)
grandchild

(3)

Constructor call ordering

Destructor call ordering

base

(3)

child

(2)
grandchild

(1)

13

Constructor & Destructor Ordering
class A {

int a;
public:
A() { a=0; cout << "A:" << a << endl; }
~A() { cout << "~A" << endl; }
A(int mya) { a = mya;

cout << "A:" << a << endl; }
};

class B : public A {
int b;

public:
B() { b = 0; cout << "B:" << b << endl; }
~B() { cout << "~B "; }
B(int myb) { b = myb;

cout << "B:" << b << endl; }
};

class C : public B {
int c;

public:
C() { c = 0; cout << "C:" << c << endl; }
~C() { cout << "~C "; }
C(int myb, int myc) : B(myb) {

c = myc;
cout << "C:" << c << endl; }

};

int main()
{

cout << "Allocating a B object" << endl;
B b1;
cout << "Allocating 1st C object" << endl;
C* c1 = new C;
cout << "Allocating 2nd C object" << endl;
C c2(4,5);
cout << "Deleting c1 object" << endl;
delete c1;
cout << "Quitting" << endl;
return 0;

}

Allocating a B object
A:0
B:0
Allocating 1st C object
A:0
B:0
C:0
Allocating 2nd C object
A:0
B:4
C:5
Deleting c1 object
~C ~B ~A
Quitting
~C ~B ~A
~B ~A Output

Test Program

Sample Classes

14

PUBLIC, PRIVATE, PROTECTED

15

Protected Members
• Private members of a base

class can not be accessed
directly by a derived class
member function
– Code for print_grade_report()

would not compile since ‘name_’ is
private to class Person

• Base class can declare
variables with protected
storage class which means:
– Private to any object or code not

inheriting from the base (i.e.
private to any 3rd party)

– Public to any derived (child) class
can access directly

void Student::print_grade_report()
{

cout << “Student “ << name_ << ...
}

class Person {
public:
...

private:
string name_; int id_;

};

class Student : public Person {
public:

void print_grade_report();
private:

int major_; double gpa_;
};

X

class Person {
public:
...

protected:
string name_; int id_;

};

16

Public, Protected, & Private Access
• Derived class sees base class

members using the base class'
specification
– If Base class said it was public or protected,

the derived class can access it directly

– If Base class said it was private, the derived
class cannot access it directly

Base Class
private:

// members

3rd party class
or function

Derived Class
Regardless of public, protected,

private inheritance

X

1. Private Base Members

Base Class
protected:

// members

3rd party class
or function

Derived Class
Regardless of public, protected,

private inheritance

X

Base Class
public:

// members

3rd party class
or function

Derived Class
Regardless of public, protected,

private inheritance

✓

✓

2. Protected Base Members 3 . Public Base Members

17

Public/Private/Protected Inheritance

• public/protected/private inheritance before base
class indicates HOW the public base class
members are viewed by clients (those outside) of
the derived class

• public
– public and protected base class members are

accessible to the child class and grandchild classes

– Only public base class members are accessible to
3rd party clients

• protected
– public and protected base class members are

accessible to the child class and grandchild classes

– no base class members are accessible to 3rd parties

• private
– public and protected base class members are

accessible to the child class

– No base class members are accessible to grandchild
classes or 3rd party clients

int main(){
Student s1("Tommy", 73412, 1);
Faculty f1("Mark", 53201, 2);
cout << s1.get_name() << endl; // works
cout << f1.get_name() << endl; // fails

}

class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};
class Faculty : private Person {
public:
Faculty(string n, int ident, bool tnr);
bool get_tenure();

private:
bool tenure_;

};

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private: // INACCESSIBLE TO DERIVED
string name_; int id_;

};

Base Class

18

Public/Private/Protected Inheritance
Base Class

public: void f1();
protected: void f2();
private: void f3();

How a grandchild class or 3rd

party sees what is inherited is

the MORE restrictive of the how

the base class declared it or

how the derived class inherited.

class ChildA :
public Base
{ /* . . . */ };

class ChildB :
protected Base
{ /* . . . */ };

int main()
{ ChildA a;
a.f1(); a.f2();a.f3();

}
✓ X

int main()
{ ChildB b;
b.f1(); b.f2(); b.f3();

}

int main()
{ ChildC c;
b.f1(); b.f2(); b.f3();

}

class GCB :
public ChildB

{ public:
void g1()
{ f1(); f2(); f3(); }

}

class GCA :
public ChildA

{ public:
void g1()
{ f1(); f2(); f3();}
}

class ChildC :
private Base
{ /* . . . */ };

class GCC :
public ChildC

{ public:
void g1()
{ f1(); f2(); f3(); }

}✓ ✓ X ✓ ✓ X X X X

X X X X X X X

3rd Party

Grandchild

Child

19

Inheritance Access Summary
• Derive as public if…

– You want users of your derived class to be
able to call base class functions/methods

• Derive as private if…
– You only want your internal workings to call

base class functions/methods

• Derive as protected more rearely
– Same reasons as private inheritance but also

allow grandchild classes to use Base class
methods

Inherited
Base

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private Private Private Private

External client access to Base class members

is always the more restrictive of either the base

declaration or how the base is inherited.

int main(){
Student s1("Tommy", 73412, 1);
Faculty f1("Mark", 53201, 2);
cout << s1.get_name() << endl; // works
cout << f1.get_name() << endl; // fails

}

Base Class

class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};
class Faculty : private Person {
public:
Faculty(string n, int ident, bool tnr);
bool get_tenure();

private:
bool tenure_;

};

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private: // INACCESSIBLE TO DERIVED
string name_; int id_;

};

20

When to Inherit Privately
• If public: Outside user can call the

base List functions and break the
Queue order

• If private: hide the base class public
function, so users must use derived
class interface

• If protected: hide the base class
public and protected functions
except to derived and friend classes

• For protected or private inheritance,
"as-a" relationship or "Is-
Implemented-In-Terms-Of" (IITO)
– Queue "as-a" List / FIFO "IIITO" list

class Queue : public List // or private List
{ public:

Queue();
push_back(const int& val)

{ insert(size(), val); }
int& front();

{ return get(0); }
void pop_front();

{ pop(0); }
};

Base Class

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)

private:
Item* _head;

};

Derived Class

Queue q1;
q1.push_back(7); q1.push_back(8);
q1.insert(0,9) // is it good this is allowed?

21

ODDS AND ENDS OF INHERITANCE

22

class Car{
public:
double compute_mpg();

private:
string make; string model;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

class Hybrid : public Car {
public:
void drive_w_battery();
double compute_mpg();

private:
string batteryType;

};

double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else if(speed > 55) return 30.0;
else return 20.0;

}

Overloading Base Functions

• A derived class may want to
redefined the behavior of a
member function of the
base class

• A base member function can
be overloaded in the derived
class

• When derived objects call
that function the derived
version will be executed

• When a base objects call
that function the base
version will be executed

Class Car

string make

string model

string make

string model

string battery

Class Hybrid

23

Scoping Base Functions

• We can still call the base function
version by using the scope operator
(::)
– base_class_name::function_name()

class Car{
public:
double compute_mpg();

private:
string make; string model;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

class Hybrid : public Car {
public:
void drive_w_battery();
double compute_mpg();

private:
string batteryType;

};

double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else return Car::compute_mpg();

}

24

COMPOSITION VS. INHERITANCE

25

Composition
• Code reuse is a common need in (object-

oriented) programming
– We could use a pre-written List class to make a

Queue class

• An easy and often preferable way is to
simply use the existing class as a data
member

• Composition defines a "has-a" relationship
– A Queue "has-a" List in its implementation

• But could we inherit?
– Public inheritance would mean a Queue "is-a" List

and a Queue should be able to do anything a List
can do, but that's not the case

– Private inheritance could be used but is not a
universal approach supported by other languages

– Often programmers say "prefer composition
rather than inheritance" when the goal is code
reuse

class Queue
{ private:

List mylist;
public:
Queue();
push_back(const int& val)
{ mylist.insert(size(), val); }

int& front();
{ return mylist.get(0); }

void pop_front();
{ mylist.pop(0); }

int size() // need to create wrapper
{ return mylist.size(); }

};

Base Class

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)

private:
IntItem* _head;

};

Queue via Composition

26

class Car{
public:
double compute_mpg();

private:
string make; string model;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

class Hybrid {
public:
double compute_mpg();

private:
Car c_; // has-a relationship
string batteryType;

};
double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else return c_.compute_mpg();

}

Inheritance vs. Composition
• Software engineers debate about

using inheritance (is-a) vs.
composition (has-a)

• Rather than a Hybrid "is-a" Car we
might say Hybrid "has-a" car in it,
plus other stuff

• While it might not make complete
sense verbally, we could re-factor
our code the following ways…

• Interesting article I’d recommend
you read at least once:
– https://www.thoughtworks.com/insights

/blog/composition-vs-inheritance-how-
choose

Class Car

string make

string model

string c_.make

string c_.model

string battery

Class Hybrid

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

27

Inheritance vs. Composition
• Suppose we wanted to create a variation of the std::string class that only

allows a fixed size specified at creation (no size alteration after creation)

– What is the best way to enforce this?

class FixedString : public string
{ public:

FixedString(size_t fixedSize) :
string(' ', fixedSize)

{ }
};

FixedString s1(10);
s1[0] = 'a';
S1 += "abc"; // will the compiler allow this

class FixedString : private std::string
{ public:

FixedString(size_t fixedSize) :
std::string(' ', fixedSize)

{ }
size_t size() const { return string::size(); }
char const & operator[](size_t idx) const
{ return string::operator[idx]; }
...

}; Using Private Inheritance

class FixedString
{ private:

string str_;
public:
FixedString(size_t fixedSize) :

str_(' ', fixedSize)
{ }
size_t size() const { return str_.size(); }
char const & operator[](size_t idx) const

{ return str_[idx]; }
...

};

Using Public Inheritance

Using Composition

Which is/are reasonable choices?

Consider the code to the right in making your

decision?

✓

✓

28

Summary
• Summary:

– Public Inheritance =>
"is-a" relationship

– Composition =>
"has-a" relationship

– Private/Protected Inheritance =>
"as-a" relationship or
"implemented-as" or
"implemented-in-terms-of"

• Public inheritance mainly when
– We want to add or specialize behavior

– A true "is-a" relationship holds for the
relationship of base and derived

• Composition or private inheritance
– When reuse is the main desire

class Queue
{ private:

List mylist;
public:
Queue();
push_back(const int& val)
{ mylist.insert(size(), val); }

int& front();
{ return mylist.get(0); }

void pop_front();
{ mylist.pop(0); }

int size() // need to create wrapper
{ return mylist.size(); }

};

Base Class

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)

private:
IntItem* _head;

};

Queue via Composition

29

Warning: Multiple Inheritance

• C++ allows multiple inheritance
but it is not usually
recommended

• What happens for the following
code?

• Suppose in main()
– Liger x;

– int wt = x.getWeight();

Animal

public:

int getWeight();

Private:

int weight;

Tiger: public Animal Lion: public Animal

Liger: public Tiger, public Lion

Inheritance Diagrams

(arrows shown base to

derived class relationships)

Example source: https://www.programmerinterview.com/index.php/c-cplusplus/diamond-problem

int Tiger::weight

int Lion::weight

Class Liger

