
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Graph Representation and Traversals

Mark Redekopp

David Kempe

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GRAPH REPRESENTATIONS

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Notation
• A graph is a collection of vertices

(or nodes) and edges that
connect vertices a

b

d

c

h

e
f

g

a

b

c

d

e

f

g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11

• Let V be the set of vertices

• Let E be the set of edges

• Let |V| or n refer to the number

of vertices

• Let |E| or m refer to the

number of edges

An edge

A vertex

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graphs in the Real World

• Social networks

• Computer networks / Internet

• Path planning

• Interaction diagrams

• Bioinformatics

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Graph Representation
• Can simply store edges in a list

– Unsorted

– Sorted

a

b

d

c

h

e
f

g

a

b

c

d

e

f

g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph ADT

• What operations would you want to perform on a
graph?

• addVertex() : Vertex

• addEdge(v1, v2)

• getAdjacencies(v1) : List<Vertices>
– Returns any vertex with an edge from v1 to itself

• removeVertex(v)

• removeEdge(v1, v2)

• edgeExists(v1, v2) : bool
#include<iostream>
using namespace std;

template <typename V, typename E>
class Graph{

};

Perfect for templating the data associated

with a vertex and edge as V and E

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Common Graph Representations
• Graphs are really just a list of lists

– List of vertices each having their own list of
adjacent vertices

• Alternatively, sometimes graphs are also
represented with an adjacency matrix

– Entry at (i,j) = 1 if there is an edge between
vertex i and j, 0 otherwise

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation
How would you express this

using the ADTs you've learned?

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Representations
• Let |V| = n = # of vertices and

|E| = m = # of edges

• Adjacency List Representation
– O(_______________) memory storage

– Existence of an edge requires O(_____________) time

• Adjacency Matrix Representation
– O(_______________) storage

– Existence of an edge requires O(_________) lookup

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

How would you express this

using the ADTs you've learned?

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Representations
• Let |V| = n = # of vertices and |E| = m = # of edges

• Adjacency List Representation
– O(|V| + |E|) memory storage

– Define degree to be the number of edges incident on a vertex (deg(a)
= 2, deg(c) = 5, etc.

– Existence of an edge requires searching the adjacency list in O(deg(v))

• Adjacency Matrix Representation
– O(|V|2) storage

– Existence of an edge requires O(1) lookup (e.g. matrix[i][j] == 1)

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

int sum = 0;
for(int i=0; i < n; i++){
sum += adj[src][i]*adj[i][dst];

}
if(sum > 0) // two-hop path exists

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Directed vs. Undirected Graphs
• In the previous graphs, edges were undirected (meaning

edges are 'bidirectional' or 'reflexive')

– An edge (u,v) implies (v,u)

• In directed graphs, links are unidirectional

– An edge (u,v) does not imply (v,u)

– For Edge (u,v): the source is u, target is v

• For adjacency list form, you may need 2 lists per
vertex for both predecessors and successors

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
rc

e

Target

c,ea

b

c

d

e

f

g

h

h

b,d,e,g

f

f

f

g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Directed vs. Undirected Graphs
• In directed graph with edge (src,tgt) we define

– Successor(src) = tgt

– Predecessor(tgt) = src

• Using an adjacency list representation may
warrant two lists predecessors and successors

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

h

b,d,e,g

f

f

f

g

L
is

t
o
f

V
e
rt

ic
e
s

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
rc

e

Target

c

a

c

a,c

d, e, g

c,h

b

Succs

(Outgoing)

Preds

(Incoming)

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Runtime, |V| = n, |E| =m
Operation vs

Implementation
for Edges

Add edge Delete Edge Test Edge Enumerate
edges for single

vertex

Unsorted array
or Linked List

Sorted array

Adjacency List
(Assume use of std::map

where key=vertex,
value=unsorted list of

adjacencies)

Adjacency
Matrix

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Runtime, |V| = n, |E| =m
Operation vs

Implementation
for Edges

Add edge Delete Edge Test Edge Enumerate
edges for single

vertex

Unsorted array
or Linked List

Θ(1) Θ(m) Θ(m) Θ(m)

Sorted array Θ(m) Θ(m) Θ(log m)
[if binary search

used]

Θ(log m)
+Θ(deg(v))

[if binary search
used]

Adjacency List
(Assume use of std::map

where key=vertex,
value=unsorted list of

adjacencies)

log(n) + Θ(1) log(n)+ Θ(deg(v)) log(n)+
Θ(deg(v))

log(n) +
Θ(deg(v))

Adjacency
Matrix

Θ(1) Θ(1) Θ(1) Θ(n)

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Algorithms

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PAGERANK ALGORITHM

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PageRank
• Consider the graph at the right

– These could be webpages with links shown in the
corresponding direction

– These could be neighboring cities

• PageRank generally tries to answer the question:

– If we let a bunch of people randomly "walk" the
graph, what is the probability that they end up at a
certain location (page, city, etc.) in the "steady-state"

• We could solve this problem through Monte-Carlo
simulation (essentially the CS 103 PA5 or PA1 Coin-
flipping or Zombie assignment…depending on
semester)

– Simulate a large number of random walkers and
record where each one ends to build up an answer of
the probabilities for each vertex

• But there are more efficient ways of doing it

a

b

d

c

e

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PageRank
• Let us write out the adjacency matrix for this graph

• Now let us make a weighted version by normalizing based on
the out-degree of each node

– Ex. If you're at node B we have a 50-50 chance of going to A or E

• From this you could write a system of linear equations (i.e.
what are the chances you end up at vertex I at the next time
step, given you are at some vertex J now
– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

a

b

d

c

e

a b c d e

a 0 1 0 0 0

b 0 0 1 0 0

c 1 0 0 1 1

d 0 0 0 0 1

e 0 1 0 0 0

Adjacency Matrix

T
a

rg
e

t

Source

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PageRank
• System of Linear Equations

– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

• If you know something about linear algebra, you know we
can write these equations in matrix form as a linear system
– Ax = y

a

b

d

c

e

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA = 0.5PB

pB = pC

pC = pA+pD+0.5*pE

pD = 0.5*pE

pE = 0.5*pB

=

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the
next

• So we want a solution to: Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

a

b

d

c

e

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA

pB

pC

pD

pE

=

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterative PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the
next

• So we want a solution to: Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

a

b

d

c

e

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

.2

.2

.2

.2

.2

*

.1

.2

.5

.1

.1

=

Step 0 Sol. Step 1 Sol.

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

*

.1

.5

.25

.05

.1

=

Step 1 Sol. Step 2 Sol.

.1

.2

.5

.1

.1

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

?

?

?

?

?

*

.1507

.3078

.3126

.0783

.1507

=

Step 29 Sol. Step 30 Sol.

.1538

.3077

.3077

.0769

.1538

Actual PageRank Solution

from solving linear system:

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Additional Notes
• What if we change the graph and now D has no incoming

links…what is its PageRank?

– 0

• Most PR algorithms add a probability that someone just
enters that URL (i.e. enters the graph at that node)

– Usually define something called the damping factor, α
(often chosen around 0.15)

– Probability of randomly starting or jumping somewhere =
1-α

• So at each time step the next PR value for node i is given
as:

– Pr 𝑖 =
𝛼

𝑁
+ (1 − 𝛼) ∗ σ𝑗∈𝑃𝑟𝑒𝑑(𝑖)

Pr(𝑗)

𝑂𝑢𝑡𝐷𝑒𝑔(𝑗)

– N is the total number of vertices

– Usually run 30 or so update steps

– Start each Pr(i) = 1/N

a

b

d

c

e

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

In a Web Search Setting
• Given some search keywords we could find the pages that have that matching

keywords

• We often expand that set of pages by including all successors and predecessors of
those pages

– Include all pages that are within a radius of 1 of the pages that actually have the
keyword

• Now consider that set of pages and the subgraph that it induces

• Run PageRank on that subgraph

a

b

d

c

e

f

g
a

b

d

c

e

f

g

a

b

d

c

e

f

g

a

b

d

c

e

Full WebGraph
Page Hits

(Contain keyword)

Expanded

(Preds & Succs)
Induced Subgraph

to run PageRank

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BREADTH-FIRST SEARCH

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex that
we'll call u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

0

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

0

1

1

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

0

1

1

2

2

2

2

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

0

1

1

2

2

2

2

3

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Developing the Algorithm

• Key idea: Must explore all nearer
neighbors before exploring further-
away neighbors

• From ‘a’ we find ‘e’ and ‘c’
– If we explore 'e' next and find 'f' who

should we choose to explore from next:
'c' or 'f'?

• Must explore all vertices at depth i
before any vertices at depth i+1
– Essentially, the first vertices we find

should be the first ones we explore from

– What data structure may help us?

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

a

b

d

c

h

e
f

g

0

1

1

2

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Developing the Algorithm
• Exploring all vertices in the order they are found

implies we will explore vertices in First-In/First-Out
order which implies use of a Queue
– Important: BFS implies use of a queue

– Put newly found vertices in the back and pull out a vertex from the front
to explore next

• We don’t want to put a vertex in the queue more than once…
– "mark" a vertex the first time we encounter it (only allowing unmarked

vertices to be put in the queue)

– We can "mark" a vertex by adding them to a set OR by simply setting
some data member that indicates we've seen this vertex before

• May also keep a "predecessor" structure or value per vertex that
indicates which prior vertex found this vertex
– Allows us to find a shortest-path back to the start vertex (i.e. retrace our

steps)

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

a

b

d

c

h

e
f

g

nil,0

a

Q:

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

a
v =

e c

a

b

d

c

h

e
f

g

nil,0

a,1

a,1

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

e
v =

c f

a

b

d

c

h

e
f

g

nil,0

c

e,2

nil,inf
nil,inf

nil,inf
nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

a,1

a,1

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

c
v =

c b

a

b

d

c

h

e
f

g

nil,0

f d g

c,2

c,2

c,2
nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

e,2

a,1

a,1

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

f
v =

c

a

b

d

c

h

e
f

g

nil,0

b d g

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

c,2

c,2

c,2

e,2

a,1

a,1

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

b
v =

c

a

b

d

c

h

e
f

g

nil,0

d g

b,3

h

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

c,2

c,2

c,2

e,2

a,1

a,1

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

d
v =

cg h

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

g
v =

ch

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

h
v =

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search
• Shortest paths can be found be

walking predecessor value
from any node backward

• Example:

– Shortest path from a to h
– Start at h

– Pred[h] = b (so walk back to b)

– Pred[b] = c (so walk back to c)

– Pred[c] = a (so walk back to a)

– Pred[a] = nil … no predecessor,
Done!!

a

b

d

c

h

e
f

g

nil,0

b,3

c,2

c,2

c,2

e,2

a,1

a,1

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search Trees
• BFS (and later DFS) will induce a tree subgraph (i.e.

acyclic, one parent each) from the original graph

– BFS is tree of shortest paths from the source to all other
vertices (in connected component)

a

b

d

c

h

e
f

g

nil,0

a

c e

d g b f

h

Original graph, G BFS Induced Tree

b,3

c,2

c,2

c,2

e,2

a,1

a,1

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Correctness
• Define

– dist(s,v) = correct shortest distance

– d[v] = BFS computed distance

– p[v] = predecessor of v

• Loop invariant

– What can we say about the nodes
in the queue, their d[v] values,
relationship between d[v] and
dist[v], etc.?

Q:

c f

a

b

d

c

h

e
f

g

nil,0

a,1

a,1

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

e

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Correctness
• Define

– dist(s,v) = correct shortest distance

– d[v] = BFS computed distance

– p[v] = predecessor of v

• Loop invariant

– All vertices with p[v] != nil (i.e.
already in the queue or popped
from queue) have d[v] = dist(s,v)

– The distance of the nodes in the
queue are sorted

• If Q = {v1, v2, …, vr} then d[v1] <=
d[v2] <= … <= d[vr]

– The nodes in the queue are from 2
adjacent layers/levels

• i.e. d[vk] <= d[v1] + 1

• Suppose there is a node from a 3rd

level (d[v1] + 2), it must have been
found by some, vi, where d[vi] =
d[v1]+1

Q:

c f

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

e

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

a,1

a,1

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search
• Analyze the run time of

BFS for a graph with n
vertices and m edges

– Find T(n,m)

• How many times does
loop on line 5 iterate?

• How many times loop on
line 7 iterate?

Q:

e c

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

a,1

a,1

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search
• Analyze the run time of BFS for a

graph with n vertices and m
edges
– Find T(n)

• How many times does loop on
line 5 iterate?
– N times (one iteration per vertex)

• How many times loop on line 7
iterate?
– For each vertex, v, the loop executes

deg(v) times

– = σ𝑣∈𝑉 𝜃[1 + deg 𝑣]

– = 𝜃 σ𝑣 1 + 𝜃 σ𝑣 deg(𝑣)

– = Θ (n) + Θ (m)

• Total = Θ(n+m)

Q:

e c

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

a,1

a,1

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SINGLE-SOURCE SHORTEST PATH
(SSSP)

Dijkstra's Algorithm

48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SSSP
• Let us associate a 'weight' with

each edge

– Could be physical distance, cost of
using the link, etc.

• Find the shortest path from a
source node, 'a' to all other nodes

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

(c,13),(e,4)a

b

c

d

e

f

g

h

(c,5),(h,6)

(a,13),(b,5),(d,2),(e,8),(g,7)

(c,2),(f,1)

(a,4),(c,8),(f,3)

(d,1),(e,3),(g,4)

(c,7),(f,4),(h,14)

(b,6),(g,14)

L
is

t
o
f

V
e
rt

ic
e
s

A
d
ja

c
e
n
c
y
 L

is
ts

8

Edge weights

49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SSSP
• What is the shortest distance from

'a' to all other vertices?

• How would you go about
computing those distances?

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

(c,13),(e,4)a

b

c

d

e

f

g

h

(c,5),(h,6)

(a,13),(b,5),(d,2),(e,8),(g,7)

(c,2),(f,1)

(a,4),(c,8),(f,3)

(d,1),(e,3),(g,4)

(c,7),(f,4),(h,14)

(b,6),(g,14)

L
is

t
o
f

V
e
rt

ic
e
s

A
d
ja

c
e
n
c
y
 L

is
ts

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

Vert Dist

50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm

• Dijkstra's algorithm is similar to a BFS but
always chooses the closest (shortest
distance) vertex to the source to explore
next, rather than exploring vertices in FIFO
order (as in BFS)

• We need a structure to store vertices and
always be able to give us the smallest
("best") vertex to explore next
– We'll show it as a table of all vertices with their

currently 'known' distance from the source

• Initially, a has dist=0

• All others = infinite distance

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L
is

t
o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

v=a13

4

53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

c

d

e

f

g

h
L
is

t
o
f
V

e
rt

ic
e
s inf

13

inf

4

inf

inf

inf

Vert Dist

v=e12

7

54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

c

d

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s inf

12

inf

7

inf

inf

Vert Dist

v=f
8

11

55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

c

d

g

hL
is

t
o
f
V

e
rt

ic
e
s

inf

12

8

11

inf

Vert Dist

v=d10

56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

c

g

hL
is

t
o
f
V

e
rt

ic
e
s

inf

10

11

inf

Vert Dist

v=c15

57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

g

h

L
is

t
o
f
V

e
rt

ic
e
s

15

11

inf

Vert Dist

v=g

25

58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

b

h

L
is

t
o
f
V

e
rt

ic
e
s

15

25

Vert Dist

v=b

21

59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v) // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v; u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

h

L
is

t
o
f
V

e
rt

ic
e
s

21

Vert Dist

v=h

60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Example
• Try another example of Dijkstra's

1

8

7

4

5

6

3

2

9

18

13

17

7

15

12

14

11

10

9

8

6

5 2

2

1

4

7

Cost

12

1

2

3

4

5

6

7

8

9

List of Vertices

0

-

-

-

-

-

-

-

-

Vert Dist

61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Analysis
• What is the loop invariant? What can I say about the

vertex I pull out from the PQ?

– It is guaranteed that there is no shorter path to that vertex

– UNLESS: negative edge weights

• Could use induction to prove

– When I pull the first node out (it is the start node) its
weight has to be 0 and that is definitely the shortest path
to itself

– I then "relax" (i.e. decrease) the distance to neighbors it
connects to and the next node I pull out would be the
neighbor with the shortest distance from the start

• Could there be shorter path to that node?

– No, because any other path would use some other edge
from the start which would have to have a larger weight a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Run-time Analysis
• What is the run-time of

Dijkstra's algorithm?

• How many times do you
execute the while loop on 8?

• How many total times do you
execute the for loop on 10?

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist)

13. u.pred = v

14. u.dist = v.dist + w;

15. PQ.decreaseKey(u, u.dist)

63

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Run-time Analysis
• What is the run-time of Dijkstra's algorithm?

• How many times do you execute the while
loop on 8?

– V total times because once you pull a node out
each iteration that node's distance is
guaranteed to be the shortest distance and
will never be put back in the PQ

– What does each call to remove_min() cost…

– …log(V) [at most V items in PQ]

• How many total times do you execute the for
loop on 10?
– E total times: Visit each vertex's neighbors

– Each iteration may call decreaseKey() which is log(V)

• Total runtime = V*log(V) + E*log(V) =
(V+E)*log(V)
– This is usually dominated by E*log(V)

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist)

13. u.pred = v

14. u.dist = v.dist + w;

15. PQ.decreaseKey(u, u.dist)

64

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent on Heaps/PQs
• Suppose min-heaps

– Though everything we're about to say is true for max
heaps but for increasing values

• We know insert/remove is log(n) for a heap

• What if we want to decrease a value already in the
heap…

– Example: Decrease 39 to 8

– Could we find 39 easily?

• No requires a linear search through the array/heap =>
O(n)

– Once we find it could we adjust it easily?

• Yes, just promote it until it is in the right location =>
O(log n)

• So currently decrease-key() would cost
O(n) + O(log n) = O(n)

• Can we do better?

7

21

35 26 24

50294336

18

19

3928

0

1 2

3 4 5 6

8 9 10 11 127

65

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent on Heaps/PQs
• Can we provide a decrease-key() that runs in O(log n)

and not O(n)

– Remember we'd have to first find then promote

• We need to know where items sit in the heap

– We want to quickly know the location given the
key/priority (that maps pri (or id) => location)

– Unfortunately storing the heap as an array does just the
opposite. So we have an array that maps location => pri)

• What if we assigned each vertex or object in the original
graph/problem a unique index
[0 to n-1] and maintained an alternative map that did
provide the reverse indexing

– Then I could find where the key sits and then promote it

• If I used std::map to maintain the id => heap index map I
still cannot achieve O(log n) decreaseKey() time?

– No! each promotion swap requires update your location
and your parents

– O(log n) swaps each requiring lookup(s) in the location map
[O(log n)] yielding O(log2(n))

7

21

35 26 24

50294336

18

19

3928

0

1 2

3 4 5 6

8 9 10 11 12

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

Heap

Array

7

4

11

3

1

912

6 10 5 8

0

2 7

Heap

Index

Map(key=Node ID, val=Heap Index)

Node ID Heap Idx

4

11

1

3

12

8

…

0

1

2

3

4

5

…

74

Vertex ID

Vertex

"Priority"

66

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent on Heaps/PQs
• Am I out of luck then?

• No, try an array / hash map

– O(1) lookup
• Now each swap/promotion up the heap only

costs O(1) and thus I have:

– Find => O(1)

• Using an array (or hashmap)

– Promote => O(log n)

• Bubble up at most log(n) levels
with each level incurring O(1)
updates of locations in the
hashmap

• Decrease-key() is an important operation in
the next algorithm we'll look at

7

21

35 26 24

50294336

18

19

3928

0

1 2

3 4 5 6

8 9 10 11 12

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

6 2 11 3 0 9 7 12 10 5 8 1 4

Heap

Array

Heap Idx

7

4

0 1 2 3 4 5 6 7 8 9 10 11 12

11

3

1

912

6 10 5 8

0

2 7

Heap

Index

Node ID

Map(key=Node ID, val=Heap Index)

67

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ALGORITHM HIGHLIGHT

A* Search Algorithm

68

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Search Methods

• Many systems require searching for goal states

– Path Planning

• Roomba Vacuum

• Mapquest/Google Maps

• Games!!

– Optimization Problems

• Find the optimal solution to a problem with many
constraints

69

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Search Applied to 8-Tile Game
• 8-Tile Puzzle

– 3x3 grid with one blank space

– With a series of moves, get the tiles in sequential
order

– Goal state:

1 2

3 4 5

6 7 8

HW6 Goal State

1 2 3

4 5 6

7 8

Goal State for these

slides

70

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Search Methods

• Brute-Force Search: When you don’t know where
the answer is, just search all possibilities until you
find it.

• Heuristic Search: A heuristic is a “rule of thumb”. An
example is in a chess game, to decide which move to
make, count the values of the pieces left for your
opponent. Use that value to “score” the possible
moves you can make.

– Heuristics are not perfect measures, they are quick
computations to give an approximation (e.g. may not take
into account “delayed gratification” or “setting up an
opponent”)

71

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Brute Force Search

• Brute Force Search
Tree

– Generate all
possible moves

– Explore each move
despite its
proximity to the
goal node

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 8 2
4 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

W S

W S E

72

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Heuristics

• Heuristics are “scores” of how close a state is to the
goal (usually, lower = better)

• These scores must be easy to compute
(i.e. simpler than solving the problem)

• Heuristics can usually be developed by simplifying
the constraints on a problem

• Heuristics for 8-tile puzzle
– # of tiles out of place

• Simplified problem: If we could just pick a tile up and put it
in its correct place

– Total x-, y- distance of each tile from its correct location
(Manhattan distance)

• Simplified problem if tiles could stack on top of each other /
hop over each other

1 8 3

4 5 6

2 7

1 8 3

4 5 6

2 7

of Tiles out of
Place = 3

Total x-/y- distance
= 6

73

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Heuristic Search

• Heuristic Search Tree

– Use total x-/y-
distance (Manhattan
distance) heuristic

– Explore the lowest
scored states

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5 6
7 8

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

H=6

H=7 H=5

H=6 H=6 H=4

H=3

H=2

H=1

Goal

1 2 3
4 8
7 6 5

H=5

74

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Caution About Heuristics

• Heuristics are just estimates and
thus could be wrong

• Sometimes pursuing lowest
heuristic score leads to a less-than
optimal solution or even no
solution

• Solution

– Take # of moves from start (depth)
into account

H=2

Start

H=1

H=1

H=1

H=1

H=1

H=1

…

Goal

H=1

75

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A-Star Algorithm
• Use a new metric to decide which state to

explore/expand

• Define
– h = heuristic score (same as always)

– g = number of moves from start it took to get
to current state

– f = g + h

• As we explore states and their successors,
assign each state its f-score and always
explore the state with lowest f-score

• Heuristics should always underestimate
the distance to the goal
– If they do, A* guarantees optimal solutions

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3

76

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A-Star Algorithm
• Maintain 2 lists

– Open list = Nodes to be explored (chosen
from)

– Closed list = Nodes already explored (already
chosen)

• General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)

1. s ← remove min. f-value state from open_list

(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list

3a. if s = goal node then trace path back to start; STOP!

3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are

not in the closed_list (so we don’t re-explore), or

if they are already in the open list, update them if

they have a smaller f value

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3

77

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List

Open List

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

78

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

Closed List

Open List
g=0,

h=6,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

79

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

80

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

81

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

82

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=1,

h=5,

f=6

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

83

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

84

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

85

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

86

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

87

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

88

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

89

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

90

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

91

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A* and BFS
• BFS explores all nodes at a shorter distance

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

92

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A* and BFS
• BFS explores all nodes at a shorter distance

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6

93

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A* and BFS
• BFS is A* using just the g value to choose

which item to select and expand

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6

94

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A* Analysis

• What data structure should we use for the open-list?

• What data structure should we use for the closed-list?

• What is the run time?

• Run time is similar to Dijkstra's algorithm…
– We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

– We then visit each successor which is like O(E) and perform an insert or decrease operation which is
like E*max(O(insert), O(decrease)

– E = Number of potential successors and this depends on the problem and the possible solution space

– For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value

95

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Implementation Note
• When the distance to a node/state/successor (i.e. g value) is

uniform, we can greedily add a state to the closed-list at the
same time as we add it to the open-list

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value

open_list.push(Start State)

Closed_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list and closed_list
if they are not in the closed_list

Non-uniform g-values Uniform g-values

1 2
4 8 3
7 6 5

g=0,H=6

1 2
4 8 3
7 6 5

…

g=k,H=6

The first occurrence of a board

has to be on the shortest path

to the solution

96

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BETWEENESS CENTRALITY

If time allows…

97

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BC Algorithm Overview
• What's the most central vertex(es) in the graph

below?

• How do we define "centrality"?

• Betweeness centrality defines "centrality" as the
nodes that are between the most other pairs

b

a

c d

e

f

Sample Graph

j

h

i

k

m

l

Graph 1 Graph 2

98

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BC Algorithm Overview
• Betweeness centrality (BC) defines "centrality" as the nodes that are between

(i.e. on the path between) the most other pairs of vertices

• BC considers betweeness on only "shortest" paths!

• To compute centrality score for each vertex we need to find shortest paths
between all pairs…

– Use the Breadth-First Search (BFS) algorithm to do this

b

a

c d

e

f

Sample Graph

Original 1

b

a

c d

e

f

Are these gray nodes

'between' a and e?

Original w/

added path

No, a-c-d-e is the

shortest path?

99

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BC Algorithm Overview
• Betweeness-Centrality determines "centrality" as the number of

shortest paths from all-pairs upon which a vertex lies

• Consider the sample graph below
– Each external vertex (a, b, e, f) lies is a member of only the shortest paths

between itself and each other vertex

– Vertices c and d lie on greater number of shortest paths and thus will be
scored higher

b

a

c d

e

f

Sample Graph Image each vertex is a

ball and each edge is a

chain or string. What

would this graph look

like if you picked it up

by vertex c? Vertex a?

100

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BC Implementation
• Based on Brandes' formulation for unweighted graphs

– Perform |V| Breadth-first traversals

– Traversals result in a subgraph consisting of shortest paths from root to all
other vertices

– Messages are then sent back up the subgraph from "leaf" vertices to the
root summing the percentage of shortest-paths each vertex is a member of

– Summing a vertex's score from each traversal yields overall BC result

b

a

c d

e

f

Sample Graph with

final BC scores a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from

selected roots

and resulting

partial BC scores

(in this case, the

number of

descendants)

5

55

5
19 19

101

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BC Implementation
• As you work down, track # of shortest paths running through a

vertex and its predecessor(s)

• On your way up, sum the nodes beneath

a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from

selected roots

and resulting

partial BC scores

(in this case, the

number of

descendants)

a

b c

d

e

2,[d]

2, [b,c]

1,[a]1,[a]

1,[-]

a

c

b d

e f

1,[-]

1,[a]

1,[c] 1,[c]

1,[d] 1,[d]

of shortest paths thru the vertex,

[List of predecessor]

0 0

2

4

0

5
4

0

1

.5*2

.5*2 .5*2
Score on the way back up (if

multiple shortest paths, split the

score appropriately)

102

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OLD - IGNORE

103

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent on Heaps/PQs - old
• Can we provide a decrease-key() that runs in

O(log n) and not O(n)
– Remember we'd have to first find then promote

• We need to know where items sit in the heap
– Essentially we want to quickly know the location

given the key/priority (i.e. Map key => location)

– Unfortunately storing the heap as an array does just
the opposite (maps location => key)

• What if we maintained an alternative map
that did provide the reverse indexing
– Then I could find where the key sits and then

promote it

• If I keep that map as a balanced BST can I
achieve O(log n) decreaseKey() time?
– No! each promotion swap requires update your

location and your parents

– O(log n) swaps each requiring lookup(s) in the
location map [O(log n)] yielding O(log2(n))

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

Heap

Array

Map of

key to loc.

Map(key=Node ID, val=Heap Index)

104

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent on Heaps/PQs -old
• Am I out of luck then?

• No, try a hash map

– O(1) lookup
• Now each swap/promotion up the heap only

costs O(1) and thus I have:

– Find => O(1)

• Using the hashmap

– Promote => O(log n)

• Bubble up at most log(n) levels
with each level incurring O(1)
updates of locations in the
hashmap

• Decrease-key() is an important operation in
the next algorithm we'll look at

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12

Heap

Array

Map of

key to loc.

Map(key=Node ID, val=Heap Index)

