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GRAPH REPRESENTATIONS
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Graph Notation
• A graph is a collection of vertices 

(or nodes) and edges that 
connect vertices a

b

d

c

h

e
f

g

a
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d
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f

g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11

• Let V be the set of vertices

• Let E be the set of edges

• Let |V| or n refer to the number 

of vertices

• Let |E| or m refer to the 

number of edges

An edge

A vertex
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Graphs in the Real World

• Social networks

• Computer networks / Internet

• Path planning

• Interaction diagrams

• Bioinformatics
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Basic Graph Representation
• Can simply store edges in a list

– Unsorted

– Sorted

a

b

d

c

h

e
f

g
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g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11
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Graph ADT

• What operations would you want to perform on a 
graph?

• addVertex() : Vertex

• addEdge(v1, v2)

• getAdjacencies(v1) : List<Vertices>
– Returns any vertex with an edge from v1 to itself

• removeVertex(v)

• removeEdge(v1, v2)

• edgeExists(v1, v2) : bool
#include<iostream>
using namespace std;

template <typename V, typename E>
class Graph{

};

Perfect for templating the data associated 

with a vertex and edge as V and E
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More Common Graph Representations
• Graphs are really just a list of lists

– List of vertices each having their own list of 
adjacent vertices

• Alternatively, sometimes graphs are also 
represented with an adjacency matrix

– Entry at (i,j) = 1 if there is an edge between 
vertex i and j, 0 otherwise

a

b

d
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f

g

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g
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a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation
How would you express this 

using the ADTs you've learned?
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Graph Representations
• Let |V| = n = # of vertices and 

|E| = m = # of edges

• Adjacency List Representation
– O(_______________) memory storage

– Existence of an edge requires O(_____________) time

• Adjacency Matrix Representation
– O(_______________) storage

– Existence of an edge requires O(_________) lookup

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g
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t 
o

f 
V
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e
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A
d
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c
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n
c
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How would you express this 

using the ADTs you've learned?
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Graph Representations
• Let |V| = n = # of vertices and |E| = m = # of edges

• Adjacency List Representation
– O(|V| + |E|) memory storage

– Define degree to be the number of edges incident on a vertex ( deg(a) 
= 2, deg(c) = 5, etc.

– Existence of an edge requires searching the adjacency list in O(deg(v))

• Adjacency Matrix Representation
– O(|V|2) storage

– Existence of an edge requires O(1) lookup (e.g. matrix[i][j] == 1 )

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea
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d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t 
o

f 
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts



10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix 

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g
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Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix 

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

int sum = 0;
for(int i=0; i < n; i++){
sum += adj[src][i]*adj[i][dst]; 

}
if(sum > 0) // two-hop path exists
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Directed vs. Undirected Graphs
• In the previous graphs, edges were undirected (meaning 

edges are 'bidirectional' or 'reflexive')

– An edge (u,v) implies (v,u)

• In directed graphs, links are unidirectional

– An edge (u,v) does not imply (v,u)

– For Edge (u,v):  the source is u, target is v

• For adjacency list form, you may need 2 lists per 
vertex for both predecessors and successors

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
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e

Target

c,ea

b
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h

b,d,e,g
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f
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Directed vs. Undirected Graphs
• In directed graph with edge (src,tgt) we define

– Successor(src) = tgt

– Predecessor(tgt) = src

• Using an adjacency list representation may
warrant two lists predecessors and successors

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

h

b,d,e,g

f

f

f

g

L
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t 
o
f 

V
e
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e
s

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
rc

e

Target

c

a

c

a,c

d, e, g

c,h

b

Succs

(Outgoing)

Preds

(Incoming)
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Graph Runtime, |V| = n, |E| =m 
Operation vs 

Implementation 
for Edges

Add edge Delete Edge Test Edge Enumerate 
edges for single 

vertex

Unsorted array 
or Linked List

Sorted array

Adjacency List
(Assume use of std::map 

where key=vertex, 
value=unsorted list of 

adjacencies)

Adjacency 
Matrix
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Graph Runtime, |V| = n, |E| =m 
Operation vs 

Implementation 
for Edges

Add edge Delete Edge Test Edge Enumerate 
edges for single 

vertex

Unsorted array 
or Linked List

Θ(1) Θ(m) Θ(m) Θ(m)

Sorted array Θ(m) Θ(m) Θ(log m)
[if binary search 

used]

Θ(log m) 
+Θ(deg(v))

[if binary search 
used]

Adjacency List
(Assume use of std::map 

where key=vertex, 
value=unsorted list of 

adjacencies)

log(n) + Θ(1) log(n)+ Θ(deg(v)) log(n)+ 
Θ(deg(v))

log(n) + 
Θ(deg(v))

Adjacency 
Matrix

Θ(1) Θ(1) Θ(1) Θ(n)
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Graph Algorithms
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PAGERANK ALGORITHM
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PageRank
• Consider the graph at the right

– These could be webpages with links shown in the 
corresponding direction

– These could be neighboring cities

• PageRank generally tries to answer the question:

– If we let a bunch of people randomly "walk" the 
graph, what is the probability that they end up at a 
certain location (page, city, etc.) in the "steady-state"

• We could solve this problem through Monte-Carlo 
simulation (essentially the CS 103 PA5 or PA1 Coin-
flipping or Zombie assignment…depending on 
semester)

– Simulate a large number of random walkers and 
record where each one ends to build up an answer of 
the probabilities for each vertex

• But there are more efficient ways of doing it

a

b

d

c

e
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PageRank
• Let us write out the adjacency matrix for this graph

• Now let us make a weighted version by normalizing based on 
the out-degree of each node

– Ex. If you're at node B we have a 50-50 chance of going to A or E

• From this you could write a system of linear equations (i.e.
what are the chances you end up at vertex I at the next time 
step, given you are at some vertex J now
– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

a

b

d

c

e

a b c d e

a 0 1 0 0 0

b 0 0 1 0 0

c 1 0 0 1 1

d 0 0 0 0 1

e 0 1 0 0 0

Adjacency Matrix

T
a

rg
e

t

Source

Weighted Adjacency Matrix 

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0
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PageRank
• System of Linear Equations

– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

• If you know something about linear algebra, you know we 
can write these equations in matrix form as a linear system
– Ax = y 

a

b

d

c

e

Weighted Adjacency Matrix 

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA = 0.5PB

pB = pC

pC = pA+pD+0.5*pE

pD = 0.5*pE

pE = 0.5*pB

=
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PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the 
next

• So we want a solution to:  Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just 
iterate until the solution settles down

a

b

d

c

e

Weighted Adjacency Matrix 

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA

pB

pC

pD

pE

=
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Iterative PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the 
next

• So we want a solution to:  Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just 
iterate until the solution settles down

a

b

d

c

e

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

.2

.2

.2

.2

.2

*

.1

.2

.5

.1

.1

=

Step 0 Sol. Step 1 Sol.

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

*

.1

.5

.25

.05

.1

=

Step 1 Sol. Step 2 Sol.

.1

.2

.5

.1

.1

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

?

?

?

?

?

*

.1507

.3078

.3126

.0783

.1507

=

Step 29 Sol. Step 30 Sol.

.1538

.3077

.3077

.0769

.1538

Actual PageRank Solution 

from solving linear system:
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Additional Notes
• What if we change the graph and now D has no incoming 

links…what is its PageRank?

– 0

• Most PR algorithms add a probability that someone just 
enters that URL (i.e. enters the graph at that node)

– Usually define something called the damping factor, α
(often chosen around 0.15)

– Probability of randomly starting or jumping somewhere = 
1-α

• So at each time step the next PR value for node i is given 
as:

– Pr 𝑖 =
𝛼

𝑁
+ (1 − 𝛼) ∗ σ𝑗∈𝑃𝑟𝑒𝑑(𝑖)

Pr(𝑗)

𝑂𝑢𝑡𝐷𝑒𝑔(𝑗)

– N is the total number of vertices

– Usually run 30 or so update steps

– Start each Pr(i) = 1/N

a

b

d

c

e
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In a Web Search Setting
• Given some search keywords we could find the pages that have that matching 

keywords

• We often expand that set of pages by including all successors and predecessors of 
those pages

– Include all pages that are within a radius of 1 of the pages that actually have the 
keyword

• Now consider that set of pages and the subgraph that it induces

• Run PageRank on that subgraph

a

b

d

c

e

f

g
a

b

d

c

e

f

g

a

b

d

c

e

f

g

a

b

d

c

e

Full WebGraph
Page Hits 

(Contain keyword)

Expanded 

(Preds & Succs)
Induced Subgraph

to run PageRank
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BREADTH-FIRST SEARCH
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Breadth-First Search

• Given a graph with vertices, V, and 
edges, E, and a starting vertex that 
we'll call u 

• BFS starts at u (‘a’ in the diagram to the 
left) and fans-out along the edges to 
nearest neighbors, then to their 
neighbors and so on

• Goal:  Find shortest paths (a.k.a. 
minimum number of hops or depth) 
from the start vertex to every other 
vertex

a

b

d

c

h

e
f

g

Depth 0: a

0
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Breadth-First Search

• Given a graph with vertices, V, and 
edges, E, and a starting vertex, u 

• BFS starts at u (‘a’ in the diagram to the 
left) and fans-out along the edges to 
nearest neighbors, then to their 
neighbors and so on

• Goal:  Find shortest paths (a.k.a. 
minimum number of hops or depth) 
from the start vertex to every other 
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

0

1

1
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Breadth-First Search

• Given a graph with vertices, V, and 
edges, E, and a starting vertex, u 

• BFS starts at u (‘a’ in the diagram to the 
left) and fans-out along the edges to 
nearest neighbors, then to their 
neighbors and so on

• Goal:  Find shortest paths (a.k.a. 
minimum number of hops or depth) 
from the start vertex to every other 
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

0

1

1

2

2

2

2



29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and 
edges, E, and a starting vertex, u 

• BFS starts at u (‘a’ in the diagram to the 
left) and fans-out along the edges to 
nearest neighbors, then to their 
neighbors and so on

• Goal:  Find shortest paths (a.k.a. 
minimum number of hops or depth) 
from the start vertex to every other 
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

0

1

1

2

2

2

2

3
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Developing the Algorithm

• Key idea:  Must explore all nearer 
neighbors before exploring further-
away neighbors

• From ‘a’ we find ‘e’ and ‘c’
– If we explore 'e' next and find 'f' who 

should we choose to explore from next:  
'c' or 'f'?

• Must explore all vertices at depth i
before any vertices at depth i+1
– Essentially, the first vertices we find 

should be the first ones we explore from

– What data structure may help us?

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

a

b

d

c

h

e
f

g

0

1

1

2
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Developing the Algorithm
• Exploring all vertices in the order they are found 

implies we will explore vertices in First-In/First-Out 
order which implies use of a Queue
– Important: BFS implies use of a queue

– Put newly found vertices in the back and pull out a vertex from the front 
to explore next 

• We don’t want to put a vertex in the queue more than once…
– "mark" a vertex the first time we encounter it (only allowing unmarked 

vertices to be put in the queue)

– We can "mark" a vertex by adding them to a set OR by simply setting 
some data member that indicates we've seen this vertex before 

• May also keep a "predecessor" structure or value per vertex that 
indicates which prior vertex found this vertex
– Allows us to find a shortest-path back to the start vertex (i.e. retrace our 

steps)
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Breadth-First Search

Algorithm:

a

b

d

c

h

e
f

g

nil,0

a

Q:

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1
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Breadth-First Search

Algorithm:

Q:

a
v =

e c

a

b

d

c

h

e
f

g

nil,0

a,1

a,1

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1



34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

e
v =

c f

a

b

d

c

h

e
f

g

nil,0

c

e,2

nil,inf
nil,inf

nil,inf
nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

c
v =

c b

a

b

d

c

h

e
f

g

nil,0

f d g

c,2

c,2

c,2
nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

e,2

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

f
v =

c

a

b

d

c

h

e
f

g

nil,0

b d g

nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

c,2

c,2

c,2

e,2

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

b
v =

c

a

b

d

c

h

e
f

g

nil,0

d g

b,3

h

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

c,2

c,2

c,2

e,2

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

d
v =

cg h

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

g
v =

ch

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1
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Breadth-First Search

Algorithm:

Q:

h
v =

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1
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Breadth-First Search
• Shortest paths can be found be 

walking predecessor value 
from any node backward

• Example:

– Shortest path from a to h
– Start at h

– Pred[h] = b (so walk back to b)

– Pred[b] = c (so walk back to c)

– Pred[c] = a (so walk back to a)

– Pred[a] = nil … no predecessor, 
Done!!

a

b

d

c

h

e
f

g

nil,0

b,3

c,2

c,2

c,2

e,2

a,1
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Breadth-First Search Trees
• BFS (and later DFS) will induce a tree subgraph (i.e.

acyclic, one parent each) from the original graph

– BFS is tree of shortest paths from the source to all other 
vertices (in connected component)

a

b

d

c

h

e
f

g

nil,0

a

c e

d g b f

h

Original graph, G BFS Induced Tree

b,3

c,2

c,2

c,2

e,2

a,1

a,1
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Correctness
• Define 

– dist(s,v) = correct shortest distance

– d[v] = BFS computed distance

– p[v] = predecessor of v

• Loop invariant

– What can we say about the nodes 
in the queue, their d[v] values, 
relationship between d[v] and 
dist[v], etc.?

Q:

c f

a

b

d

c

h

e
f

g

nil,0

a,1

a,1

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

e

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1
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Correctness
• Define 

– dist(s,v) = correct shortest distance

– d[v] = BFS computed distance

– p[v] = predecessor of v

• Loop invariant

– All vertices with p[v] != nil (i.e.
already in the queue or popped 
from queue) have d[v] = dist(s,v)

– The distance of the nodes in the 
queue are sorted

• If Q = {v1, v2, …, vr} then d[v1] <= 
d[v2] <= … <= d[vr]

– The nodes in the queue are from 2 
adjacent layers/levels

• i.e. d[vk] <= d[v1] + 1

• Suppose there is a node from a 3rd

level (d[v1] + 2), it must have been 
found by some, vi, where d[vi] = 
d[v1]+1

Q:

c f

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

e

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

a,1

a,1
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Breadth-First Search
• Analyze the run time of 

BFS for a graph with n 
vertices and m edges 

– Find T(n,m)

• How many times does 
loop on line 5 iterate?

• How many times loop on 
line 7 iterate?

Q:

e c

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

a,1

a,1



46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search
• Analyze the run time of BFS for a 

graph with n vertices and m 
edges 
– Find T(n)

• How many times does loop on 
line 5 iterate?
– N times (one iteration per vertex)

• How many times loop on line 7 
iterate?
– For each vertex, v, the loop executes 

deg(v) times

– = σ𝑣∈𝑉 𝜃[1 + deg 𝑣 ]

– = 𝜃 σ𝑣 1 + 𝜃 σ𝑣 deg(𝑣)

– = Θ (n)  + Θ (m)

• Total = Θ(n+m)

Q:

e c

a

b

d

c

h

e
f

g

nil,0

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1  for each vertex v

2      pred[v] = nil, d[v] = inf.

3  Q = new Queue

4  Q.enqueue(u),  d[u]=0

5  while Q is not empty

6     v = Q.front(); Q.dequeue()

7     foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9             Q.enqueue(w)

10           pred[w] = v,  d[w] = d[v] + 1

a,1

a,1
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SINGLE-SOURCE SHORTEST PATH 
(SSSP)

Dijkstra's Algorithm
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SSSP
• Let us associate a 'weight' with 

each edge

– Could be physical distance, cost of 
using the link, etc.

• Find the shortest path from a 
source node, 'a' to all other nodes
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SSSP
• What is the shortest distance from 

'a' to all other vertices?

• How would you go about 
computing those distances? 
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Dijkstra's Algorithm

• Dijkstra's algorithm is similar to a BFS but 
always chooses the closest (shortest 
distance) vertex to the source to explore 
next, rather than exploring vertices in FIFO 
order (as in BFS)

• We need a structure to store vertices and 
always be able to give us the smallest 
("best") vertex to explore next
– We'll show it as a table of all vertices with their 

currently 'known' distance from the source

• Initially, a has dist=0 

• All others = infinite distance
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)  // visit each neighbor

10. w = weight(v,u)
11. // is my (v's) distance + edge weight "better" than current path to u

12. if(v.dist + w < u.dist)

13. u.pred = v;     u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Another Example
• Try another example of Dijkstra's
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Analysis
• What is the loop invariant?  What can I say about the 

vertex I pull out from the PQ?

– It is guaranteed that there is no shorter path to that vertex

– UNLESS: negative edge weights

• Could use induction to prove

– When I pull the first node out (it is the start node) its 
weight has to be 0 and that is definitely the shortest path 
to itself

– I then "relax" (i.e. decrease) the distance to neighbors it 
connects to and the next node I pull out would be the 
neighbor with the shortest distance from the start

• Could there be shorter path to that node?

– No, because any other path would use some other edge 
from the start which would have to have a larger weight a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8



62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dijkstra's Run-time Analysis
• What is the run-time of 

Dijkstra's algorithm?

• How many times do you 
execute the while loop on 8?

• How many total times do you 
execute the for loop on 10?

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist) 

13. u.pred = v

14. u.dist = v.dist + w;  

15. PQ.decreaseKey(u, u.dist)
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Dijkstra's Run-time Analysis
• What is the run-time of Dijkstra's algorithm?

• How many times do you execute the while 
loop on 8?

– V total times because once you pull a node out 
each iteration that node's distance is 
guaranteed to be the shortest distance and 
will never be put back in the PQ

– What does each call to remove_min() cost…

– …log(V)  [at most V items in PQ]

• How many total times do you execute the for 
loop on 10?
– E total times:  Visit each vertex's neighbors

– Each iteration may call decreaseKey() which is log(V)

• Total runtime = V*log(V) + E*log(V) = 
(V+E)*log(V) 
– This is usually dominated by E*log(V)

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist) 

13. u.pred = v

14. u.dist = v.dist + w;  

15. PQ.decreaseKey(u, u.dist)
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Tangent on Heaps/PQs
• Suppose min-heaps 

– Though everything we're about to say is true for max 
heaps but for increasing values

• We know insert/remove is log(n) for a heap

• What if we want to decrease a value already in the 
heap…

– Example: Decrease 39 to 8

– Could we find 39 easily?

• No requires a linear search through the array/heap => 
O(n)

– Once we find it could we adjust it easily?

• Yes, just promote it until it is in the right location =>  
O(log n)

• So currently decrease-key() would cost 
O(n) + O(log n) = O(n)

• Can we do better?
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Tangent on Heaps/PQs
• Can we provide a decrease-key() that runs in O(log n) 

and not O(n)

– Remember we'd have to first find then promote

• We need to know where items sit in the heap

– We want to quickly know the location given the 
key/priority (that maps pri (or id)  => location)

– Unfortunately storing the heap as an array does just the 
opposite. So we have an array that maps location => pri)

• What if we assigned each vertex or object in the original 
graph/problem a unique index 
[0 to n-1] and maintained an alternative map that did 
provide the reverse indexing

– Then I could find where the key sits and then promote it

• If I used std::map to maintain the id => heap index map I 
still cannot achieve O(log n) decreaseKey() time?

– No! each promotion swap requires update your location 
and your parents

– O(log n) swaps each requiring lookup(s) in the location map 
[O(log n)] yielding O(log2(n))
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Tangent on Heaps/PQs
• Am I out of luck then?

• No, try an array / hash map

– O(1) lookup
• Now each swap/promotion up the heap only 

costs O(1) and thus I have:

– Find => O(1) 

• Using an array (or hashmap)

– Promote => O(log n) 

• Bubble up at most log(n) levels 
with each level incurring O(1) 
updates of locations in the 
hashmap

• Decrease-key() is an important operation in 
the next algorithm we'll look at
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ALGORITHM HIGHLIGHT

A* Search Algorithm
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Search Methods 

• Many systems require searching for goal states

– Path Planning

• Roomba Vacuum

• Mapquest/Google Maps

• Games!!

– Optimization Problems

• Find the optimal solution to a problem with many 
constraints
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Search Applied to 8-Tile Game
• 8-Tile Puzzle

– 3x3 grid with one blank space

– With a series of moves, get the tiles in sequential 
order

– Goal state:

1 2

3 4 5

6 7 8

HW6 Goal State

1 2 3

4 5 6

7 8

Goal State for these 

slides
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Search Methods

• Brute-Force Search: When you don’t know where 
the answer is, just search all possibilities until you 
find it.

• Heuristic Search: A heuristic is a “rule of thumb”.   An 
example is in a chess game, to decide which move to 
make, count the values of the pieces left for your 
opponent.  Use that value to “score” the possible 
moves you can make.

– Heuristics are not perfect measures, they are quick 
computations to give an approximation (e.g. may not take 
into account “delayed gratification” or “setting up an 
opponent”)
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Brute Force Search

• Brute Force Search 
Tree

– Generate all 
possible moves

– Explore each move 
despite its 
proximity to the 
goal node

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 8 2
4 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

W S

W S E
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Heuristics

• Heuristics are “scores” of how close a state is to the 
goal (usually, lower = better)

• These scores must be easy to compute 
(i.e. simpler than solving the problem)

• Heuristics can usually be developed by simplifying 
the constraints on a problem

• Heuristics for 8-tile puzzle
– # of tiles out of place

• Simplified problem: If we could just pick a tile up and put it 
in its correct place

– Total x-, y- distance of each tile from its correct location 
(Manhattan distance)

• Simplified problem if tiles could stack on top of each other / 
hop over each other

1 8 3

4 5 6

2 7

1 8 3

4 5 6

2 7

# of Tiles out of 
Place = 3

Total x-/y- distance 
= 6
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Heuristic Search

• Heuristic Search Tree

– Use total x-/y-
distance (Manhattan 
distance) heuristic

– Explore the lowest 
scored states

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
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1 2 3
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1 2 3
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1 2 3
4 8
7 6 5

1 2 3
4 8
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4 8 5
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1 2 3
4 5
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4 8
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H=5
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Caution About Heuristics

• Heuristics are just estimates and 
thus could be wrong

• Sometimes pursuing lowest 
heuristic score leads to a less-than 
optimal solution or even no 
solution

• Solution

– Take # of moves from start (depth) 
into account

H=2

Start

H=1

H=1

H=1

H=1

H=1

H=1

…

Goal

H=1
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A-Star Algorithm
• Use a new metric to decide which state to 

explore/expand

• Define
– h = heuristic score (same as always)

– g = number of moves from start it took to get 
to current state

– f = g + h

• As we explore states and their successors, 
assign each state its f-score and always 
explore the state with lowest f-score

• Heuristics should always underestimate 
the distance to the goal
– If they do, A* guarantees optimal solutions

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3
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A-Star Algorithm
• Maintain 2 lists

– Open list = Nodes to be explored (chosen 
from)

– Closed list = Nodes already explored (already 
chosen)

• General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)

1. s ← remove min. f-value state from open_list

(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list

3a. if s = goal node then trace path back to start; STOP!

3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are

not in the closed_list (so we don’t re-explore), or 

if they are already in the open list, update them if 

they have a smaller f value

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value

Closed List

Open List

**If implementing this for a programming 
assignment, please see the slide at the end about 
alternate closed-list implementation
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

Closed List

Open List
g=0,

h=6,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value

**If implementing this for a programming 
assignment, please see the slide at the end about 
alternate closed-list implementation
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=1,

h=5,

f=6

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance
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open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance
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open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance
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open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance
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open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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A* and BFS
• BFS explores all nodes at a shorter distance 

from the start (i.e. g value)
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A* and BFS
• BFS explores all nodes at a shorter distance 

from the start (i.e. g value)
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A* and BFS
• BFS is A* using just the g value to choose 

which item to select and expand
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A* Analysis

• What data structure should we use for the open-list?

• What data structure should we use for the closed-list?

• What is the run time?

• Run time is similar to Dijkstra's algorithm…
– We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

– We then visit each successor which is like O(E) and perform an insert or decrease operation which is 
like E*max(O(insert), O(decrease)

– E = Number of potential successors and this depends on the problem and the possible solution space

– For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or 
if they are already in the open list, update them if 
they have a smaller f value
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Implementation Note
• When the distance to a node/state/successor (i.e. g value) is 

uniform, we can greedily add a state to the closed-list at the 
same time as we add it to the open-list

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or 
if they are already in the open list, update them if 
they have a smaller f value

open_list.push(Start State)

Closed_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list and closed_list
if they are not in the closed_list

Non-uniform g-values Uniform g-values

1 2
4 8 3
7 6 5

g=0,H=6

1 2
4 8 3
7 6 5

…

g=k,H=6

The first occurrence of a board 

has to be on the shortest path 

to the solution
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BETWEENESS CENTRALITY

If time allows…
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BC Algorithm Overview
• What's the most central vertex(es) in the graph 

below?

• How do we define "centrality"?

• Betweeness centrality defines "centrality" as the 
nodes that are between the most other pairs

b

a

c d

e

f

Sample Graph

j

h

i

k

m

l

Graph 1 Graph 2
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BC Algorithm Overview
• Betweeness centrality (BC) defines "centrality" as the nodes that are between 

(i.e. on the path between) the most other pairs of vertices

• BC considers betweeness on only "shortest" paths!

• To compute centrality score for each vertex we need to find shortest paths 
between all pairs…

– Use the Breadth-First Search (BFS) algorithm to do this

b

a

c d

e

f

Sample Graph

Original 1

b

a

c d

e

f

Are these gray nodes 

'between' a and e?

Original w/ 

added path

No, a-c-d-e is the 

shortest path?
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BC Algorithm Overview
• Betweeness-Centrality determines "centrality" as the number of 

shortest paths from all-pairs upon which a vertex lies

• Consider the sample graph below
– Each external vertex (a, b, e, f) lies is a member of only the shortest paths 

between itself and each other vertex

– Vertices c and d lie on greater number of shortest paths and thus will be 
scored higher 

b

a

c d

e

f

Sample Graph Image each vertex is a 

ball and each edge is a 

chain or string.  What 

would this graph look 

like if you picked it up 

by vertex c?  Vertex a?
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BC Implementation
• Based on Brandes' formulation for unweighted graphs

– Perform |V| Breadth-first traversals

– Traversals result in a subgraph consisting of shortest paths from root to all 
other vertices

– Messages are then sent back up the subgraph from "leaf" vertices to the 
root summing the percentage of shortest-paths each vertex is a member of

– Summing a vertex's score from each traversal yields overall BC result

b

a

c d

e

f

Sample Graph with 

final BC scores a

c

b d

e f
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number of 
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BC Implementation
• As you work down, track # of shortest paths running through a 

vertex and its predecessor(s)

• On your way up, sum the nodes beneath
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and resulting 
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score appropriately)



102

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OLD - IGNORE
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Tangent on Heaps/PQs - old
• Can we provide a decrease-key() that runs in 

O(log n) and not O(n)
– Remember we'd have to first find then promote

• We need to know where items sit in the heap
– Essentially we want to quickly know the location 

given the key/priority (i.e. Map key => location)

– Unfortunately storing the heap as an array does just 
the opposite (maps location => key)

• What if we maintained an alternative map 
that did provide the reverse indexing
– Then I could find where the key sits and then 

promote it

• If I keep that map as a balanced BST can I 
achieve O(log n) decreaseKey() time?
– No! each promotion swap requires update your 

location and your parents

– O(log n) swaps each requiring lookup(s) in the 
location map [O(log n)] yielding O(log2(n))
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Tangent on Heaps/PQs -old
• Am I out of luck then?

• No, try a hash map

– O(1) lookup
• Now each swap/promotion up the heap only 

costs O(1) and thus I have:

– Find => O(1) 

• Using the hashmap

– Promote => O(log n) 

• Bubble up at most log(n) levels 
with each level incurring O(1) 
updates of locations in the 
hashmap

• Decrease-key() is an important operation in 
the next algorithm we'll look at
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