
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Trees

Priority Queues / Heaps
Mark Redekopp

David Kempe

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

TREES

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tree Definitions – Part 1
• Definition: A connected, acyclic (no cycles) graph with:

– A root node, r, that has 0 or more subtrees

– Exactly one path between any two nodes

• In general:

– Nodes have exactly one parent (except for the root which
has none) and 0 or more children

• d-ary tree

– Tree where each node has at most d children

– Binary tree = d-ary Tree with d=2

parent

Right child

siblings

DescendantLeaf

Left child

Ancestor

Terms:
• Parent(i): Node directly

above node i

• Child(i): Node directly below

node i

• Siblings: Children of the

same parent

• Root: Only node with no

parent

• Leaf: Node with 0 children

• Height: Number of nodes on

longest path from root to any

leaf

• Subtree(n): Tree rooted at

node n

• Ancestor(n): Any node on

the path from n to the root

• Descendant(n): Any node in

the subtree rooted at n

root

subtree

A 3-ary

(trinary)

tree

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tree Definitions – Part 2
• Tree height: maximum # of nodes on a path from root to

any leaf

• Full d-ary tree, T, where

– Every vertex has 0 or d children and all leaf nodes are at the
same level (i.e. adding 1 more node requires increasing the
height of the tree)

• Complete d-ary tree

– Top h-1 levels are full AND bottom level is filled left-to-right

– Each level is filled left-to-right and a new level is not started
until the previous one is complete

• Balanced d-ary tree

– Tree where, for EVERY node, the subtrees for each child
differ in height by at most 1

Full

Complete, but not full

Full

Complete, but not fullDAPS, 6th Ed. Figure 15-8

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tree Height

• A full or complete binary tree of n nodes has height,
h= 𝑙𝑜𝑔2(𝑛 + 1)
– This implies the minimum height of any tree with n nodes is

𝑙𝑜𝑔2(𝑛 + 1)

• The maximum height of a tree with n nodes is, ___

15 nodes => height log2(16) = 4

5 nodes => height = __

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

TREE IMPLEMENTATIONS
Array-based and Link-based

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Array-Based Complete Binary Tree

• Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

• Can you find the mathematical relation for finding the index of node i's
parent, left, and right child?

– Parent(i) = __________

– Left_child(i) = ___________

– Right_child(i) = ___________

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = _______

Left_child(5) = ________

Right_child(5) = _________

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Array-Based Complete Binary Tree

• Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

• Can you find the mathematical relation for finding node i's parent, left,
and right child?

– Parent(i) = i/2

– Left_child(i) = 2*i

– Right_child(i) = 2*i + 1

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = 5/2 = 2

Left_child(5) = 2*5 = 10

Right_child(5) = 2*5+1 = 11

Non-complete binary trees require much

more bookeeping to store in arrays…usually

link-based approaches are preferred

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

0-Based Indexing

• Now let's assume we start the root at index 0 of the array

• Can you find the mathematical relation for finding the index of node i's
parent, left, and right child?

– Parent(i) = __________

– Left_child(i) = ___________

– Right_child(i) = ___________

7

918

19 35 14 10

28 39 36 43 16 17

7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12

parent(5) = _______

Left_child(5) = ________

Right_child(5) = _________

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

m-ary Array-based Implementations

• Arrays can be used to store
m-ary complete trees

– Adjust the formulas derived
for binary trees in previous
slides in terms of m

7

18 9 19

35 21 26

A 3-ary (trinary) tree

7 18 9 19

0 1 2 3 4

35 21 26

5 6

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Link-Based Approaches

• For an arbitrary (non-
complete) m-ary tree we
need to use pointer-based
structures
– Much like a linked list but

now with two pointers per
Item

• Use NULL pointers to
indicate no child

• Dynamically allocate and
free items when you
add/remove them

#include<iostream>
using namespace std;

template <typename T>
struct Item {

T val;
Item<T>* left, *right;
Item<T>* parent;

};
// Bin. Search Tree
template <typename T>
class BinTree
{
public:
BinTree();
~BinTree();
void add(const T& v);
...
private:
Item<T>* root_;

};

T

val

Item<T>*

right

Item<T> blueprint:

class

BinTree<T>:

Item<T>*

left

0x0 root_

Item<T>*

parent

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Link-Based Approaches
1. add(5)

2. add(6)

3. add(7)

0x1c0 root_

val

7

right

NULL

Left

NULL

0x0e0

0x1c0 root_

val

5

right

NULL

Left

NULL

BinTree<int>: 0x0 root_
0

1
0x1c0 root_

val

5

right

0x2a0

Left

NULL

val

6

right

NULL

Left

NULL

0x2a0

2 3

0x1c00x1c0 parent

NULL
parent

NULL

parent

0x1c0

val

5

right

0x2a0

Left

NULL

val

6

right

0x0e0

Left

NULL

0x2a0

0x1c0
parent

NULL

parent

0x1c0

parent

0x2a0

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRIORITY QUEUES

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Traditional Queue
• Traditional Queues

– Accesses/orders items based on POSITION
(front/back)

– Did not care about item's VALUE

• Priority Queue

– Orders items based on VALUE

• Either minimum or maximum

– Items arrive in some arbitrary order

– When removing an item, we always want the
minimum or maximum depending on the
implementation

• Heaps that always yield the min value are called
min-heaps

• Heaps that always yield the max value are called
max-heaps

– Leads to a "sorted" list

– Examples:

• Think hospital ER, air-traffic control, etc.

15 33 62 81

47

(push_back)

(pop_front)

Traditional Queue

15 33 62 81

47

(push)

(pop)

Priority Queue

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Priority Queue
• What member functions does a Priority Queue have?

– push(item) – Add an item to the appropriate location of the
PQ

– top() – Return the min./max. value

– pop() - Remove the front (min. or max) item from the PQ

– size() - Number of items in the PQ

– empty() - Check if the PQ is empty

– [Optional]: changePriority(item, new_priority)

• Useful in many algorithms (especially graph and search
algorithms)

• Priority can be based on…

– Intrinsic data-type being stored (i.e. operator<()
of type T)

– Separate parameter from data type, T, and
passed in which allows the same object to have
different priorities based on the programmer's
desire (i.e. same object can be assigned different
priorities)

P2 P3 P4 P5

P6

(push)

P1

(pop)

(top)

Priority Queue

(Priority based on intrinsic

property of the data)

12,

P1

17,

P2

31,

P3

39,

P5

47,

P6

(push)

P1

(pop)

(top)

class Patient {
public:
bool operator<(...);

};

Priority Queue

(Priority based on separate

priority parameter)

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Priority Queue Efficiency

• If implemented as a sorted array list

– Insert() = ___________

– Top() = ___________

– Pop() = ____________

• If implemented as an unsorted array list

– Insert() = ___________

– Top() = ___________

– Pop() = ____________

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Priority Queue Efficiency

• If implemented as a sorted array list

– [Use back of array as location of top element]

– Insert() = O(n)

– Top() = O(1)

– Pop() = O(1)

• If implemented as an unsorted array list

– Insert() = O(1)

– Top() = O(n)

– Pop() = O(n)

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

HEAPS

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Heap Data Structure

• Provides an efficient implementation for a priority queue

• Can think of heap as a complete binary tree that maintains
the heap property:
– Heap Property: Every parent is better-than [less-than if min-heap, or

greater-than if max-heap] both children, but no ordering property between
children

• Minimum/Maximum value is always the top element

Min-Heap

7

918

19 35 14 10

28 39 36 43 16 25

Always a

complete tree

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Heap Operations

• Push: Add a new item to the
heap and modify heap as
necessary

• Pop: Removes the "best"
(min/max) item and modifies the
heap as necessary

• Top: Returns "best" item
(min/max)

• Since heaps are complete binary
trees we can use an array/vector
as the container

template <typename T>
class MinHeap
{ public:

MinHeap(int init_capacity);
~MinHeap()
int size() const;
bool empty() const;

void push(const T& item);
void pop();
const T& top() const;

private:
// Helper function
void heapify(int idx);

vector<T> items_; // or array
}

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Array/Vector Storage for Heap

• Recall: A complete binary tree (i.e. only the lowest-level contains empty
locations and items added left to right) can be modeled as an array (let’s
say it starts at index 1) where:

– parent(i) = i/2

– left_child(p) = 2*p

– right_child(p) = 2*p + 1

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = 5/2 = 2

left(5) = 2*5 = 10

right(5) = 2*5+1 = 11

1

2 3

4 5 6 7

8 9 10 11 12 13 14

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Array/Vector Storage for Heap

• We prefer to use 0-based indexing

– parent(i) = ______

– left_child(p) = ______

– right_child(p) = ______

7

918

19 35 14 10

28 39 36 43 16 17

7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12

0

1 2

3 4 5 6

7 8 10 11 129

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Push Heap / TrickleUp
• Add item to first free location at

bottom of tree

• Recursively promote it up while
it is less than its parent
– Remember valid heap all parents

< children…so we need to promote
it up until that property is satisfied

7

918

19 35 14 10

28 39 36 43 16 25

7

818

19 35 14 9

28 39 36 43 16 258
810

Push_Heap(8)
1

2 3

4 5 6 7

8 9 10 11 12 13 14

void MinHeap<T>::push(const T& item)
{
items_.push_back(item);
trickleUp(items_.size()-1);

}

void MinHeap<T>::trickleUp(int loc)
{

// could be implemented recursively
int parent = _________;
while(parent ________ &&

items_[loc] ___ items_[parent])
{ swap(items_[parent], items_[loc]);

loc = ___________;
parent = ________;

}
}

Solutions at the

end of these slides

When implementing

in your HW, update

for 0-based indexing

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

top()

• top() simply needs
to return first item

7

918

19 35 14 10

28 39 36 43 16 25

Top() returns 7

1

2 3

4 5 6 7

8 9 10 11 12 13

T const & MinHeap<T>::top() const
{

if(empty())
throw(std::out_of_range());

return items_[1];
}

When implementing

in your HW, update

for 0-based indexing

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pop Heap / Heapify (TrickleDown)
• Pop utilizes the "heapify"

algorith (a.k.a. trickleDown)

• Takes last (greatest) node
puts it in the top location
and then recursively swaps
it for the smallest child until
it is in its right place

7

918

19 35 14 10

28 39 36 43 16 25

9

1018

19 35 14

7

28 39 36 43 16

Original

925

918

19 35 14 10

28 39 36 43 16

25

1

2 3

4 5 6 7

8 9 10 11 12 13

1

2 3

4 5 6 7

8 9 10 11 12

void MinHeap<T>::pop()
{ items_[1] = items_.back(); items_.pop_back()

heapify(1); // a.k.a. trickleDown()
}

void MinHeap<T>::heapify(int idx)
{

if(idx == leaf node) return;
int smallerChild = 2*idx; // start w/ left
if(right child exists) {
int rChild = smallerChild+1;
if(items_[rChild] < items_[smallerChild])

smallerChild = rChild;
} }
if(items_[idx] > items_[smallerChild]){

swap(items_[idx], items_[smallerChild]);
heapify(smallerChild);

} }

When implementing

in your HW, update

for 0-based indexing

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Practice

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

89 10 11 12 13

7

9

35 14 10

36

18

19

3928

1

2 3

4 5 6 7

8 9 10

Push(11)

Pop()

4

8

35 26 24

36

17

19

3928

1

2 3

4 5 6

9 10

Pop()

7

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

Push(23)

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #835

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MAKE-HEAP / BUILD-HEAP
Building a heap out of an arbitrary array

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation

• Suppose you are given an array of
arbitrary data and you want to
create a heap from that data

• You could
– Allocate a second array for a heap,

– Loop through the source array, and

– Call push(data[i]) on each iteration

– Runtime: O(n*log n)

• What if we said there was a way
that:
– Did not require a second array

– Could build the heap in O(n)

25 28

0 1

Arbitrary Array

(Does not meet heap property)

Heap h;
for(i=0; i < n; i++){

h.push(data[i]);
}

Creating a new heap from

the arbitrary array

28

0

28 25

0 1

28
0

28

25

0

1

25

28

0

1

28 25 14 25

0 1 2 3 4

10 18 7 19

5 6 7

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

make_heap(): Converting An Unordered
Array to a Heap

• We will define a basic operation to
convert the arbitrary array into a heap

• Basic operation: Given two smaller, valid
heaps and one new value, merge/create
a larger, valid heap

• Approach:
– Use the new value to "unify" the two smaller

heaps by making it the root and the smaller
heaps become subtrees

– But this will likely violate the heap property

• How can we make a heap from this non-
heap
– Heapify!! (we did this in pop())

7

35 18 14

9

10

19

1 2

3 4 5 6

7

Task: Merge / Create a new valid heap

28

A Valid Heap A Valid Heap

New value

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Converting An Array to a Heap
• To convert an array to a heap we can

use the idea of first making heaps of
both sub-trees and then merging the
sub-trees (a.k.a. smaller heaps) into
one unified heap by calling
heapify() on the new value

• First consider all leaf nodes, are they
valid heaps if you think of them as the
root of a tree?
– Yes!!

• So just start at the first non-leaf

28

14

10 18 7

35

25

19

0

1 2

3 4 5 6

7

Tree View of Array

Array not fulfilling heap property

(issue is 28 at index 1)

28 35 14 25

0 1 2 3 4

10 18 7 19

5 6 7

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Converting An Array to a Heap
• Call heapify() on each node in reverse order

(from bottom to top)

• Optimization: Skip leaf nodes
– If you consider all leaf nodes as individual heaps of

size 1 (i.e. just that node as the root), they are
already small, valid heaps

– So just start at first non-leaf (i.e. heapify(3))

Leafs are valid heaps by definition

heapify(3)

Swap 25 & 19

heapify(2)

Swap 14 & 7

14

18 7

2

5 6

7

18 14

2

5 6

heapify(1)

Swap 35 & 10

10

35

19

25

1

3

7

heapify(0)

28

7

35 14 18

10

19

25

0

1 2

3 4 5 6

7

Swap 28 <-> 7

Swap 28 <-> 14

void make_heap(vector<int>& dat) {
for(int i=_______; i >= ___; i--){

} }

28

14

10 18 7

35

25

19

0

1 2

3 4 5 6

7

25

19

3

7

19

25

3

7

28 35 14 25

0 1 2 3 4

10 18 7 19

5 6 7

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Make-Heap Run-Time

• To build a heap from an arbitrary array require n calls to heapify.

• For pop() we said heapify takes
O(___________)

• Let's be more specific:
– Heapify takes θ(h)

– Because most of the heapify calls are made in the bottom of the tree
(shallow h), it turns out heapify can be done in θ(___)
• n (all) calls do constant work (at h = 1)

• n/2 calls may have to do an extra swap (at h=2)

• n/4 calls may have to do another swap (at h=3)

• … and only 1 call has h = log n

• Totals: n + n/2 + n/4 + …

• = n (1 + ½ + ¼ + 1/8 + …)

• As h approaches infinity,
the sum approaches 2n = 𝜃 𝑛

28

18

35 14 7

9

10

19 12 41 52 27 18 15 39

1

num comparisons <= 1

num comparisons <= 3

…

num comparisons <= 2

void make_heap(vector<int>& dat) {
for(int i=dat.size()-1; i >= 0; i--){

heapify(i);
} }

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Make-Heap Run-Time

• Or put another way, because most of the heapify calls are
made in the bottom of the tree (shallow h), it turns out
heapify can be done in θ(n)

• Heapify takes θ(h)
– n/2 heapify calls with h=1 [i.e. the n/2 leaves]

– n/4 calls with h=2

– n/8 calls with h=3

– Totals: 1*n/2 + 2*n/4 + 3*n/8

– T(n)=σℎ=1
log(𝑛)

ℎ ∗ 𝑛 ∗
1

2

ℎ
= 𝑛 ∗ σℎ=1

log(𝑛)
ℎ ∗

1

2

ℎ

– T(n) = 𝑛 ∗ 𝜃 𝑐 = 𝜃 𝑛

28

18

35 14 7

9

10

19 12 41 52 27 18 15 39

…

n/2 nodes

n/8 nodes

n/4 nodes

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Proving the Runtime of Make-Heap

• Let us prove that σℎ=1
log 𝑛

ℎ ∗
1

2

ℎ
is θ(1)

• 𝑇 𝑛 = σℎ=1
log 𝑛

ℎ ∗
1

2

ℎ
< σℎ=1

∞ ℎ ∗
1

2

ℎ

• Now recall: σℎ=1
∞ 𝑥 ℎ =

1

1−𝑥
for x < 1 [x=1/2 for this problem]

• Now suppose we take the derivative of both sides

• σℎ=1
∞ ℎ ∙ 𝑥 ℎ−1 =

1

1−𝑥 2

• Suppose we multiply both sides by x:

𝑥 ∙ σℎ=1
∞ ℎ ∙ 𝑥 ℎ−1 = σℎ=1

∞ ℎ ∙ 𝑥 ℎ =
𝑥

1−𝑥 2

• For 𝑥 =
1

2
we have σℎ=1

∞ ℎ ∙
1

2

ℎ
=

1

2

1−
1

2

2 = 2

• Thus for Build-Heap: T(n)=𝑛 ∗ σℎ=1
log(𝑛)

ℎ ∗
1

2

ℎ
= 𝑛 ∗ 𝜃 𝑐 = 𝜃 𝑛

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

HEAPSORT
Application of make-heap

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using a Heap to Sort
• If we could make a valid heap out of an arbitrary array, could we use that heap to

sort our data?

• Sure, just call top() and pop() n times to get data in sorted order

• How long would that take?

– n calls to: top()=Θ(1) and pop()= Θ(log n)

– Thus total time = Θ(n * log n)

• But how long does it take to convert the array
to a valid heap?

Array Converted to Valid Heap

Valid Heap

0 1 2 3 4 5 6 7

Sorted output (after calling top/pop n times)

Arbitrary Array

Complete Tree View of

Arbitrary Array

Step 1

Step 2

28

14

10 18 7

35

25

19

0

1 2

3 4 5 6

7

7

14

35 28 18

10

19

25

0

1 2

3 4 5 6

7

28 35 14 25

0 1 2 3 4

10 18 7 19

5 6 7

7 10 14 19

0 1 2 3 4

35 28 18 25

5 6 7

7 10 14 18 19 25 28 35

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Converting An Array to a Heap
• Now that we have a valid heap, we can sort by top and popping…

• Can we do it in place?
– Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area

7 10 14 19

1 2 3 4

35 28 18 25

5 6 7

10

14

35 28 18

19

25

0

1 2

3 4 5 6

10 19 14 25

0 1 2 3 4

35 28 18 7

5 6 7

14 19 18 25

0 1 2 3 4

35 28 10 7

5 6 7

heapify(0)

Swap top &

last

18 19 28 25

0 1 2 3 4

35 14 10 7

5 6 7

heapify(0)

Swap top &

last

sorted

heap sorted

Valid Heap

7

14

35 28 18

10

19

25

0

1 2

3 4 5 6

7

0

14

18

35 28

19

25

0

1 2

3 4 5

18

28

35

19

25

0

1 2

3 4heapify(0)

Swap top &

last

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sorting Using a Heap

• Notice the result is in descending order.

• How could we make it ascending order?

– Create a max heap rather than min heap.

35 28 25 19

0 1 2 3 4

18 14 10 7

5 6 7

18

28

35

19

25

0

1 2

3 4

18 19 28 25

0 1 2 3 4

35 14 10 7

5 6 7

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ STL HEAP IMPLEMENTATION
Reference/Optional

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

STL Priority Queue
• Implements a heap

• Operations:

– push(new_item)

– pop(): removes but does not
return top item

– top() return top item (item at
back/end of the container)

– size()

– empty()

• http://www.cplusplus.com/refere
nce/stl/priority_queue/push/

• By default, implements a max
heap but can use comparator
functors to create a min-heap

• Runtime: O(log(n)) push and pop
while all other functions are
constant (i.e. O(1))

// priority_queue::push/pop
#include <iostream>
#include <queue>

using namespace std;

int main ()
{

priority_queue<int> mypq;
mypq.push(30);
mypq.push(100);
mypq.push(25);
mypq.push(40);
cout << "Popping out elements...";
while (!mypq.empty()) {

cout<< " " << mypq.top();
mypq.pop();

}
cout<< endl;
return 0;

}

Code here will print

100 40 30 25

http://www.cplusplus.com/reference/stl/priority_queue/push/
http://www.cplusplus.com/reference/stl/priority_queue/push/

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

STL Priority Queue Template
• Template that allows type of element, container class, and comparison

operation for ordering to be provided

• First template parameter should be type of element stored

• Second template parameter should be the container class you want to use
to store the items (usually vector<type_of_elem>)

• Third template parameters should be comparison functor that will define
the order from first to last in the container

// priority_queue::push/pop
#include <iostream>
#include <queue>
using namespace std;

int main ()
{ priority_queue<int, vector<int>, greater<int>> mypq;
mypq.push(30); mypq.push(100); mypq.push(25);
cout<< "Popping out elements...";
while (!mypq.empty()) {
cout<< " " << mypq.top();
mypq.pop();

}
}

Code here will print
25, 30, 100

greater<int> will yield a min-heap

less<int> will yield a max-heap

30

0

100

1

30

0

100 30

1 2

25

0

Push(30)

Push(100)

Push(25)

Push(n): Mimics heap::push

Top(): Return last item

Pop(): Mimic heap::pop

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ less and greater
• If you're class already has

operators < or > and you
don't want to write your
own functor you can use
the C++ built-in functors:
less and greater

• Less
– Compares two objects of

type T using the operator<
defined for T

• Greater
– Compares two objects of

type T using the operator<
defined for T

template <typename T>
struct less
{

bool operator()(const T& v1, const T& v2){
return v1 < v2;

}
};

template <typename T>
struct greater
{

bool operator()(const T& v1, const T& v2){
return v1 > v2;

}
};

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

STL Priority Queue Template
• For user defined

classes, must
implement
operator<() for max-
heap or operator>()
for min-heap OR a
custom functor

• Code here will pop in
order:
– Jane

– Charlie

– Bill

// priority_queue::push/pop
#include <iostream>
#include <queue>
#include <string>
using namespace std;

class Item {
public:
int score;
string name;

Item(int s, string n) { score = s; name = n;}
bool operator>(const Item &rhs) const
{ if(this->score > rhs.score) return true;

else return false;
}

};

int main ()
{

priority_queue<Item, vector<Item>, greater<Item> > mypq;
Item i1(25,”Bill”); mypq.push(i1);
Item i2(5,”Jane”); mypq.push(i2);
Item i3(10,”Charlie”); mypq.push(i3);
cout<< "Popping out elements...";
while (!mypq.empty()) {

cout<< " " << mypq.top().name;
mypq.pop();

} }

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Details

• Behind the scenes std::priority_queue uses
standalone functions defined in the
algorithm library

– push_heap
• https://en.cppreference.com/w/cpp/algorithm/push_heap

– pop_heap
• https://en.cppreference.com/w/cpp/algorithm/pop_heap

– make_heap
• https://en.cppreference.com/w/cpp/algorithm/make_heap

https://en.cppreference.com/w/cpp/algorithm/push_heap
https://en.cppreference.com/w/cpp/algorithm/pop_heap
https://en.cppreference.com/w/cpp/algorithm/make_heap

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Push Heap / TrickleUp
• Add item to first free location at

bottom of tree

• Recursively promote it up while
it is less than its parent
– Remember valid heap all parents

< children…so we need to promote
it up until that property is satisfied

7

918

19 35 14 10

28 39 36 43 16 25

7

818

19 35 14 9

28 39 36 43 16 258
810

Push_Heap(8)
1

2 3

4 5 6 7

8 9 10 11 12 13 14

void MinHeap<T>::push(const T& item)
{
items_.push_back(item);
trickleUp(items_.size()-1);

}

void MinHeap<T>::trickleUp(int loc)
{

// could be implemented recursively
int parent = loc/2;
while(parent >= 1 &&

items_[loc] < items_[parent])
{ swap(items_[parent], items_[loc]);

loc = parent;
parent = loc/2;

}
}

Solutions at the

end of these slides

	Slide 1: CSCI 104 Trees Priority Queues / Heaps
	Slide 2: Trees
	Slide 3: Tree Definitions – Part 1
	Slide 4: Tree Definitions – Part 2
	Slide 5: Tree Height
	Slide 6: Tree Implementations
	Slide 7: Array-Based Complete Binary Tree
	Slide 8: Array-Based Complete Binary Tree
	Slide 9: 0-Based Indexing
	Slide 10: m-ary Array-based Implementations
	Slide 11: Link-Based Approaches
	Slide 12: Link-Based Approaches
	Slide 13: Priority Queues
	Slide 14: Traditional Queue
	Slide 15: Priority Queue
	Slide 16: Priority Queue Efficiency
	Slide 17: Priority Queue Efficiency
	Slide 18: Heaps
	Slide 19: Heap Data Structure
	Slide 20: Heap Operations
	Slide 21: Array/Vector Storage for Heap
	Slide 22: Array/Vector Storage for Heap
	Slide 23: Push Heap / TrickleUp
	Slide 24: top()
	Slide 25: Pop Heap / Heapify (TrickleDown)
	Slide 26: Practice
	Slide 27: XKCD #835
	Slide 28: Make-Heap / Build-Heap
	Slide 29: Motivation
	Slide 30: make_heap(): Converting An Unordered Array to a Heap
	Slide 31: Converting An Array to a Heap
	Slide 32: Converting An Array to a Heap
	Slide 33: Make-Heap Run-Time
	Slide 34: Make-Heap Run-Time
	Slide 35: Proving the Runtime of Make-Heap
	Slide 36: HEAPSORT
	Slide 37: Using a Heap to Sort
	Slide 38: Converting An Array to a Heap
	Slide 39: Sorting Using a Heap
	Slide 40: C++ STL HEAP Implementation
	Slide 41: STL Priority Queue
	Slide 42: STL Priority Queue Template
	Slide 43: C++ less and greater
	Slide 44: STL Priority Queue Template
	Slide 45: More Details
	Slide 46: Solutions
	Slide 47: Push Heap / TrickleUp

