CSCl 104
Operator Overloading

Mark Redekopp
David Kempe

Function Overloading

 What makes up a signature (uniqueness) of a
function
— nName
— number and type of arguments

e No two functions are allowed to have the same

signature; the following 5 functions are unique and
allowable...

— void f1(int); void f1(double); void f1(List<int>&);
— void f1(int, int); void f1(double, int);

 We say that “f1” is overloaded 5 times

i, TS(“Viterbi -

School of Engineering

Operator Overloading

* C/C++ defines operators (+,*,-,==,etc.) that work
with basic data types like int, char, double, etc.

* C/C++ has no clue what classes we’ll define and
what those operators would mean for these yet-
to-be-defined classes

class complex {

public:

double real, imaginary;
}s
Complex c1,c2,c3;
// should add component-wise
c3 =cl + c2;

class List {

}s
List 11,12;
11 = 11 + 12; // should concatenate

// 12 items to 11

We can write custom functions to tell the
compiler what to do when we use these
operators! Let us learn how...

class User{
public:
User(string n); // Constructor
string get_name();
private:
int id_;
string name_;

};

#include “user.h”

User::User(string n) {
name_ = n;

¥

string User::get_name(){
return name_;

}

#include<iostream>
#include ‘“user.h”

int main(int argc, char *argv[]) {
User ul(“Bill”), u2(“Jane”);
// see if same username
// Option 1:
if(ul == u2) cout << “Same”;

// Option 2:

if(ul.get_name() == u2.get_name())
{ cout << “Same” << endl; }

return 0:

}

y-asn

ddoiasn

ddor1say Jasn

Two Approaches

* There are two ways to specify an operator
overload function

— Global level function (not a member of any class)

— As a member function of the class on which it will
operate

* Which should we choose?

— |t depends on the left-hand side operand (e.g.
string + int or iostream + Complex)

I (/S C Viterbi ‘®
Method 1: Global Functions

« Can define global functions (0
. int h = 9;
with name "operator{+-...}" Ctring SUPFIX = “pum.t:
ta k|ng two arguments string time = hour + suffix;
]] // WON'T COMPILE..doesn't know how to
— LHS = Left Hand side is 1°t arg // add an int and a string

return 0;

— RTH = Right Hand side is 2" arg | ;

* When compiler encounters an [string operator+(int time, string suf)
{

operator with objects of stringstream ss;
. o . . ss << time << suf;
specific types it will look for an | return ss.str();
: }

"operator" function to match | int main()

. {
and Ca” |t int hour = 9;

string suffix = "p.m.";

string time = hour + suffix;
// WILL COMPILE TO:
// string time = operator+(hour, suffix);

return 0;

i, TS(“Viterbi -

School of Engineering

Method 2: Class Members

C++ allows users to write
functions that define what an
operator should do for a class

— Binary operators: +, -, *, /, ++, --

— Comparison operators:
== !=1 <; >1 <=I >=

— Assignment: =, +=, -=, *=, /=, etc.

— 1/0 stream operators: <<, >>
Function name starts with
‘operator’ and then the actual
operator

Left hand side is the implied object
for which the member function is
called

Right hand side is the argument

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);

private;
int real, imag;

};

Complex Complex::operator+(const Complex &rhs)
{

Complex temp;

temp.real = real + rhs.real;

temp.imag = imag + rhs.imag;

return temp;

}

int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex ¢3 = cl1 + c2;
// Same as c3 = cl.operator+(c2);
cout << c3.real << "," << c3.imag << endl;
// can overload '<<' so we can write:
// cout << c3 << endl;
return 0;

IlllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIJS(TVﬁeﬂﬁ<::>

School of Engineering

Binary Operator Overloading

* For binary operators, do the operation on a new object's data
members and return that object
— Don’t want to affect the input operands data members
* Difference between: x=y+2z; vs. x=x+z;
 Normal order of operations and associativity apply (can’t be
changed)

* Can overload each operator with various RHS types...

— See next slide

USC Viterbi

School of Engineering

Binary Operator Overloading

class Complex
{
public:
Complex(int r, int i);
~Complex()
Complex operator+(const Complex &rhs);
Complex operator+(int real);
private:
int real, imag;
¥
Complex Complex: :operator+(const Complex &rhs)
{
Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}

Complex Complex::operator+(int real)
{

Complex temp = *this;

temp.real += real;

return temp;

No special code is needed to add 3 or more
operands. The compiler chains multiple calls to
the binary operator in sequence.

/

int main()

{
Complex c1(2,3) 4 c2(4,5), c3(6,7);

Complex c4 = cl1 + c2 + c3;

// (cl + c2) + c3

// c4 = cl.operator+(c2).operator+(c3)
// anonymous-ret-val.operator+(c3)

c3 =cl + c2;
c3 =c3 + 5;

Adding different types
(Complex + Complex vs.
Complex + int)requires

different overloads

i, TS(“Viterbi -

School of Engineering

Relational Operator Overloading

e Can overload El""ss Complex
==, !:’ <, <=, >, >= public:
Complex(int r, int i);
 Should return bool ~Complex();

Complex operator+(const Complex &rhs);
bool operator==(const Complex &rhs);
int real, imag;

}s5
bool Complex: :operator==(const Complex &rhs)
{
return (real == rhs.real & imag == rhs.imag);
}

int main()
{
Complex c1(2,3);
Complex c2(4,5);
// equiv. to cl.operator==(c2);
if(cl == c2)
cout << “Cl & C2 are equal!” << endl;

return 0;

Nothing will be displayed

Practice On Own

* |n the online exercises, add the following
operators to your Str class

— operator(]
— operator==(const Str& rhs);

— If time do these as well but if you test them they
may not work...more on this later!

— operator+(const Str& rhs);
— operator+(const char* rhs);

i, TS(“Viterbi Cw

School of Engineering

Non-Member Functions

What if the user changes the
order?
— int on LHS & Complex on RHS
— No match to a member function
b/c to call a member function
the LHS has to be an instance of
that class
We can define a non-
member function (good old
regular function) that takes
in two parameters (both the
LHS & RHS)

— May need to declare it as a
friend

int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex ¢c3 = 5 + c1;
// ?? 5.operator+(cl) ??
// ?? int.operator+(cl) ??
// there is no int class we can
// change or write

return 9;

}

Doesn't work without a new operator+ overload

Complex operator+(const int& lhs, const Complex &rhs)

{
Complex temp;
temp.real = lhs + rhs.real;
return temp;

¥

int main()

{
Complex c1(2,3);
Complex c2(4,5);
Complex ¢c3 =5 + c1;
return 0;

}

temp.imag = rhs.imag;

// Calls operator+(5,cl)

Still a problem with this code
Can operator+(...) access Complex's private data?

B (S Vierbi
Friend Functions

 Afriend functionis a class Silly
function that is not a t
public:
member of the class but Silly(int d) { dat =d };
. friend int inc_my_data(Silly &s);
has access to the private private:
int dat;

data members of instances
of that class

};

// don't put Silly:: in front of inc_my_data(...)

e Put keyword ‘Friend’ in // since it isn't a member of Silly
function prototype in class gt nemy data(Silly &)
unf: .. P yp { < dats: Notice inc_my_data is NOT a
definition return ;.dat; member function of Silly. It's a
e Don’t add scope to } global scope function but it
function definition int main() now can access the private

{ class members.
Silly cat(5);
//cat.dat = 8
// WON'T COMPILE fSince dat is private

int x = inc_my_data(cat);
cout << x << endl;

B ()5 C Vierbi
Non-Member Functions

class Complex

e Revisiting the previous ¢
public:

F)f()t)lEErT] Complex(int r, int 1i);

~Complex();

// this is not a member function

friend Complex operator+(const int&, const Complex&);
private:

int real, imag;

};

Complex operator+(const int& lhs, const Complex &rhs)
{
Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;
¥
int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex c3 =5 + ci1; // Calls operator+(5,cl)
return 0;

Now things work!

i, TS(“Viterbi

School of Engineering
[} [} ?
Why Friend Functions:
 Canldo the following? class Complex
. error: no match for 'operator<<'in 'std::cout << c1' { .
. Jusr/include/c++/4.4/ostream:108: note: public: . . .
candidates are: /usr/include/c++/4.4/ostream:165: Complex(int r, int i);
note: std::basic_ostream<_CharT, ~Complex();
_Traits>& std::basic_ostream<_CharT, Complex operator+(const Complex &rhs);
_Traits>::operator<<(long int) [with _CharT = char, private:
_Traits = std::char_traits<char>] int real, imag;
. Jusr/include/c++/4.4/ostream:169: note: };
std::basic_ostream<_CharT, _Traits>& ?
std::basic_ostream<_CharT, . .
_Traits>::operator<<(long unsigned int) [with 1nt main ()
_CharT =char, _Traits = std::char_traits<char>] {
« Jusr/include/c++/4.4/ostream:173: note: Complex c1(2,3);
std::basic_ostream<_CharT, _Traits>& cout << cl1; // equiv. to cout.operator<<(cl);
std::basic_ostream<_CharT, cout << endl;
_Traits>::operator<<(bool) [with _CharT = char, return 0;
_Traits = std::char_traits<char>] }
. Jusr/include/c++/4.4/bits/ostream.tcc:91: note:
std::basic_ostream<_CharT, Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(short int) [with _CharT = char,
_Traits = std::char_traits<char>]

— ()5 Viterbi >
Why Friend Functions?

e coutis an object of type ‘ostream’ Elass Complex
* <<isjustan operator public:
. . , , Complex(int r, int i);
* But we call it with ‘cout’ on the ~Complex();
LHS which would make Complex operator+(const Complex &rhs);
] private:
“operator<<” a member function int real, imag;
of class ostream };
e (Ostream class can’t define these int main()
member functions to print out Complex c1(2,3);
user defined classes because they cout << “cl = “ << cl;

// cout.operator<<(“cl = “).operator<<(cl);
haven’t been created
I ’ // ostream::operator<<(char *str);
* Slmllarly’ ostream class doesn’t // ostream::operator<<(Complex &src);
have access to private members
t dl;
of Complex cout << en

return 0;

i, TS(“Viterbi

School of Engineering

Ostream Overloading

Can define operator
functions as friend
functions

LHS is 1%t arg.
RHS is 2" arg.

Use friend function so
LHS can be different type
but still access private
data

Return the ostream&
(i.e. os which is really
cout) so you can chain
calls to '<<' and because
cout/os object has
changed

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);
friend ostream& operator<<(ostream&, const Complex &c);
private:
int real, imag;

};

ostream& operator<<(ostream &os, const Complex &c)
0S << c.real <« << c.imag << “37;
//cout.operater<<(c.real).operator<<(“,”).operator<<...
return os;

}

({31
J

int main()

{
Complex c1(2,3), c2(4,5);
cout << cl << c2;
// operator<<(cout, cl);
cout << endl;
return 0;

Template for adding ostream capabilities:

friend ostream& operator<<(ostream &os, const T &rhs);
(where T is your user defined type)

B (S C Viterbi
Member or Friend?

Should | make my operator overload be a member of a class, C1?

Ask yourself: Is the LHS an instance of C1?

YES NO
Cl objA; C1l objA;
objA << objB // or objB << objA // or
objA + int int + objA
YES the operator overload function NO the operator overload function should
can be a member function of the C1 be a global level (maybe friend) function
class since it will be translate to such as operator<<(cout, objA). It cannot
objA.operator<<(...) be a member function since it will be

translate to objB.operator<<(...).

i, TS(“Viterbi

School of Engineering

Summary

* If the left hand side of the operator is an instance of that class
— Make the operator a member function of a class...
— The member function should only take in one argument which is the RHS
object
* If the left hand side of the operator is an instance of a different
class
— Make the operator a friend function of a class...

— This function requires two arguments, first is the LHS object and second is
the RHS object

