
1

CSCI 104
Operator Overloading

Mark Redekopp

David Kempe

2

Function Overloading

• What makes up a signature (uniqueness) of a
function

– name

– number and type of arguments

• No two functions are allowed to have the same
signature; the following 5 functions are unique and
allowable…

– void f1(int); void f1(double); void f1(List<int>&);

– void f1(int, int); void f1(double, int);

• We say that “f1” is overloaded 5 times

3

Operator Overloading

• C/C++ defines operators (+,*,-,==,etc.) that work
with basic data types like int, char, double, etc.

• C/C++ has no clue what classes we’ll define and
what those operators would mean for these yet-
to-be-defined classes

– class complex {
public:
double real, imaginary;

};

– Complex c1,c2,c3;
// should add component-wise
c3 = c1 + c2;

– class List {
...
};

– List l1,l2;
l1 = l1 + l2; // should concatenate

// l2 items to l1

• We can write custom functions to tell the
compiler what to do when we use these
operators! Let us learn how…

class User{
public:

User(string n); // Constructor
string get_name();

private:
int id_;
string name_;

};

#include “user.h”
User::User(string n) {

name_ = n;
}
string User::get_name(){

return name_;
}

#include<iostream>
#include “user.h”

int main(int argc, char *argv[]) {
User u1(“Bill”), u2(“Jane”);
// see if same username
// Option 1:
if(u1 == u2) cout << “Same”;

// Option 2:
if(u1.get_name() == u2.get_name())

{ cout << “Same” << endl; }
return 0:
}

u
s

e
r.h

u
s

e
r.c

p
p

u
s

e
r_

te
s
t.c

p
p

4

Two Approaches

• There are two ways to specify an operator
overload function

– Global level function (not a member of any class)

– As a member function of the class on which it will
operate

• Which should we choose?

– It depends on the left-hand side operand (e.g.
string + int or iostream + Complex)

5

Method 1: Global Functions

• Can define global functions
with name "operator{+-…}"
taking two arguments
– LHS = Left Hand side is 1st arg

– RTH = Right Hand side is 2nd arg

• When compiler encounters an
operator with objects of
specific types it will look for an
"operator" function to match
and call it

int main()
{

int hour = 9;
string suffix = "p.m.";

string time = hour + suffix;
// WON'T COMPILE…doesn't know how to
// add an int and a string
return 0;

}

string operator+(int time, string suf)
{

stringstream ss;
ss << time << suf;
return ss.str();

}
int main()
{

int hour = 9;
string suffix = "p.m.";

string time = hour + suffix;
// WILL COMPILE TO:
// string time = operator+(hour, suffix);

return 0;
}

6

Method 2: Class Members
• C++ allows users to write

functions that define what an
operator should do for a class
– Binary operators: +, -, *, /, ++, --

– Comparison operators:
==, !=, <, >, <=, >=

– Assignment: =, +=, -=, *=, /=, etc.

– I/O stream operators: <<, >>

• Function name starts with
‘operator’ and then the actual
operator

• Left hand side is the implied object
for which the member function is
called

• Right hand side is the argument

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);

private;
int real, imag;

};

Complex Complex::operator+(const Complex &rhs)
{

Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}

int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = c1 + c2;
// Same as c3 = c1.operator+(c2);
cout << c3.real << "," << c3.imag << endl;
// can overload '<<' so we can write:
// cout << c3 << endl;
return 0;

}

7

Binary Operator Overloading

• For binary operators, do the operation on a new object's data
members and return that object
– Don’t want to affect the input operands data members

• Difference between: x = y + z; vs. x = x + z;

• Normal order of operations and associativity apply (can’t be
changed)

• Can overload each operator with various RHS types…
– See next slide

8

Binary Operator Overloading

int main()
{
Complex c1(2,3), c2(4,5), c3(6,7);

Complex c4 = c1 + c2 + c3;
// (c1 + c2) + c3
// c4 = c1.operator+(c2).operator+(c3)
// = anonymous-ret-val.operator+(c3)

c3 = c1 + c2;
c3 = c3 + 5;

}

class Complex
{
public:
Complex(int r, int i);
~Complex()
Complex operator+(const Complex &rhs);
Complex operator+(int real);

private:
int real, imag;

};
Complex Complex::operator+(const Complex &rhs)
{

Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}

Complex Complex::operator+(int real)
{

Complex temp = *this;
temp.real += real;
return temp;

} Adding different types
(Complex + Complex vs.
Complex + int) requires

different overloads

No special code is needed to add 3 or more
operands. The compiler chains multiple calls to

the binary operator in sequence.

9

Relational Operator Overloading
• Can overload

==, !=, <, <=, >, >=

• Should return bool

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);
bool operator==(const Complex &rhs);
int real, imag;

};

bool Complex::operator==(const Complex &rhs)
{

return (real == rhs.real && imag == rhs.imag);
}

int main()
{

Complex c1(2,3);
Complex c2(4,5);
// equiv. to c1.operator==(c2);
if(c1 == c2)
cout << “C1 & C2 are equal!” << endl;

return 0;
}

Nothing will be displayed

10

Practice On Own

• In the online exercises, add the following
operators to your Str class

– operator[]

– operator==(const Str& rhs);

– If time do these as well but if you test them they
may not work…more on this later!

– operator+(const Str& rhs);

– operator+(const char* rhs);

11

Non-Member Functions
• What if the user changes the

order?
– int on LHS & Complex on RHS

– No match to a member function
b/c to call a member function
the LHS has to be an instance of
that class

• We can define a non-
member function (good old
regular function) that takes
in two parameters (both the
LHS & RHS)
– May need to declare it as a

friend

int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1;

// ?? 5.operator+(c1) ??
// ?? int.operator+(c1) ??
// there is no int class we can
// change or write

return 0;
}

Still a problem with this code

Can operator+(…) access Complex's private data?

Complex operator+(const int& lhs, const Complex &rhs)
{

Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;

}
int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1; // Calls operator+(5,c1)
return 0;

}

Doesn't work without a new operator+ overload

12

class Silly
{

public:
Silly(int d) { dat = d };
friend int inc_my_data(Silly &s);

private:
int dat;

};

// don't put Silly:: in front of inc_my_data(...)
// since it isn't a member of Silly
int inc_my_data(Silly &a)
{

s.dat++;
return s.dat;

}

int main()
{

Silly cat(5);
//cat.dat = 8
// WON'T COMPILE since dat is private

int x = inc_my_data(cat);
cout << x << endl;

}

Friend Functions
• A friend function is a

function that is not a
member of the class but
has access to the private
data members of instances
of that class

• Put keyword ‘friend’ in
function prototype in class
definition

• Don’t add scope to
function definition

Notice inc_my_data is NOT a
member function of Silly. It's a

global scope function but it
now can access the private

class members.

13

Non-Member Functions
• Revisiting the previous

problem

Now things work!

class Complex
{
public:
Complex(int r, int i);
~Complex();
// this is not a member function
friend Complex operator+(const int&, const Complex&);

private:
int real, imag;

};

Complex operator+(const int& lhs, const Complex &rhs)
{

Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;

}
int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1; // Calls operator+(5,c1)
return 0;

}

14

Why Friend Functions?
• Can I do the following?
• error: no match for 'operator<<' in 'std::cout << c1'

• /usr/include/c++/4.4/ostream:108: note:
candidates are: /usr/include/c++/4.4/ostream:165:
note: std::basic_ostream<_CharT,
_Traits>& std::basic_ostream<_CharT,
_Traits>::operator<<(long int) [with _CharT = char,
_Traits = std::char_traits<char>]

• /usr/include/c++/4.4/ostream:169: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(long unsigned int) [with
_CharT = char, _Traits = std::char_traits<char>]

• /usr/include/c++/4.4/ostream:173: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(bool) [with _CharT = char,
_Traits = std::char_traits<char>]

• /usr/include/c++/4.4/bits/ostream.tcc:91: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(short int) [with _CharT = char,
_Traits = std::char_traits<char>]

class Complex
{
public:

Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);

private:
int real, imag;

};

int main()
{

Complex c1(2,3);
cout << c1; // equiv. to cout.operator<<(c1);
cout << endl;
return 0;

}

15

Why Friend Functions?
• cout is an object of type ‘ostream’

• << is just an operator

• But we call it with ‘cout’ on the
LHS which would make
“operator<<“ a member function
of class ostream

• Ostream class can’t define these
member functions to print out
user defined classes because they
haven’t been created

• Similarly, ostream class doesn’t
have access to private members
of Complex

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);

private:
int real, imag;

};

int main()
{

Complex c1(2,3);
cout << “c1 = “ << c1;
// cout.operator<<(“c1 = “).operator<<(c1);

// ostream::operator<<(char *str);
// ostream::operator<<(Complex &src);

cout << endl;
return 0;

}

16

Ostream Overloading
• Can define operator

functions as friend
functions

• LHS is 1st arg.

• RHS is 2nd arg.

• Use friend function so
LHS can be different type
but still access private
data

• Return the ostream&
(i.e. os which is really
cout) so you can chain
calls to '<<' and because
cout/os object has
changed

class Complex
{
public:
Complex(int r, int i);
~Complex();
Complex operator+(const Complex &rhs);
friend ostream& operator<<(ostream&, const Complex &c);

private:
int real, imag;

};

ostream& operator<<(ostream &os, const Complex &c)
{

os << c.real << “,“ << c.imag << “j”;
//cout.operater<<(c.real).operator<<(“,”).operator<<...
return os;

}

int main()
{

Complex c1(2,3), c2(4,5);
cout << c1 << c2;
// operator<<(cout, c1);
cout << endl;
return 0;

}

Template for adding ostream capabilities:

friend ostream& operator<<(ostream &os, const T &rhs);
(where T is your user defined type)

17

Member or Friend?
Should I make my operator overload be a member of a class, C1?

Ask yourself: Is the LHS an instance of C1?

C1 objA;
objA << objB // or
objA + int

YES the operator overload function
can be a member function of the C1

class since it will be translate to
objA.operator<<(…)

C1 objA;
objB << objA // or
int + objA

NO the operator overload function should
be a global level (maybe friend) function
such as operator<<(cout, objA). It cannot

be a member function since it will be
translate to objB.operator<<(…).

YES NO

18

Summary
• If the left hand side of the operator is an instance of that class

– Make the operator a member function of a class…

– The member function should only take in one argument which is the RHS
object

• If the left hand side of the operator is an instance of a different
class
– Make the operator a friend function of a class…

– This function requires two arguments, first is the LHS object and second is
the RHS object

