CSCl 104
Runtime Complexity

Mark Redekopp
David Kempe

- USCViterbi @
Runtime

* |tis hard to compare the run time of an algorithm on actual hardware

— Time may vary based on speed of the HW, etc.

e The same program may take 1 sec. on your laptop but 0.5 second on a high
performance server

e |f we want to compare 2 algorithms that perform the same task we could
try to count operations (regardless of how fast the operation can execute
on given hardware)...

— But what is an operation?
— How many operations is: i++?

— i++ actually requires grabbing the value of i from memory and bringing it to
the processor, then adding 1, then putting it back in memory. Should that be
3 operations or 1?

— Its painful to count 'exact' numbers operations

* Big-0, Big-Q), and © notation allows us to be more general (or "sloppy" as
you may prefer)

e — ()5 Viterbi >
Complexity Analysis

* To find upper or lower bounds on the
complexity, we must consider the set of all
possible inputs, |, of size, n

e Derive an expression, T(n), in terms of the head
input size, n, for the number of 0x148| ox148 OX1c0 0x168
operations/steps that are required to solve L] 3 Toxacols| 9 [oxuess| 2)
the problem of a given input, i val next val next val next

— Some algorithms depend oniand n
* Find(3) in the list shown vs. Find(2)

— Others just depend on n
* Push_back / Append

* Which inputs though? Note: Running time is not just

— Best, worst, or "typical/average" case? based on an algorithm,

i - BUT algorithm + input dat
« We will always apply it to the "worst case" algorithm + Input data

— That's usually what people care about

i, TS("Viterbi -

School of Engineering
Big-O, Big-£2

* T(n)is said to be O(f(n)) if...

— T(n) < a*f(n) for n > n, (where a and n, are

constants) |
— Essentially an upper-bound - ar(n)
— We'll focus on big-O for the worst case
* T(n)is said to be Q(f(n)) if...
— T(n) > a*f(n) for n > n, (where a and n, are T(n)

constants)
— Essentially a lower-bound

 T(n)is said to be ©(f(n)) if...
— T(n) is both O(f(n)) AND Q(f(n))

i, TS("Viterbi -

Worst Case and Big-(2

 What's the lower bound on List::find(val)

— Is it Q(1) since we might find the given value on the first element?
— Well it could be if we are finding a lower bound on the 'best case’

* Big-Q does NOT have to be synonymous with 'best case’
— Though many times it mistakenly is
* You can have:
— Big-O for the best, average, worst cases
— Big-Q for the best, average, worst cases
— Big-O for the best, average, worst cases

i, TS("Viterbi -

Worst Case and Big-(2

* The key idea is an algorithm may perform differently for different input cases

— Imagine an algorithm that processes an array of size n but depends on what data is in
the array

* Big-O for the worst-case says ALL possible inputs are bound by O(f(n))
— Every possible combination of data is at MOST bound by O(f(n))
* Big-Q for the worst-case is attempting to establish a lower bound (at-least) for the
worst case (the worst case is just one of the possible input scenarios)

— If we look at the first data combination in the array and it takes n steps then we can
say the algorithm is Q(n).

— Now we look at the next data combination in the array and the algorithm takes n'-.
We can now say worst case is Q(n'->).

* To arrive at Q(f(n)) for the worst-case requires you simply to find AN input case
(i.e. the worst case) that requires at least f(n) steps

i, TS("Viterbi -

Deriving T(n)

School of Engineering

« Derive an expression, T(n), in terms of | #include <iostream>
the input size for the number of
operations/steps that are required to
solve a problem

using namespace std;

int main ()

e Ifistrue=>4 {
* Elseifistrue=>5 int i = 0; 1
« Worst case =>T(n)=5 % = 5; 1
if(i < x){ 1
X==y
} 1
else if (i > x){ 1
X += 2; 1_

}

return 0O;

Deriving T(n)

Since loops repeat you have to take the
sum of the steps that get executed over
all iterations

T(n)

Or you can setup a relationship like:
T(n)=T(n—1)+5
=Tn—2)+5+5

= Yt l5=5xn

Z?;ol 0(1) =0(n)

i, TS("Viterbi

School of Engineering

#include <iostream>
using namespace std;

int main ()
{
for (int 1=0; 1 < N;
x = 5;
1f(1 < x){
X==;
}
else 1f (1 > x){
X += 2;
}
}

return 0O;

}

i++) {

Common Summations

{L 1i n(n2+1) _ 9(712)

— This is called the arithmetic series
Y, 0(iP) = 0(nP™)

— This is a general form of the arithmetic series

n _ Cn+1_1 . n

-, C = 6(c™)
— This is called the geometric series
i 1 = 6(logn)

— Th|s is called the harmonic series

Skills You Should Gain

* To solve these running time problems try to
break the problem into 2 parts:

* FIRST, setup the expression (or recurrence
relationship) for the number of operations

e SECOND, solve

— Unwind the recurrence relationship
— Develop a series summation

— Solve the series summation

III'[]S(j\ﬁteﬂbi<:::>

School of Engineering

* Derive an expression, T(n), in terms of #include <iostream>
the input size for the number of

i . using namespace std;
operatlons/steps that are reqwred to

const int n = 256;
solve a problem unsigned char image[n] [n]
. T(n) _ int main ()

{
for(int 1=0,; 1 <
for(int 3=0; 3J <
image[i] [J] =

n; i++) {
n; Jt+) {
0;
}

_vn—-1vn-1 _vn-1 _ }
* —Z?:o Z?:O 0(1) - Z?:o 9(71) - @(nZ) return O;

- USCViterbi @
Matrix Multiply
=

AT
* Derive an expression, T(n), in terms = : E
of the input size for the number of c A B
operations/steps that are required Traditional Multiply
to solve a problem #include <iostream>
. T(n)== using Qamespace std;
const 1nt n = 256;

int al[n][n], b[n][n]l, cln][n];
int main ()

{

for (int i=0; 1 < n; 1i++){

. — \n—-1yn-1yn-1 _ 3 for(int J=0; J < n; J++){
_Zi:O Zj=0 Zk=09(1) _H(n) c[il[3] = 0;
for(int k=0; k < n; k++){
c[1] [J] += ali]l [k]l*b[k][J];

}
}
}

return 0;

i, TS("Viterbi (2

Sequential Loops

° |S thIS aISO n3? #include <iostream>
| using namespace std;
* NO' const int n = 256;
— 3 for loops, but not nested unsigned char image[n] [n]
int main ()
— O(n) + O(n) + O(n) =3*0(n) = 0O(n) {

for(int 1i=0; i < n; i++){
image[0] [1] = 5;

}

for(int 3j=0; J < n; J++){
image[1l][j] = 5;

}

for (int k=0; k < n; k++){
image[2] [k] = 5;

}

return O;

}

i, TS("Viterbi

School of Engineering

Counting Steps

It may seem like you can just look for
nested loops and then raise n to that
power

— 2 nested for loops => O(n?)
But be careful!!
You have to count steps

— Look at the update statement

— Outer loop increments by 1 each time so it
will iterate N times

— Inner loop updates by dividing x in half
each iteration?

— After 1stiteration => x=n/2

— After 2" jteration => x=n/4

— After 3 jteration => x=n/8

— Say ki iteration is last => x = n/2k=1
— Solve for k

— k=log,(n) iterations

— O(n*log(n))

#include <iostream>
using namespace std;
const int n = 256;

int main ()

{

for(int 1=0; 1 < n; 1i++){
int y=0;
for (int x=n; x != 1; x=x/2){
y++;

}
cout << y << endl;

}

return 0;

i, TS("Viterbi 9

Analyze This

* Count the steps of this example?

* T(n)=T(n-1) +n-1
* O+1+..+n-2+n-1
 (n-1)*n/2

School of Engineering

#include <iostream>
using namespace std;
const int n = 256;
int aln];
int main ()
{
for(int 1=0; 1 < n; i++) {
ali]l] = 0;
for (int 3=0; 7 < i; J++) {
ali] += 3J;
}
}

return 0;

i, TS("Viterbi

Analyze This

* Count the steps of this example?

for (int 1 = 0; 1 <= log2(n); i ++)
for (int j=0; j < (int) pow(2,1); J++)
cout << 7J;

1
o Z g(n) Z
o Zlg(n) zl

* Use the geometric sum eqn.

__1-a™
[] a o
zh 0 1-a

* So our answer is...

_olg(n)+1 _
1-2'8 1-2*n
T T =0

Another Example

* Count steps here...

— Think about how many times
if statement will evaluate true

« T(n) = X755 (6(1) +0(n))
e T(n) =

for

{

(int 1 = 0; 1 <

cout << "i: ";

int m = sgrt(n);

if(1 % m == 0){
for (int j=0;

J

<

n;y

cout << Jj << " "y

}

cout << endl;

j++)

Another Example

Count steps here...

— Think about how many times
if statement will evaluate true

T(n) =
T(n) =

Yo (0(1) + 0(n))
SO + IE, I
T(n) =6 + Xyt 6()

T(n) =6(n)+0(n-+yn)
T(n) = 9(n3/2)

for

{

(int 1 = 0; 1 <

cout << "i: ";

int m = sgrt(n);
if(1 % m == 0){
for (int j=0;

n;

7 <

i4+)

n;y

cout << Jj << " "y

}

cout << endl;

j++)

1 6(

1)

What about Recursion

e Assume N items in the
linked list

* T(n)=1+T(n-1)

e =1+1+T(n-2)

e =1+1+1+T(n-3)
e =n=0(n)

void print (Item* head)

{

}

i1f (head==NULL) return;

else {
cout << head->val << endl;
print (head->next) ;

}

Binary Search

Assume N items in the
data array

T(n) =

— 0O(1) if base case
— 0(1) + T(n/2)
=1+ T(n/2)
=1+1+T(n/4)
=k + T(n/2X)
Stop when 2k =n

int bsearch(int datal],

int start, int end,
int target)

if (end >= start)
return -1;
int mid = (start+end)/2;
if (target == data[mid])
return mid;
else if (target < data[mid])
return bsearch(data, start, mid,

target) ;
else
return bsearch (data, mid, end,
target) ;

— Implies log,(n) recursions

O(log,(n))

AMORTIZED RUNTIME

Example

* You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend S20
on food, etc.

— What is the cost of a visit?

* Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

e Often times an operation on a data structure will

have similar "irregular" costs that we can then
amortize over future calls

i, TS("Viterbi -«

School of Engineering

Amortized Array Resize Run-time

What is the run-time of
insert or push_back:

— If we have to resize?

— 0O(n)

— If we don't have to resize?

— 0(1)

Now compute the total
cost of a series of
insertions using resize by
1 at a time

Each insert now costs
O(n)... not good

push_back(21) => |21

Old, full array 30(51|52]|53

Increase old array
size by 1

Copy over items 30(51|52|53]|54]21

push_back(33) => |33

Increase old array
size by 1

Copy over items 30(51|52(53|54|21|33

Resize by 1 strategy

i, TS("Viterbi

School of Engineering

Amortized Array Resize Run-time
 What if we resize by adding 5

new locations each time push_back(21) =>|2¢
e Start analyzing when the list is 0 1 2 3 4
full... Old, full array 30/51152|53|54 ‘

— 1 call to insert will cost: 5
— What can | guarantee about the
i Increase old array]]]]]]]]] :
next 4 calls to insert? size by 5
* They will cost 1 each because | 0 1 2 3 4 5 6 7 8 9
have room Copy overitems | 30|51 |52|53]54 |21 l l l
— After those 4 calls the next
insert will cost: 10 Resize by 5 strategy

— Then 4 more at cost=1 Resize by 5 Strategy

30

 |fthe listis size n and full

— Next insert cost = n 20

25

— 4 inserts after than = 1 each 15
10 +

I Cost

—4—Capacity

— Cost for 5 inserts = n+5

— Runtime = cost / insert = (n+5)/5 =

O(n) 1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Calls to Insert

i, TS("Viterbi -«

School of Engineering

Consider a Doubling Size Strategy

e Start when the listis full and at size n
* Next insertion will cost?
— O(n+1)
* How many future insertions will be guaranteed to be cost =17

— n-1insertions
— At a cost of 1 each, | get n-1 total cost

e So for the n insertions my total cost was

— n+l+n-1=2%n

. .) Doubling Resize Strategy
* Amortized runtime is then: s

— Cost / insertions e ,’
30
|

— 0O(2*n/n)=0(2) s _
= O(1) = constant!!! 15]

=—¢— Capacity
10 +
5
0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

2 4 6 810121416182022242628303234363840

Number of Calls to Insert

i, TS("Viterbi

School of Engineering
Another Example
* Let's say you are writing an algorithm to
000

take a n-bit binary combination (3-bit 0000
and 4-bit combinations are to the right) 001 0001
and produce the next binary 010 0010
combination 011 0011

* Assume all the cost in the algorithm is — JLLD
spent changing a bit (define that as 1 e —
unit of work) LS —

111 0111

* | could give you any combination, what
is the worst case run-time? Best-case?

— O(n)=>011to0 100
— O(1) => 000 to 001

1000
1001
1010
1011
1100
1101
1110
1111

i, TS("Viterbi -«

Another Example

* Now let's consider the program that generates 000 0000
all the combinations sequentially (in order) 001 0001
— Starting at 000 =>001 : cost=1 010 0010
— Starting at 001 =>010 : cost=2 011 0011
— Startingat 010 =>011 : cost=1 100 0100
— Startingat 011 =>100 : cost=3 101 0101
— Startingat 100=>101 : cost=1 110 0110
— Startingat 101 =>110 : cost=2 111 0111
— Startingat 101 =>111 : cost=1 1000
— Startingat 111 =>000 : cost=3 1001
— Total =14 /8 calls=1.75 1010

* Repeat for the 4-bit 1011
— 1+2+1+3+1+2+1+4+ ..

1100
— Total=30/16=1.875 1101
* Asn gets larger...Amortized cost per call =2 1110

1111

USC Viterbi

School of Engineering

Importance of Complexity

50

45~

40~

35

30

251

Run-time

20

15+

10~

5ﬁ

0

20

200

2000

1 4.3
1 7.6
1 11.0

20

200

2000

Run-time

350

300

250

200

150

100

50

N
N2
N*log2(N)

—

86.4

1,528.8

21,931.6

0 E[) 10 15 20 25 30 35 40 45 50 00 2 4 6 8 10 12 14 16 18 20
N N
N | om | olen) | oM ofhen) | o) | o)
2 1 1 2 2 4 4

400 1,048,576
40,000 1.60694E+60
4,000,000 #NUM!

