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Runtime 

• It is hard to compare the run time of an algorithm on actual hardware 

– Time may vary based on speed of the HW, etc. 

• The same program may take 1 sec. on your laptop but 0.5 second on a high 
performance server 

• If we want to compare 2 algorithms that perform the same task we could 
try to count operations (regardless of how fast the operation can execute 
on given hardware)… 

– But what is an operation? 

– How many operations is:  i++ ? 

– i++ actually requires grabbing the value of i from memory and bringing it to 
the processor, then adding 1, then putting it back in memory.  Should that be 
3 operations or 1? 

– Its painful to count 'exact' numbers operations 

• Big-O, Big-Ω, and Θ notation allows us to be more general (or "sloppy" as 
you may prefer) 
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Complexity Analysis 
• To find upper or lower bounds on the 

complexity, we must consider the set of all 
possible inputs, I, of size, n 

• Derive an expression, T(n), in terms of the 
input size, n, for the number of 
operations/steps that are required to solve 
the problem of a given input, i 
– Some algorithms depend on i and n 

• Find(3) in the list shown vs. Find(2) 

– Others just depend on n 

• Push_back / Append 

• Which inputs though? 
– Best, worst, or "typical/average" case? 

• We will always apply it to the "worst case" 
– That's usually what people care about 

 
 

 

 

 
 

 

 

 

val next 

3 0x1c0 

val next 

9 0x168 

0x148 

head 

0x148 0x1c0 

val next 

2 
0x0 

(Null) 

0x168 

Note: Running time is not just 
based on an algorithm,  

BUT algorithm + input data 
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Big-O, Big- 
• T(n) is said to be O(f(n)) if… 

– T(n) <  a*f(n) for n > n0 (where a and n0 are 
constants) 

– Essentially an upper-bound 

– We'll focus on big-O for the worst case 

• T(n) is said to be Ω(f(n)) if… 
– T(n) >  a*f(n) for n > n0 (where a and n0 are 

constants) 

– Essentially a lower-bound 

• T(n) is said to be Θ(f(n)) if… 
– T(n) is both O(f(n)) AND Ω(f(n))  

 
 

 

 

 
 

 

 

 

n0 

a*f(n) 

T(n) 
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Worst Case and Big-  
• What's the lower bound on List::find(val) 

– Is it Ω(1) since we might find the given value on the first element? 

– Well it could be if we are finding a lower bound on the 'best case' 

• Big-Ω does NOT have to be synonymous with 'best case' 
– Though many times it mistakenly is 

• You can have: 

– Big-O for the best, average, worst cases 

– Big-Ω for the best, average, worst cases 

– Big-Θ for the best, average, worst cases 
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Worst Case and Big-  
• The key idea is an algorithm may perform differently for different input cases 

– Imagine an algorithm that processes an array of size n but depends on what data is in 
the array 

• Big-O for the worst-case says ALL possible inputs are bound by O(f(n)) 

– Every possible combination of data is at MOST bound by O(f(n)) 

• Big-Ω for the worst-case is attempting to establish a lower bound (at-least) for the 
worst case (the worst case is just one of the possible input scenarios) 

– If we look at the first data combination in the array and it takes n steps then we can 
say the algorithm is Ω(n). 

– Now we look at the next data combination in the array and the algorithm takes n1.5.  
We can now say worst case is Ω(n1.5).  

• To arrive at Ω(f(n)) for the worst-case requires you simply to find AN input case 
(i.e. the worst case) that requires at least f(n) steps 
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Deriving T(n) 
• Derive an expression, T(n), in terms of 

the input size for the number of 
operations/steps that are required to 
solve a problem 

• If is true => 4 

• Else if is true => 5 

• Worst case => T(n) = 5 

 

 

 

 

#include <iostream> 

 

using namespace std; 

 

 

int main() 

{ 

   

  int i = 0; 

 

  x = 5; 

 

  if(i < x){ 

     x--; 

  } 

  else if(i > x){ 

     x += 2; 

  } 

  return 0; 

} 

 

1 

1 

1 
1 

1 
1 
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Deriving T(n) 
• Since loops repeat you have to take the 

sum of the steps that get executed over 
all iterations 

 

• 𝑇 𝑛 = 

 

 

• =  5 = 5 ∗ 𝑛𝑛−1
𝑖=0  

• Or you can setup a relationship like: 

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 5 

• = 𝑇 𝑛 − 2 + 5 + 5 

• =  5 = 5 ∗ 𝑛𝑛−1
𝑖=0  

• =  𝑂(1) = 𝑂(𝑛)𝑛−1
𝑖=0  

 

 

 

 
 

 

 

 

#include <iostream> 

using namespace std; 

 

int main() 

{ 

   

  for(int i=0; i < N; i++){ 

    x = 5; 

    if(i < x){ 

       x--; 

    } 

    else if(i > x){ 

       x += 2; 

    } 

  }    

  return 0; 

} 
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Common Summations 

•  𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2   

– This is called the arithmetic series 

•  𝜃(𝑖𝑝)𝑛
𝑖=1 = 𝜃 𝑛𝑝+1  

– This is a general form of the arithmetic series 

•  𝑐𝑖𝑛
𝑖=1 =

𝑐𝑛+1−1

𝑐−1
= 𝜃 𝑐𝑛  

– This is called the geometric series 

•  
1

𝑖
𝑛
𝑖=1 = 𝜃 log 𝑛  

– This is called the harmonic series 
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Skills You Should Gain 

• To solve these running time problems try to 
break the problem into 2 parts: 

• FIRST, setup the expression (or recurrence 
relationship) for the number of operations 

• SECOND, solve 

– Unwind the recurrence relationship 

– Develop a series summation 

– Solve the series summation 
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Loops 
• Derive an expression, T(n), in terms of 

the input size for the number of 
operations/steps that are required to 
solve a problem 

• 𝑇 𝑛 = 

 

 

 

• =   𝜃(1)𝑛−1
𝑗=0

𝑛−1
𝑖=0  =  𝜃 𝑛𝑛−1

𝑖=0  = Θ(n2) 

 
 

 

 

 

 
 

 

 

 

#include <iostream> 

 

using namespace std; 

const int n = 256; 

unsigned char image[n][n] 

int main() 

{ 

  for(int i=0; i < n; i++){ 

    for(int j=0; j < n; j++){ 

       image[i][j] = 0; 

    } 

  }    

  return 0; 

} 
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Matrix Multiply 
• Derive an expression, T(n), in terms 

of the input size for the number of 
operations/steps that are required 
to solve a problem 

• 𝑇 𝑛 = 

 

 

 

• =    𝜃(1)𝑛−1
𝑘=0

𝑛−1
𝑗=0

𝑛−1
𝑖=0 = 𝜃(𝑛3) 

 
 

 

 

 

 
 

 

 

 

#include <iostream> 

using namespace std; 

const int n = 256; 

int a[n][n], b[n][n], c[n][n]; 

int main() 

{ 

  for(int i=0; i < n; i++){ 

    for(int j=0; j < n; j++){ 

      c[i][j] = 0; 

      for(int k=0; k < n; k++){ 

        c[i][j] += a[i][k]*b[k][j]; 

      } 

    } 

  }    

  return 0; 

} 

 

C A B 

* = 

Traditional Multiply 
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Sequential Loops 
• Is this also n3? 

• No! 
– 3 for loops, but not nested 

– O(n) + O(n) + O(n) = 3*O(n) = O(n) 

 

 

 

 

#include <iostream> 

 

using namespace std; 

const int n = 256; 

unsigned char image[n][n] 

int main() 

{ 

  for(int i=0; i < n; i++){ 

    image[0][i] = 5; 

  }    

  for(int j=0; j < n; j++){ 

    image[1][j] = 5; 

  }    

  for(int k=0; k < n; k++){ 

    image[2][k] = 5; 

  }    

 return 0; 

} 
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Counting Steps 
• It may seem like you can just look for 

nested loops and then raise n to that 
power  
– 2 nested for loops => O(n2) 

• But be careful!! 

• You have to count steps 
– Look at the update statement 

– Outer loop increments by 1 each time so it 
will iterate N times 

– Inner loop updates by dividing x in half 
each iteration? 

– After 1st iteration => x=n/2 

– After 2nd iteration => x=n/4 

– After 3rd iteration => x=n/8 

– Say kth iteration is last => x = n/2k = 1 

– Solve for k 

– k = log2(n) iterations 

– O(n*log(n)) 

 

 
 

 

 

 

 
 

 

 

 

#include <iostream> 

using namespace std; 

const int n = 256; 

 

int main() 

{ 

  for(int i=0; i < n; i++){ 

    int y=0; 

    for(int x=n; x != 1; x=x/2){ 

 y++; 

    } 

    cout << y << endl; 

  }    

  return 0; 

} 
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Analyze This 
• Count the steps of this example? 

 

 

 

 

 

• T(n) = T(n-1) + n-1 

• 0 + 1 + … + n-2 + n-1 

• (n-1)*n/2 

 
 

 

 

 

 
 

 

 

 

#include <iostream> 

using namespace std; 

const int n = 256; 

int a[n]; 

int main() 

{ 

  for(int i=0; i < n; i++){ 

    a[i] = 0; 

    for(int j=0; j < i; j++){ 

 a[i] += j; 

    } 

  }    

  return 0; 

} 
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Analyze This 
• Count the steps of this example? 

 

 

 

 

 

•   12𝑖

𝑗=0
lg (𝑛)
𝑖=0  

• = 2𝑖
lg (𝑛)
𝑖=0  

• Use the geometric sum eqn. 

• = 𝑎𝑖 =
1−𝑎𝑛

1−𝑎
𝑛−1
𝑖=0  

• So our answer is… 

•
1−2lg 𝑛 +1

1−2
=
1−2∗𝑛

−1
= 𝑂(𝑛) 

 

 

 

 

 
 

 

 

 

for (int i = 0; i <= log2(n); i ++)  

   for (int j=0; j < (int) pow(2,i); j++)  

      cout << j;  
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Another Example 

• Count steps here… 
– Think about how many times 

if statement will evaluate true 

 

 

• 𝑇 𝑛 =  𝜃 1 + 𝑂(𝑛)𝑛−1
𝑖=0  

• 𝑇 𝑛 =  

for (int i = 0; i < n; i++)  

{ 

   cout << "i: "; 

   int m = sqrt(n); 

   if( i % m == 0){ 

     for (int j=0; j < n; j++)  

       cout << j << " "; 

   } 

   cout << endl; 

}  
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Another Example 

• Count steps here… 
– Think about how many times 

if statement will evaluate true 

 

 

 

• 𝑇 𝑛 =  𝜃 1 + 𝑂(𝑛)𝑛−1
𝑖=0  

• 𝑇 𝑛 =  𝜃 1𝑛−1
𝑖=0 +   𝜃 1𝑛

𝑗=1
𝑛
𝑘=1  

• 𝑇 𝑛 = 𝜃 𝑛 +  𝜃 𝑛
𝑛
𝑘=1  

• 𝑇 𝑛 = 𝜃 𝑛 + 𝜃 𝑛 ∙ 𝑛  

• 𝑇 𝑛 = 𝜃 𝑛
3
2  

 

for (int i = 0; i < n; i++)  

{ 

   cout << "i: "; 

   int m = sqrt(n); 

   if( i % m == 0){ 

     for (int j=0; j < n; j++)  

       cout << j << " "; 

   } 

   cout << endl; 

}  
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What about Recursion 

• Assume N items in the 
linked list 

• T(n) = 1 + T(n-1) 

• = 1 + 1 + T(n-2) 

• = 1 + 1 + 1 + T(n-3) 

• = n = O(n) 

void print(Item* head) 

{ 

   if(head==NULL) return; 

   else {  

     cout << head->val << endl; 

     print(head->next); 

   } 

} 

 



20 

Binary Search 

• Assume N items in the 
data array 

• T(n) =  

– O(1) if base case 

– O(1) + T(n/2) 

• = 1 + T(n/2) 

• = 1 + 1 + T(n/4) 

• = k + T(n/2k) 

• Stop when 2k = n  

– Implies log2(n) recursions 

• O(log2(n)) 

int bsearch(int data[], 

            int start, int end, 

            int target) 

{ 

  if(end >= start) 

    return -1; 

  int mid = (start+end)/2; 

  if(target == data[mid]) 

    return mid; 

  else if(target < data[mid]) 

    return bsearch(data, start, mid,  

                   target); 

  else 

    return bsearch(data, mid, end,  

                   target);  

}   
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AMORTIZED RUNTIME 
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Example 

• You love going to Disneyland.  You purchase an 
annual pass for $240.  You visit Disneyland once a 
month for a year.  Each time you go you spend $20 
on food, etc.   

– What is the cost of a visit? 

• Your annual pass cost is spread or "amortized" (or 
averaged) over the duration of its usefulness 

• Often times an operation on a data structure will 
have similar "irregular" costs that we can then 
amortize over future calls 
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Amortized Array Resize Run-time 

• What is the run-time of 
insert or push_back: 
– If we have to resize? 

– O(n) 

– If we don't have to resize? 

– O(1) 

• Now compute the total 
cost of a series of 
insertions using resize by 
1 at a time 

• Each insert now costs 
O(n)… not good 

30 51 52 53 54 

0 1 2 3 4 5 

21 

30 51 52 53 54 

0 1 2 3 4 

21 push_back(21) => 

Old, full array 

Copy over items 

0 1 2 3 4 5 

Increase old array 

size by 1 

Resize by 1 strategy 

30 51 52 53 54 

0 1 2 3 4 5 

21 Copy over items 

0 1 2 3 4 5 

Increase old array 

size by 1 

5 

33 

6 

33 push_back(33) => 
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Amortized Array Resize Run-time 
• What if we resize by adding 5 

new locations each time 

• Start analyzing when the list is 
full… 

– 1 call to insert will cost: 5 

– What can I guarantee about the 
next 4 calls to insert? 

• They will cost 1 each because I 
have room 

– After those 4 calls the next 
insert will cost: 10 

– Then 4 more at cost=1 

• If the list is size n and full 
– Next insert cost = n 

– 4 inserts after than = 1 each 

– Cost for 5 inserts = n+5 

– Runtime = cost / insert = (n+5)/5 = 
O(n) 

30 51 52 53 54 

0 1 2 3 4 

21 push_back(21) => 

Old, full array 

Resize by 5 strategy 

30 51 52 53 54 

0 1 2 3 4 5 

21 

6 

Copy over items 

0 1 2 3 4 5 

Increase old array 

size by 5 

6 7 8 9 

7 8 9 
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Consider a Doubling Size Strategy 

• Start when the list is full and at size n 

• Next insertion will cost? 
– O(n+1) 

• How many future insertions will be guaranteed to be cost = 1? 
– n-1 insertions  

– At a cost of 1 each, I get n-1 total cost 

• So for the n insertions my total cost was  
– n+1 + n-1 = 2*n 

• Amortized runtime is then: 
– Cost / insertions 

– O(2*n / n) = O(2)  
= O(1) = constant!!! 
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Another Example 
• Let's say you are writing an algorithm to 

take a n-bit binary combination (3-bit 
and 4-bit combinations are to the right) 
and produce the next binary 
combination 

• Assume all the cost in the algorithm is 
spent changing a bit (define that as 1 
unit of work) 

• I could give you any combination, what 
is the worst case run-time?  Best-case? 

– O(n) => 011 to 100 

– O(1) => 000 to 001 

 

 

3-bit Binary 

000 

001 

010 

011 

100 

101 

110 

111 

4-bit Binary 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 
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Another Example 

• Now let's consider the program that generates 
all the combinations sequentially (in order) 

– Starting at 000 => 001   :  cost = 1 

– Starting at 001 => 010   :  cost = 2 

– Starting at 010 => 011   :  cost = 1 

– Starting at 011 => 100   :  cost = 3 

– Starting at 100 => 101   :  cost = 1 

– Starting at 101 => 110   :  cost = 2 

– Starting at 101 => 111   :  cost = 1 

– Starting at 111 => 000   :  cost = 3 

– Total = 14 / 8 calls = 1.75 

• Repeat for the 4-bit 

– 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + … 

– Total = 30 / 16 = 1.875 

• As n gets larger…Amortized cost per call = 2 

 

 

 

 

3-bit Binary 

000 

001 

010 

011 

100 

101 

110 

111 

4-bit Binary 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 
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Importance of Complexity 

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n) 

2 1 1 2 2 4 4 

20 1 4.3 20 86.4  
                     

400           1,048,576  

200 1 7.6 200 1,528.8  
               

40,000  1.60694E+60 

2000 1 11.0 2000 21,931.6           4,000,000  #NUM! 
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