
1

CSCI 104
Runtime Complexity

Mark Redekopp

David Kempe

2

Runtime

• It is hard to compare the run time of an algorithm on actual hardware

– Time may vary based on speed of the HW, etc.

• The same program may take 1 sec. on your laptop but 0.5 second on a high
performance server

• If we want to compare 2 algorithms that perform the same task we could
try to count operations (regardless of how fast the operation can execute
on given hardware)…

– But what is an operation?

– How many operations is: i++ ?

– i++ actually requires grabbing the value of i from memory and bringing it to
the processor, then adding 1, then putting it back in memory. Should that be
3 operations or 1?

– Its painful to count 'exact' numbers operations

• Big-O, Big-Ω, and Θ notation allows us to be more general (or "sloppy" as
you may prefer)

3

Complexity Analysis
• To find upper or lower bounds on the

complexity, we must consider the set of all
possible inputs, I, of size, n

• Derive an expression, T(n), in terms of the
input size, n, for the number of
operations/steps that are required to solve
the problem of a given input, i
– Some algorithms depend on i and n

• Find(3) in the list shown vs. Find(2)

– Others just depend on n

• Push_back / Append

• Which inputs though?
– Best, worst, or "typical/average" case?

• We will always apply it to the "worst case"
– That's usually what people care about

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

Note: Running time is not just
based on an algorithm,

BUT algorithm + input data

4

Big-O, Big-
• T(n) is said to be O(f(n)) if…

– T(n) < a*f(n) for n > n0 (where a and n0 are
constants)

– Essentially an upper-bound

– We'll focus on big-O for the worst case

• T(n) is said to be Ω(f(n)) if…
– T(n) > a*f(n) for n > n0 (where a and n0 are

constants)

– Essentially a lower-bound

• T(n) is said to be Θ(f(n)) if…
– T(n) is both O(f(n)) AND Ω(f(n))

n0

a*f(n)

T(n)

5

Worst Case and Big-
• What's the lower bound on List::find(val)

– Is it Ω(1) since we might find the given value on the first element?

– Well it could be if we are finding a lower bound on the 'best case'

• Big-Ω does NOT have to be synonymous with 'best case'
– Though many times it mistakenly is

• You can have:

– Big-O for the best, average, worst cases

– Big-Ω for the best, average, worst cases

– Big-Θ for the best, average, worst cases

6

Worst Case and Big-
• The key idea is an algorithm may perform differently for different input cases

– Imagine an algorithm that processes an array of size n but depends on what data is in
the array

• Big-O for the worst-case says ALL possible inputs are bound by O(f(n))

– Every possible combination of data is at MOST bound by O(f(n))

• Big-Ω for the worst-case is attempting to establish a lower bound (at-least) for the
worst case (the worst case is just one of the possible input scenarios)

– If we look at the first data combination in the array and it takes n steps then we can
say the algorithm is Ω(n).

– Now we look at the next data combination in the array and the algorithm takes n1.5.
We can now say worst case is Ω(n1.5).

• To arrive at Ω(f(n)) for the worst-case requires you simply to find AN input case
(i.e. the worst case) that requires at least f(n) steps

7

Deriving T(n)
• Derive an expression, T(n), in terms of

the input size for the number of
operations/steps that are required to
solve a problem

• If is true => 4

• Else if is true => 5

• Worst case => T(n) = 5

#include <iostream>

using namespace std;

int main()

{

 int i = 0;

 x = 5;

 if(i < x){

 x--;

 }

 else if(i > x){

 x += 2;

 }

 return 0;

}

1

1

1
1

1
1

8

Deriving T(n)
• Since loops repeat you have to take the

sum of the steps that get executed over
all iterations

• 𝑇 𝑛 =

• = 5 = 5 ∗ 𝑛𝑛−1
𝑖=0

• Or you can setup a relationship like:

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 5

• = 𝑇 𝑛 − 2 + 5 + 5

• = 5 = 5 ∗ 𝑛𝑛−1
𝑖=0

• = 𝑂(1) = 𝑂(𝑛)𝑛−1
𝑖=0

#include <iostream>

using namespace std;

int main()

{

 for(int i=0; i < N; i++){

 x = 5;

 if(i < x){

 x--;

 }

 else if(i > x){

 x += 2;

 }

 }

 return 0;

}

9

Common Summations

• 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2

– This is called the arithmetic series

• 𝜃(𝑖𝑝)𝑛
𝑖=1 = 𝜃 𝑛𝑝+1

– This is a general form of the arithmetic series

• 𝑐𝑖𝑛
𝑖=1 =

𝑐𝑛+1−1

𝑐−1
= 𝜃 𝑐𝑛

– This is called the geometric series

•
1

𝑖
𝑛
𝑖=1 = 𝜃 log 𝑛

– This is called the harmonic series

10

Skills You Should Gain

• To solve these running time problems try to
break the problem into 2 parts:

• FIRST, setup the expression (or recurrence
relationship) for the number of operations

• SECOND, solve

– Unwind the recurrence relationship

– Develop a series summation

– Solve the series summation

11

Loops
• Derive an expression, T(n), in terms of

the input size for the number of
operations/steps that are required to
solve a problem

• 𝑇 𝑛 =

• = 𝜃(1)𝑛−1
𝑗=0

𝑛−1
𝑖=0 = 𝜃 𝑛𝑛−1

𝑖=0 = Θ(n2)

#include <iostream>

using namespace std;

const int n = 256;

unsigned char image[n][n]

int main()

{

 for(int i=0; i < n; i++){

 for(int j=0; j < n; j++){

 image[i][j] = 0;

 }

 }

 return 0;

}

12

Matrix Multiply
• Derive an expression, T(n), in terms

of the input size for the number of
operations/steps that are required
to solve a problem

• 𝑇 𝑛 =

• = 𝜃(1)𝑛−1
𝑘=0

𝑛−1
𝑗=0

𝑛−1
𝑖=0 = 𝜃(𝑛3)

#include <iostream>

using namespace std;

const int n = 256;

int a[n][n], b[n][n], c[n][n];

int main()

{

 for(int i=0; i < n; i++){

 for(int j=0; j < n; j++){

 c[i][j] = 0;

 for(int k=0; k < n; k++){

 c[i][j] += a[i][k]*b[k][j];

 }

 }

 }

 return 0;

}

C A B

* =

Traditional Multiply

13

Sequential Loops
• Is this also n3?

• No!
– 3 for loops, but not nested

– O(n) + O(n) + O(n) = 3*O(n) = O(n)

#include <iostream>

using namespace std;

const int n = 256;

unsigned char image[n][n]

int main()

{

 for(int i=0; i < n; i++){

 image[0][i] = 5;

 }

 for(int j=0; j < n; j++){

 image[1][j] = 5;

 }

 for(int k=0; k < n; k++){

 image[2][k] = 5;

 }

 return 0;

}

14

Counting Steps
• It may seem like you can just look for

nested loops and then raise n to that
power
– 2 nested for loops => O(n2)

• But be careful!!

• You have to count steps
– Look at the update statement

– Outer loop increments by 1 each time so it
will iterate N times

– Inner loop updates by dividing x in half
each iteration?

– After 1st iteration => x=n/2

– After 2nd iteration => x=n/4

– After 3rd iteration => x=n/8

– Say kth iteration is last => x = n/2k = 1

– Solve for k

– k = log2(n) iterations

– O(n*log(n))

#include <iostream>

using namespace std;

const int n = 256;

int main()

{

 for(int i=0; i < n; i++){

 int y=0;

 for(int x=n; x != 1; x=x/2){

 y++;

 }

 cout << y << endl;

 }

 return 0;

}

15

Analyze This
• Count the steps of this example?

• T(n) = T(n-1) + n-1

• 0 + 1 + … + n-2 + n-1

• (n-1)*n/2

#include <iostream>

using namespace std;

const int n = 256;

int a[n];

int main()

{

 for(int i=0; i < n; i++){

 a[i] = 0;

 for(int j=0; j < i; j++){

 a[i] += j;

 }

 }

 return 0;

}

16

Analyze This
• Count the steps of this example?

• 12𝑖

𝑗=0
lg (𝑛)
𝑖=0

• = 2𝑖
lg (𝑛)
𝑖=0

• Use the geometric sum eqn.

• = 𝑎𝑖 =
1−𝑎𝑛

1−𝑎
𝑛−1
𝑖=0

• So our answer is…

•
1−2lg 𝑛 +1

1−2
=
1−2∗𝑛

−1
= 𝑂(𝑛)

for (int i = 0; i <= log2(n); i ++)

 for (int j=0; j < (int) pow(2,i); j++)

 cout << j;

17

Another Example

• Count steps here…
– Think about how many times

if statement will evaluate true

• 𝑇 𝑛 = 𝜃 1 + 𝑂(𝑛)𝑛−1
𝑖=0

• 𝑇 𝑛 =

for (int i = 0; i < n; i++)

{

 cout << "i: ";

 int m = sqrt(n);

 if(i % m == 0){

 for (int j=0; j < n; j++)

 cout << j << " ";

 }

 cout << endl;

}

18

Another Example

• Count steps here…
– Think about how many times

if statement will evaluate true

• 𝑇 𝑛 = 𝜃 1 + 𝑂(𝑛)𝑛−1
𝑖=0

• 𝑇 𝑛 = 𝜃 1𝑛−1
𝑖=0 + 𝜃 1𝑛

𝑗=1
𝑛
𝑘=1

• 𝑇 𝑛 = 𝜃 𝑛 + 𝜃 𝑛
𝑛
𝑘=1

• 𝑇 𝑛 = 𝜃 𝑛 + 𝜃 𝑛 ∙ 𝑛

• 𝑇 𝑛 = 𝜃 𝑛
3
2

for (int i = 0; i < n; i++)

{

 cout << "i: ";

 int m = sqrt(n);

 if(i % m == 0){

 for (int j=0; j < n; j++)

 cout << j << " ";

 }

 cout << endl;

}

19

What about Recursion

• Assume N items in the
linked list

• T(n) = 1 + T(n-1)

• = 1 + 1 + T(n-2)

• = 1 + 1 + 1 + T(n-3)

• = n = O(n)

void print(Item* head)

{

 if(head==NULL) return;

 else {

 cout << head->val << endl;

 print(head->next);

 }

}

20

Binary Search

• Assume N items in the
data array

• T(n) =

– O(1) if base case

– O(1) + T(n/2)

• = 1 + T(n/2)

• = 1 + 1 + T(n/4)

• = k + T(n/2k)

• Stop when 2k = n

– Implies log2(n) recursions

• O(log2(n))

int bsearch(int data[],

 int start, int end,

 int target)

{

 if(end >= start)

 return -1;

 int mid = (start+end)/2;

 if(target == data[mid])

 return mid;

 else if(target < data[mid])

 return bsearch(data, start, mid,

 target);

 else

 return bsearch(data, mid, end,

 target);

}

21

AMORTIZED RUNTIME

22

Example

• You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend $20
on food, etc.

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

• Often times an operation on a data structure will
have similar "irregular" costs that we can then
amortize over future calls

23

Amortized Array Resize Run-time

• What is the run-time of
insert or push_back:
– If we have to resize?

– O(n)

– If we don't have to resize?

– O(1)

• Now compute the total
cost of a series of
insertions using resize by
1 at a time

• Each insert now costs
O(n)… not good

30 51 52 53 54

0 1 2 3 4 5

21

30 51 52 53 54

0 1 2 3 4

21 push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5

Increase old array

size by 1

Resize by 1 strategy

30 51 52 53 54

0 1 2 3 4 5

21 Copy over items

0 1 2 3 4 5

Increase old array

size by 1

5

33

6

33 push_back(33) =>

24

Amortized Array Resize Run-time
• What if we resize by adding 5

new locations each time

• Start analyzing when the list is
full…

– 1 call to insert will cost: 5

– What can I guarantee about the
next 4 calls to insert?

• They will cost 1 each because I
have room

– After those 4 calls the next
insert will cost: 10

– Then 4 more at cost=1

• If the list is size n and full
– Next insert cost = n

– 4 inserts after than = 1 each

– Cost for 5 inserts = n+5

– Runtime = cost / insert = (n+5)/5 =
O(n)

30 51 52 53 54

0 1 2 3 4

21 push_back(21) =>

Old, full array

Resize by 5 strategy

30 51 52 53 54

0 1 2 3 4 5

21

6

Copy over items

0 1 2 3 4 5

Increase old array

size by 5

6 7 8 9

7 8 9

25

Consider a Doubling Size Strategy

• Start when the list is full and at size n

• Next insertion will cost?
– O(n+1)

• How many future insertions will be guaranteed to be cost = 1?
– n-1 insertions

– At a cost of 1 each, I get n-1 total cost

• So for the n insertions my total cost was
– n+1 + n-1 = 2*n

• Amortized runtime is then:
– Cost / insertions

– O(2*n / n) = O(2)
= O(1) = constant!!!

26

Another Example
• Let's say you are writing an algorithm to

take a n-bit binary combination (3-bit
and 4-bit combinations are to the right)
and produce the next binary
combination

• Assume all the cost in the algorithm is
spent changing a bit (define that as 1
unit of work)

• I could give you any combination, what
is the worst case run-time? Best-case?

– O(n) => 011 to 100

– O(1) => 000 to 001

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

27

Another Example

• Now let's consider the program that generates
all the combinations sequentially (in order)

– Starting at 000 => 001 : cost = 1

– Starting at 001 => 010 : cost = 2

– Starting at 010 => 011 : cost = 1

– Starting at 011 => 100 : cost = 3

– Starting at 100 => 101 : cost = 1

– Starting at 101 => 110 : cost = 2

– Starting at 101 => 111 : cost = 1

– Starting at 111 => 000 : cost = 3

– Total = 14 / 8 calls = 1.75

• Repeat for the 4-bit

– 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + …

– Total = 30 / 16 = 1.875

• As n gets larger…Amortized cost per call = 2

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

28

Importance of Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4

400 1,048,576

200 1 7.6 200 1,528.8

40,000 1.60694E+60

2000 1 11.0 2000 21,931.6 4,000,000 #NUM!

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

N

R
u
n
-t

im
e

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

R
u
n
-t

im
e

N

N2

N*log2(N)

