
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Queues and Stacks

Mark Redekopp

David Kempe

2

ARRAY-BASED LIST
IMPLEMENTATIONS

3

BOUNDED DYNAMIC ARRAY
STRATEGY

4

A Bounded Dynamic Array Strategy
• Allocate an array of some

user-provided size

– Capacity is then fixed

• What data members do I
need?

• Together, think through
the implications of each
operation when using a
bounded array (what
issues could be caused
due to it being bounded)?

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos,

const int& val);
void remove(int pos);
int const & get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

balistint.h

5

A Bounded Dynamic Array Strategy
• What data members do I

need?

– Pointer to Array

– Current size

– Capacity

• Together, think through the
implications of each
operation when using a static
(bounded) array

– Push_back: Run out of room?

– Insert: Run out of room, invalid
location

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos,

const int& val);
void remove(int pos);
int const & get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:
int* data_;
unsigned int size_;
unsigned int cap_;

};
#endif

balistint.h

6

Implementation
• Implement the

following
member
functions

– A picture to help
write the code

BAListInt::BAListInt (unsigned int cap)
{

}

void BAListInt::push_back(const int& val)
{

}

void BAListInt::insert(int loc, const int& val)
{

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp

7

Implementation (cont.)
• Implement the

following member
functions

– A picture to help
write the code

void BAListInt::remove(int loc)
{

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp

8

Array List Runtime Analysis

• What is worst-case runtime of set(i, value)?

• What is worst-case runtime of get(i)?

• What is worst-case runtime of pushback(value)?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?

9

Const-ness
• Notice the get()

functions?

• Why do we need two
versions of get?

• Because we have two use
cases…

– 1. Just read a value in the
array w/o changes

– 2. Get a value w/ intention
of changing it

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos, const int& val);
bool remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

10

Constness
// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(const BAListInt& mylist)
{
// This calls the const version of get.
// W/o the const-version this would not compile
// since mylist was passed as a const parameter
cout << mylist.get(0) << endl;
mylist.insert(0, 57); // won't compile..insert is non-const

}

int main()
{

BAListInt mylist;
f1(mylist);

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data

11

Returning References

Moral of the Story: We need both versions of get()

// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(BAListInt& mylist)
{
// This calls the non-const version of get
// if you only had the const-version this would not compile
// since we are trying to modify what the
// return value is referencing
mylist.get(0) += 1; // mylist.get(0) = mylist.get(0) + 1;
mylist.insert(0, 57);
// will compile since mylist is non-const

}
int main()
{ BAListInt mylist;

f1(mylist);
}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data

12

UNBOUNDED DYNAMIC ARRAY
STRATEGY

13

Unbounded Array
• Any bounded array solution runs the risk of running out of room

when we insert() or push_back()

• We can create an unbounded array solution where we allocate a
whole new, larger array when we try to add a new item to a full
array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

30 51 52 53 54

0 1 2 3 4 5

10

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5 6 7 8 9 10 11

Allocate new array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

Add new item 21

We can use the strategy of
allocating a new array
twice the size of the old

array

14

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const T& new_val);
private:

int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif

15

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const T& new_val);
private:
void resize(); // increases array size
int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif

16

Resizing

• Implement the
resize method for
an unbounded
dynamic array

#include "alistint.h"

void AListInt::resize()
{

}

alistint.cpp

17

A LOOK AHEAD: AMORTIZED
RUNTIME

18

Example

• You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend $20
on food, etc.

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

• Often times an operation on a data structure will
have similar "irregular" (i.e. if we can prove the worst
case can't happen each call) costs that we can then
amortize over future calls

19

Amortized Run-time

• Used when it is impossible for the worst case of an operation
to happen on each call (i.e. we can prove after paying a high
cost that we will not have to pay that cost again for some
number of future operations)

• Amortized Runtime = (Total runtime over k calls) / k
– Average runtime over k calls

– Use a "period" of calls from when
the large cost is incurred until the
next time the large cost will be incurred

20

Amortized Array Resize Run-time

• What is the run-time of
insert or push_back:
– If we have to resize?

– O(n)

– If we don't have to resize?

– O(1)

• Now compute the total
cost of a series of
insertions using resize by
1 at a time

• Each new insert costs
O(n)… not good

30 51 52 53 54

0 1 2 3 4 5

21

30 51 52 53 54

0 1 2 3 4

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5

Increase old array

size by 1

Resize by 1 strategy

30 51 52 53 54

0 1 2 3 4 5

21Copy over items

0 1 2 3 4 5

Increase old array

size by 1

5

33

6

33push_back(33) =>

21

Amortized Array Resize Run-time
• What if we resize by adding 5

new locations each time

• Start analyzing when the list is
full…

– 1 call to insert will cost: n+1

– What can I guarantee about the
next 4 calls to insert?

• They will cost 1 each because I
have room

– After those 4 calls the next
insert will cost: (n+5)

– Then 4 more at cost=1

• If the list is size n and full
– Next insert cost = n+1

– 4 inserts after than = 1 each = 4 total

– Thus total cost for 5 inserts = n+5

– Runtime = cost / inserts = (n+5)/5 =
O(n)

30 51 52 54

0 1 2 … 99

21push_back(21) =>

Old, full array

Resize by 5 strategy

30 51 52 53 54

0 1 2

21Copy over items

0 1 2 … 99 100

Increase old array

size by 5

101 102 103 104

… 99 100 101 102 103 104

22

Consider a Doubling Size Strategy

• Start when the list is full and at size n

• Next insertion will cost?
– O(n+1)

• How many future insertions will be guaranteed to be cost = 1?
– n-1 insertions

– At a cost of 1 each, I get n-1 total cost

• So for the n insertions my total cost was
– n+1 + n-1 = 2*n

• Amortized runtime is then:
– Cost / insertions

– O(2*n / n) = O(2)
= O(1) = constant!!!

23

STACKS AND QUEUE ADTS
Specialized List ADTs

24

Lists
• Ordered collection of items, which may contain duplicate

values, usually accessed based on their position (index)
– Ordered = Each item has an index and there is a front and back (start

and end)

– Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

– Accessed based on their position (list[0], list[1], etc.)

• What are some operations you perform on a list?

list[0]
list[1]

list[2]

25

List Operations

Operation Description Input(s) Output(s)

insert Add a new value at a particular
location shifting others back

Index : int
Value

remove Remove value at the given location Index : int Value at location

get / at Get value at given location Index : int Value at location

set Changes the value at a given location Index : int
Value

empty Returns true if there are no values in
the list

bool

size Returns the number of values in the
list

int

push_back /
append

Add a new value to the end of the list Value

find Return the location of a given value Value Int : Index

26

Stacks & Queues

• Lists are good for storing generic sequences of
items, but they can be specialized to form
other useful structures

• What if we had a List, but we restricted how
insertion and removal were done?

– Stack – Only ever insert/remove from one end of
the list

– Queue – Only ever insert at one end and remove
from the other

27

QUEUE ADT
First-In, First-Out (FIFOs)

28

Queue ADT
• Queue – A list of items where insertion only

occurs at the back of the list and removal
only occurs at the front of the list

– Like waiting in line for a cashier at a store

• Queues are FIFO (First In, First Out)

– Items at the back of the queue are the newest

– Items at the front of the queue are the oldest

– Elements are processed in the order they arrive

29

A Queue Visual

Items enter at the back

(push_back)

Items leave from the front

(pop_front)

(push_back)

(pop_front)

30

Queue Operations
• What member functions does a

Queue have?

– push_back(item) – Add an item to
the back of the Queue

– pop_front() - Remove the front item
from the Queue

– front() - Get a reference to the front
item of the Queue (don't remove it
though!)

– size() - Number of items in the Queue

– empty() - Check if the Queue is
empty

(push_back)

(pop_front)

31

A Queue Class
• A sample class interface for a

Queue

• Queue Error Conditions
– Queue Underflow – The name

for the condition where you call
pop on an empty Queue

– Queue Overflow – The name for
the condition where you call
push on a full Queue (a Queue
that can't grow any more)

• This is only possible for Queues
that are backed by a bounded
list

#ifndef QUEUEINT_H
#define QUEUEINT_H

class QueueInt {
public:
QueueInt();
~QueueInt();
size_t size() const;
// enqueue
void push_back(const int& value);
// dequeue
void pop_front(); // dequeue
int const & front() const;
bool empty() const;

private:
// ???

};
#endif

32

Other Queue Details
• How should you implement a Queue?

– Compose using an ArrayList

– Compose using a singly-linked list w/o a tail pointer

– Compose using a singly-linked list w/ a tail pointer

– Which is best?

Push_back Pop_front Front()

ArrayList

LinkedList
(Singly-linked
w/o tail ptr)

LinkedList
(Singly-linked
w/ tail ptr)

33

Queue Applications

• Print Jobs

– Click “Print” on the computer is much faster than actually
printing (build a backlog)

– Each job is processed in the order it's received (FIFO)

– Why would you want a print queue rather than a print
stack

• Seating customers at a restaurant

• Anything that involves "waiting in line"

• Helpful to decouple producers and consumers

34

STACK ADT
Last-In, First-Out (LIFOs)

35

Stack ADT
• Stack: A list of items where

insertion and removal only
occurs at one end of the list

• Examples:
– A stack of boxes where you have to

move the top one to get to ones
farther down

– A spring-loaded plate dispenser at
a buffet

– A PEZ dispenser

– Your e-mail inbox

• Stacks are LIFO
– Newest item at top

– Oldest item at bottom

(pop)(push)

Stack

Top

item

36

Stack Operations
• What member functions does a Stack

have?
– push(item) – Add an item to the top of the

Stack

– pop() - Remove the top item from the
Stack

– top() - Get a reference to the top item on
the Stack (don't remove it though!)

– size() - Get the number of items in the
Stack

• What member data does a Stack have?
– A list of items

– Top/Last Item Pointer/Index

(pop)(push)

Stack

Top

item
Top/Last

Item

37

Stack Axioms

• For all stacks, s:
– s.push(item).top() = item

– s.push(item).pop() = s

• Let’s draw the stack for these
operations:
– s.push(5).push(4).pop().top()

(pop)(push)

Stack

Top

item

38

A Stack Class
• A sample class interface for a Stack

• How should you implement a Stack?

– Back it with an array

– Back it with a linked list

– Which is best?

• Stack Error Conditions

– Stack Underflow – The name for the
condition where you call pop on an
empty Stack

– Stack Overflow – The name for the
condition where you call push on a
full Stack (a stack that can't grow any
more)

#ifndef STACKINT_H
#define STACKINT_H

class StackInt {
public:
StackInt();
~StackInt();
size_t size() const;
bool empty() const;
void push(const int& value);
void pop();
int const & top() const;

};
#endif

39

Array Based Stack
• A sample class interface for a Stack

• If using an array list, which end should
you use as the "top"?

– Front or back?

• If using a linked list, which end
should you use?
– If you just use a head pointer only?

– If you have a head and tail pointer?

#ifndef STACKINT_H
#define STACKINT_H

class StackInt {
public:
StackInt();
~StackInt();
size_t size() const;
bool empty() const;
void push(const int& value);
void pop();
int const& top() const;

private:
AListInt mylist_;
// or LListInt mylist_;

};
#endif

40

Stack Examples

• Reverse a string
#include <iostream>
#include <string>
#include "stack.h"
using namespace std;
int main()
{

StackChar s;

string word;
cout << "Enter a word: ";
getline(cin,word);

for(int i=0; i < word.size(); i++)
s.push(word.at(i));

while(!s.empty()){
cout << s.top();
s.pop();

}
}

Type in: "hello"

Output: "olleh"

41

Another Stack Example
• Depth First Search (See Graph

Traversals later in this semester)

• Use a stack whenever you
encounter a decision, just pick
and push decision onto stack. If
you hit a dead end pop off last
decision (retrace steps) and
keep trying, etc.

– Assume we always choose S,
then L, then R

– Strait or Left

• Choose straight…dead end

• Pop straight and make next
choice…left

• Next decision is Straight or
Right…choose Straight…

http://www.pbs.org/wgbh/nova/einstein/images/lrk-maze.gif

42

Stack Usage Example
• Check whether an expression is properly

parenthesized with '(', '[', '{', '}', ']', ')'

– Correct: (7 * [8 + [9/{5-2}]])

– Incorrect: (7*8

– Incorrect: (7*8]

• Note: The last parentheses started should be the
first one completed

• Approach

– Scan character by character of the expression
string

– Each time you hit an open-paren: '(', '[', '{' push it
on the stack

– When you encounter a ')', ']', '}' the top character
on the stack should be the matching opening
paren type, otherwise ERROR!

(

{

[

(7 * { [8 + 9] / {5-2} })

({ [{ } }])

(7 * [4 + 2 + 3])

(

7

[

4

+

2

+

33

5

9

*

(

7

9

*

9

63

63

43

Queue with two stacks

• To enqueue(x), push x on stack 1

• To dequeue()
– If stack 2 empty, pop everything from stack 1 and push onto stack 2.

– Pop stack 2

stack1 stack2 stack1 stack2 stack1 stack2

Time=1 Time=2 Time=3

44

DEQUE ADT
Double-ended Queues

45

The Deque ADT

• Double-ended queues - Equally good (Θ(1)) push
and pop on either end

• What list implementation supports this already?

– _______________

(push_back)(push_front)

(pop_front)

(pop_back)

46

STL Deque Class
• Uses an array-based approach

• Similar to vector but allows for
push_front() and pop_front()
options

• Useful when we want to put
things in one end of the list and
take them out of the other

#include <iostream>
#include <deque>

using namespace std;

int main()
{

deque<int> my_deq;
for(int i=0; i < 5; i++){

my_deq.push_back(i+50);
}
cout << “At index 2 is: “ << my_deq[2] ;
cout << endl;

for(int i=0; i < 5; i++){
int x = my_deq.front();
my_deq.push_back(x+10);
my_deq.pop_front();

}
while(! my_deq.empty()){

cout << my_deq.front() << “ “;
my_deq.pop_front();

}
cout << endl;

}

my_deq
51

1

52 53 54 60

0 1 2 3 4

my_deq
50 51 52 53 54

0 1 2 3 4

my_deq
60 61 62 63 64

0 1 2 3 4

2

3

4

1

2

3

4

my_deq

after 1st iteration

after all iterations

47

STL Vector vs. Deque

• std::vector is essentially a Dynamic Array List

– Slow at removing and inserting at the front or middle

– Fast at adding/remove from the back

– Implies it could be used well as a (stack / queue)

• std::deque gives fast insertion and removal from
front and back along with fast random access (i.e.
get(i))

– Almost has "look and feel" of linked list with head and tail
pointers providing fast addition/removal from either end

– Implies it could be used well as a (stack / queue)

– Practically it is likely implemented as a circular array buffer

48

Circular Buffers
• Take an array but imagine it wrapping into

a circle to implement a deque

• Setup a head and tail pointer

– Head points at first occupied item, tail at
first free location

– Push_front() and pop_front() update the
head pointer

– Push_back() and pop_back() update the
tail pointer

• To overcome discontinuity from index 0 to
MAX-1, use modulo operation
– Cannot just use back++; to move back ptr

– Instead, use back = (back + 1) % MAX;

• Get item at index i
– Must be relative to the front pointer

7

6 5

4

3

21

0

front

back

0 1 2 3 4 5 6 7

7

6 5

4

3

21

0

front

back

7

6 5

4

3

21

0

front

3.) Push_front()

size=2 size=3

1.) Push_back()

2.) Push_back()

back

49

SOLUTIONS

50

Other Queue Details
• How should you implement a Queue?

– Compose using an ArrayList

– Compose using a singly-linked list w/o a tail pointer

– Compose using a singly-linked list w/ a tail pointer

– Which is best?

Push_back Pop_front Front()

ArrayList O(1) O(n) O(1)

LinkedList
(Singly-linked
w/o tail ptr)

O(n) O(1) O(1)

LinkedList
(Singly-linked
w/ tail ptr)

O(1) O(1) O(1)

