
1

CSCI 104
List ADT & Array-based Implementations

Queues and Stacks

Mark Redekopp

David Kempe

Sandra Batista

2

Lists
• Ordered collection of items, which may contain duplicate

values, usually accessed based on their position (index)
– Ordered = Each item has an index and there is a front and back (start

and end)

– Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

– Accessed based on their position (list[0], list[1], etc.)

• What are some operations you perform on a list?

list[0]
list[1]

list[2]

3

List Operations

Operation Description Input(s) Output(s)

insert Add a new value at a particular
location shifting others back

Index : int
Value

remove Remove value at the given location Index : int Value at location

get / at Get value at given location Index : int Value at location

set Changes the value at a given location Index : int
Value

empty Returns true if there are no values in
the list

bool

size Returns the number of values in the
list

int

push_back /
append

Add a new value to the end of the list Value

find Return the location of a given value Value Int : Index

4

IMPLEMENTATIONS

5

Implementation Strategies

• Linked List

– Can grow with user needs

• Bounded Dynamic Array

– Let user choose initial size but is then fixed

• Unbounded Dynamic Array

– Can grow with user needs

6

Linked List Runtime Analysis

• What is worst-case runtime of set(i, value)?

• What is worst-case runtime of get(i)?

• What is worst-case runtime of pushback(value) [assume tail
pointer is used]?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?

7

BOUNDED DYNAMIC ARRAY
STRATEGY

8

A Bounded Dynamic Array Strategy
• Allocate an array of some

user-provided size

• What data members do I
need?

• Together, think through
the implications of each
operation when using a
bounded array (what
issues could be caused
due to it being bounded)?

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos,

const int& val);
bool remove(int pos);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

balistint.h

9

A Bounded Dynamic Array Strategy
• What data members do I

need?

– Pointer to Array

– Current size

– Capacity

• Together, think through the
implications of each
operation when using a static
(bounded) array

– Push_back: Run out of room?

– Insert: Run out of room, invalid
location

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos,

const int& val);
void remove(int pos);
int const & get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:
int* data_;
unsigned int size_;
unsigned int cap_;

};
#endif

balistint.h

10

Implementation
• Implement the

following
member
functions

– A picture to help
write the code

BAListInt::BAListInt (unsigned int cap)
{

}

void BAListInt::push_back(const int& val)
{

}

void BAListInt::insert(int loc, const int& val)
{

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp

11

Implementation (cont.)
• Implement the

following member
functions

– A picture to help
write the code

void BAListInt::remove(int loc)
{

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp

12

Array List Runtime Analysis

• What is worst-case runtime of set(i, value)?

• What is worst-case runtime of get(i)?

• What is worst-case runtime of pushback(value)?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?

13

Const-ness
• Notice the get()

functions?

• Why do we need two
versions of get?

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos, const int& val);
bool remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

14

Const-ness
• Notice the get()

functions?

• Why do we need two
versions of get?

• Because we have two use
cases…

– 1. Just read a value in the
array w/o changes

– 2. Get a value w/ intention
of changing it

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos, const int& val);
bool remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

15

Constness
// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(const BAListInt& mylist)
{
// This calls the const version of get.
// W/o the const-version this would not compile
// since mylist was passed as a const parameter
cout << mylist.get(0) << endl;
mylist.insert(0, 57); // won't compile..insert is non-const

}

int main()
{

BAListInt mylist;
f1(mylist);

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data

16

Returning References

Moral of the Story: We need both versions of get()

// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(BAListInt& mylist)
{
// This calls the non-const version of get
// if you only had the const-version this would not compile
// since we are trying to modify what the
// return value is referencing
mylist.get(0) += 1; // equiv. mylist.set(mylist.get(0)+1);
mylist.insert(0, 57);
// will compile since mylist is non-const

}
int main()
{ BAListInt mylist;

f1(mylist);
}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data

17

UNBOUNDED DYNAMIC ARRAY
STRATEGY

18

Unbounded Array
• Any bounded array solution runs the risk of running out of room

when we insert() or push_back()

• We can create an unbounded array solution where we allocate a
whole new, larger array when we try to add a new item to a full
array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

30 51 52 53 54

0 1 2 3 4 5

10

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5 6 7 8 9 10 11

Allocate new array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

Add new item 21

We can use the strategy of
allocating a new array
twice the size of the old

array

19

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const T& new_val);
private:

int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif

20

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const T& new_val);
private:
void resize(); // increases array size
int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif

21

A Unbounded Dynamic Array Strategy

• Implement the
push_back method
for an unbounded
dynamic array

#include "alistint.h"

void AListInt::push_back(const int& val)
{

}

alistint.cpp

22

AMORTIZED RUNTIME

23

Example

• You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend $20
on food, etc.

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

• Often times an operation on a data structure will
have similar "irregular" (i.e. if we can prove the worst
case can't happen each call) costs that we can then
amortize over future calls

24

Amortized Array Resize Run-time

• What is the run-time of
insert or push_back:
– If we have to resize?

– O(n)

– If we don't have to resize?

– O(1)

• Now compute the total
cost of a series of
insertions using resize by
1 at a time

• Each insert now costs
O(n)… not good

30 51 52 53 54

0 1 2 3 4 5

21

30 51 52 53 54

0 1 2 3 4

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5

Increase old array

size by 1

Resize by 1 strategy

30 51 52 53 54

0 1 2 3 4 5

21Copy over items

0 1 2 3 4 5

Increase old array

size by 1

5

33

6

33push_back(33) =>

25

Amortized Array Resize Run-time
• What if we resize by adding 5

new locations each time

• Start analyzing when the list is
full…

– 1 call to insert will cost: 5

– What can I guarantee about the
next 4 calls to insert?

• They will cost 1 each because I
have room

– After those 4 calls the next
insert will cost: 10

– Then 4 more at cost=1

• If the list is size n and full
– Next insert cost = n

– 4 inserts after than = 1 each

– Cost for 5 inserts = n+5

– Runtime = cost / insert = (n+5)/5 =
O(n)

30 51 52 53 54

0 1 2 3 4

21push_back(21) =>

Old, full array

Resize by 5 strategy

30 51 52 53 54

0 1 2 3 4 5

21

6

Copy over items

0 1 2 3 4 5

Increase old array

size by 5

6 7 8 9

7 8 9

26

Consider a Doubling Size Strategy

• Start when the list is full and at size n

• Next insertion will cost?
– O(n+1)

• How many future insertions will be guaranteed to be cost = 1?
– n-1 insertions

– At a cost of 1 each, I get n-1 total cost

• So for the n insertions my total cost was
– n+1 + n-1 = 2*n

• Amortized runtime is then:
– Cost / insertions

– O(2*n / n) = O(2)
= O(1) = constant!!!

27

When To Use Amortized Runtime

• When should I use amortized runtime?

– When it is impossible for the worst case of an operation to
happen on each call (i.e. we can prove after paying a high
cost that we will not have to pay that cost again for some
number of future operations)

• Over how many calls should I average the runtime?

– Determine how many times you can guarantee a cheaper
cost after paying the higher cost

– Average the cost over the that number of calls

28

Another Example
• Let's say you are writing an algorithm to

take a n-bit binary combination (3-bit
and 4-bit combinations are to the right)
and produce the next binary
combination

• Assume all the cost in the algorithm is
spent changing a bit (define that as 1
unit of work)

• I could give you any combination, what
is the worst case run-time? Best-case?

– O(n) => 011 to 100

– O(1) => 000 to 001

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

29

Another Example

• Now let's consider the program that generates
all the combinations sequentially (in order)

– Starting at 000 => 001 : cost = 1

– Starting at 001 => 010 : cost = 2

– Starting at 010 => 011 : cost = 1

– Starting at 011 => 100 : cost = 3

– Starting at 100 => 101 : cost = 1

– Starting at 101 => 110 : cost = 2

– Starting at 101 => 111 : cost = 1

– Starting at 111 => 000 : cost = 3

– Total = 14 / 8 calls = 1.75

• Repeat for the 4-bit

– 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + …

– Total = 30 / 16 = 1.875

• As n gets larger…Amortized cost per call = 2

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

