CSCI 104
Runtime Complexity

Mark Redekopp
David Kempe
Runtime

• It is hard to compare the run time of an algorithm on actual hardware
 – Time may vary based on speed of the HW, etc.
 • The same program may take 1 sec. on your laptop but 0.5 second on a high performance server

• If we want to compare 2 algorithms that perform the same task we could try to count operations (regardless of how fast the operation can execute on given hardware)...
 – But what is an operation?
 – How many operations is: i++?
 – i++ actually requires grabbing the value of i from memory and bringing it to the processor, then adding 1, then putting it back in memory. Should that be 3 operations or 1?
 – It's painful to count 'exact' numbers operations

• Big-O, Big-Ω, and Θ notation allows us to be more general (or "sloppy" as you may prefer)
Complexity Analysis

• To find upper or lower bounds on the complexity, we must consider the set of all possible inputs, \(I \), of size, \(n \)

• Derive an expression, \(T(n) \), in terms of the input size, \(n \), for the number of operations/steps that are required to solve the problem of a given input, \(i \)
 – Some algorithms depend on \(i \) and \(n \)
 • Find(3) in the list shown vs. Find(2)
 – Others just depend on \(n \)
 • Push_back / Append

• Which inputs though?
 – Best, worst, or "typical/average" case?

• We will always apply it to the "worst case"
 – That's usually what people care about

Note: Running time is not just based on an algorithm, BUT algorithm + input data
Big-O, Big-Ω

- **T(n) is said to be O(f(n)) if...**
 - $T(n) < a * f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially an upper-bound
 - We'll focus on big-O for the worst case

- **T(n) is said to be Ω(f(n)) if...**
 - $T(n) > a * f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially a lower-bound

- **T(n) is said to be Θ(f(n)) if...**
 - $T(n)$ is both $O(f(n))$ AND $Ω(f(n))$
Worst Case and Big-Ω

• What's the lower bound on List::find(val)
 – Is it $\Omega(1)$ since we might find the given value on the first element?
 – Well it could be if we are finding a lower bound on the 'best case'
• Big-Ω does **NOT** have to be synonymous with 'best case'
 – Though many times it mistakenly is
• You can have:
 – Big-O for the best, average, worst cases
 – Big-Ω for the best, average, worst cases
 – Big-Θ for the best, average, worst cases
Worst Case and Big-Ω

• The key idea is an algorithm may perform differently for different input cases
 – Imagine an algorithm that processes an array of size n but depends on what data is in the array

• Big-O for the worst-case says **ALL** possible inputs are bound by \(O(f(n)) \)
 – Every possible combination of data is at MOST bound by \(O(f(n)) \)

• Big-Ω for the worst-case is attempting to establish a lower bound (at-least) for the worst case (the worst case is just one of the possible input scenarios)
 – If we look at the first data combination in the array and it takes \(n \) steps then we can say the algorithm is \(Ω(n) \).
 – Now we look at the next data combination in the array and the algorithm takes \(n^{1.5} \). We can now say worst case is \(Ω(n^{1.5}) \).

• To arrive at \(Ω(f(n)) \) for the worst-case requires you simply to find **AN** input case (i.e. the worst case) that requires **at least** \(f(n) \) steps

• Cost analogy...
Deriving $T(n)$

- Derive an expression, $T(n)$, in terms of the input size for the number of operations/steps that are required to solve a problem
- If is true => 4
- Else if is true => 5
- Worst case => $T(n) = 5$

```cpp
#include <iostream>

using namespace std;

int main()
{
    int i = 0;
    x = 5;

    if(i < x)
    {
        x--;
    }

    else if(i > x)
    {
        x += 2;
    }
    return 0;
}
```
Deriving T(n)

- Since loops repeat you have to take the sum of the steps that get executed over all iterations

\[T(n) = \sum_{i=0}^{n-1} 5 = 5 * n \]

- Or you can setup a relationship like:
\[T(n) = T(n - 1) + 5 \]
\[= T(n - 2) + 5 + 5 \]
\[= \sum_{i=0}^{n-1} 5 = 5 * n \]
\[= \sum_{i=0}^{n-1} O(1) = O(n) \]

```cpp
#include <iostream>
using namespace std;

int main()
{
    for(int i=0; i < N; i++){
        x = 5;
        if(i < x){
            x--;
        }
        else if(i > x){
            x += 2;
        }
    }
    return 0;
}
```
Common Summations

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2) \]
 - This is called the arithmetic series

- \[\sum_{i=1}^{n} \theta(i^p) = \theta(n^{p+1}) \]
 - This is a general form of the arithmetic series

- \[\sum_{i=1}^{n} c^i = \frac{c^{n+1}-1}{c-1} = \theta(c^n) \]
 - This is called the geometric series

- \[\sum_{i=1}^{n} \frac{1}{i} = \theta(\log n) \]
 - This is called the harmonic series
Skills You Should Gain

• To solve these running time problems try to break the problem into 2 parts:
 • FIRST, setup the expression (or recurrence relationship) for the number of operations
 • SECOND, solve
 – Unwind the recurrence relationship
 – Develop a series summation
 – Solve the series summation
Loops

- Derive an expression, $T(n)$, in terms of the input size for the number of operations/steps that are required to solve a problem

$$T(n) =$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \theta(1) = \sum_{i=0}^{n-1} \theta(n) = \Theta(n^2)$$

```cpp
#include <iostream>

using namespace std;
const int n = 256;
unsigned char image[n][n]
int main()
{
    for(int i=0; i < n; i++)
    {
        for(int j=0; j < n; j++)
        {
            image[i][j] = 0;
        }
    }
    return 0;
}
```
Matrix Multiply

- Derive an expression, $T(n)$, in terms of the input size for the number of operations/steps that are required to solve a problem

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \theta(1) = \theta(n^3)$$

```c
#include <iostream>
using namespace std;
const int n = 256;
int a[n][n], b[n][n], c[n][n];
int main()
{
    for(int i=0; i < n; i++)
    {
        for(int j=0; j < n; j++)
        {
            c[i][j] = 0;
            for(int k=0; k < n; k++)
            {
                c[i][j] += a[i][k]*b[k][j];
            }
        }
    }
    return 0;
}
```
Sequential Loops

- Is this also n^3?
- No!
 - 3 for loops, but not nested
 - $O(n) + O(n) + O(n) = 3*O(n) = O(n)$

```cpp
#include <iostream>
using namespace std;
const int n = 256;
unsigned char image[n][n]
int main()
{
    for(int i=0; i < n; i++){
        image[0][i] = 5;
    }
    for(int j=0; j < n; j++){
        image[1][j] = 5;
    }
    for(int k=0; k < n; k++){
        image[2][k] = 5;
    }
    return 0;
}
```
Counting Steps

• It may seem like you can just look for nested loops and then raise n to that power
 – 2 nested for loops => O(n^2)

• But be careful!!

• You have to count steps
 – Look at the update statement
 – Outer loop increments by 1 each time so it will iterate N times
 – Inner loop updates by dividing x in half each iteration?
 – After 1^{st} iteration => x=n/2
 – After 2^{nd} iteration => x=n/4
 – After 3^{rd} iteration => x=n/8
 – Say k^{th} iteration is last => x = n/2^k = 1
 – Solve for k
 – k = log_2(n) iterations
 – O(n*log(n))

```cpp
#include <iostream>
using namespace std;
const int n = 256;

int main()
{
    for(int i=0; i < n; i++){
        int y=0;
        for(int x=n; x != 1; x=x/2){
            y++;
        }
        cout << y << endl;
    }
    return 0;
}
```
Analyze This

• Count the steps of this example?

• $T(n) = T(n-1) + n - 1$

• $0 + 1 + ... + n-2 + n-1$

• $(n-1)*n/2$

```cpp
#include <iostream>
using namespace std;
const int n = 256;
int a[n];
int main()
{
    for(int i=0; i < n; i++){
        a[i] = 0;
        for(int j=0; j < i; j++){
            a[i] += j;
        }
    }
    return 0;
}
```
Analyze This

- Count the steps of this example?

\[
\sum_{i=0}^{\log_2(n)} \sum_{j=0}^{2^i} 1
\]

\[
=\sum_{i=0}^{\log_2(n)} 2^i
\]

- Use the geometric sum eqn.

\[
=\sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}
\]

- So our answer is...

\[
\frac{1-2^{\log_2(n)+1}}{1-2} = \frac{1-2*2n}{1-2} = O(n)
\]

```cpp
for (int i = 0; i <= log2(n); i ++)
    for (int j=0; j < (int) pow(2,i); j++)
        cout << j;
```
Another Example

• Count steps here...
 – Think about how many times if statement will evaluate true

• \(T(n) = \sum_{i=0}^{n-1}(\theta(1) + O(n)) \)

• \(T(n) = \)

```cpp
for (int i = 0; i < n; i++)
{
    cout << "i: ";
    int m = sqrt(n);
    if( i % m == 0){
        for (int j=0; j < n; j++)
            cout << j << " ";
    }
    cout << endl;
}
```
Another Example

- Count steps here...
 - Think about how many times if statement will evaluate true

- $T(n) = \sum_{i=0}^{n-1} (\theta(1) + O(n))$
- $T(n) = \sum_{i=0}^{n-1} \theta(1) + \sum_{k=1}^{\sqrt{n}} \sum_{j=1}^{n} \theta(1)$
- $T(n) = \theta(n) + \sum_{k=1}^{\sqrt{n}} \theta(n)$
- $T(n) = \theta(n) + \theta(n \cdot \sqrt{n})$
- $T(n) = \theta(n^{3/2})$

```cpp
for (int i = 0; i < n; i++) {
    cout << "i: ";
    int m = sqrt(n);
    if( i % m == 0){
        for (int j=0; j < n; j++)
            cout << j << " ";
    }
    cout << endl;
}
```
What about Recursion

• Assume N items in the linked list
• \(T(n) = 1 + T(n-1) \)
• \(= 1 + 1 + T(n-2) \)
• \(= 1 + 1 + 1 + T(n-3) \)
• \(= n = O(n) \)

```cpp
void print(Item* head) {
    if(head==NULL) return;
    else {
        cout << head->val << endl;
        print(head->next);
    }
}
```
Binary Search

• Assume N items in the data array
• $T(n) =$
 – $O(1)$ if base case
 – $O(1) + T(n/2)$
• $= 1 + T(n/2)$
• $= 1 + 1 + T(n/4)$
• $= k + T(n/2^k)$
• Stop when $2^k = n$
 – Implies $\log_2(n)$ recursions
• $O(\log_2(n))$

```c
int bsearch(int data[],
            int start, int end,
            int target)
{
    if(end >= start)
        return -1;
    int mid = (start+end)/2;
    if(target == data[mid])
        return mid;
    else if(target < data[mid])
        return bsearch(data, start, mid, target);
    else
        return bsearch(data, mid, end, target);
}
```
importance of complexity

<table>
<thead>
<tr>
<th>N</th>
<th>O(1)</th>
<th>O(log₂n)</th>
<th>O(n)</th>
<th>O(n* log₂n)</th>
<th>O(n²)</th>
<th>O(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4.3</td>
<td>20</td>
<td>86.4</td>
<td>400</td>
<td>1,048,576</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>7.6</td>
<td>200</td>
<td>1,528.8</td>
<td>40,000</td>
<td>1.60694E+60</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>11.0</td>
<td>2000</td>
<td>21,931.6</td>
<td>4,000,000</td>
<td>#NUM!</td>
</tr>
</tbody>
</table>