CSCI 104
C++ STL; Iterators, Maps, Sets

Mark Redekopp
David Kempe

Revised: 05/2022

- USCV1terb1®
Container Classes

e C++ Standard Template Library provides one or more
implementations of the various ADTs

— DynamicArrayList => C++: std::vector<T>

— LinkedList => C++: std::list<T>

— Deques => C++: std::deque<T>

— Sets => C++: std::set<T>

— Maps => C++: std::map<K,V>
* Question:

— Consider the get(i) method. What is its time complexity for...
— ArrayList => O()
— LinkedList => O()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

] USCViterbi®
Container Classes

School of Engineering

* ArraylLists, LinkedList, Deques, etc. are classes used simply for
storing (or contain) other items

 C++ Standard Template Library provides implementations of
all of these containers

DynamicArrayList
LinkedList
Deques

Sets

Maps

e (Question:

— Consider the get(i) method. What is its time complexity for...

=> C++: std::vector<T>
=> C++: std::list<T>
=> C++: std::deque<T>
=> C++: std::set<T>
=> C++: std::map<K,v>

— ArraylList => O(1) // contiguous memory, so just go to location

— LinkedList => O(i) or O(n) // must traverse the list to location i

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi @
lteration

« Consider how you iterate over all the |ArrayList<int> mylist;

elements in a list for(int i=0; i < mylist.size(); ++1)
— Use a for loop and get() or { . .
operator(] cout << mylist.get(i) << endl;
P }
* Foran array list this is fine since
each call to at() IS O(l) LinkedList<int> mylist;
* For alinked list, calling get(i) for(int i=0; i < mylist.size(); ++i)
requires taking i steps through the { _ _
. . cou mylist.get(i endl;
t << mylist.get(i) << endl
linked list }
— Ot call =1 step
— 1%t call = 2 steps head
— 2" call = 3 steps 0x148
— 1+2+..+n-2+n-1+n = O(n?) Ox148 Ox1e0 Ox5e0
i) 3 |oxico O |0x3e0> 5 |NULL
* You are re-walking over the linked
list a lot of the time get(0)
get(1)
get(2)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

P USCViterbi
Iteration: A Better Approach

iterator to the beginning item

— mylist.end() returnsan
iterator "one-beyond" the last item

— ++it (preferred) or it++ moves
iterator on to the next value

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploade

LinkedList<int> mylist;

iterator it;

for(it = mylist.begin();
it 1= mylist.end();
++it)

{ cout << *it << endl; }

iterator
head -
« Solution: Don't use get() Mylist.end() =] cur=nuL
0x148 ‘\\\\\Ei
* Use an iterator 0x148 Ox1c0 0x3e0
— An object containing an internal state 3 | ox1co O |ox3e0ls| 5 [NuLL
variable (i.e. a pointer or index) that : : A
moves one step in the list at a time as Mylist.begin() T \
you iterate, saving your position iterator | | iterator || iterator |
Iterator tracks the internal location _ i o
. . What it does: Curr = head :Cuw:cuwon@ai: Curr = curr->next!
of each successive item e
. . You write: mylist.begin() ++it ++it
Iterators provide the semantics of a
pointer to the values in the list You write: it it it
Assume What it does: curr->val curr->val curr->val
— mylist.begin() returnsan // new iterator approach |// old index approach

int size =
mylist.size();
int i;
for(i = O;
1 < size;
i++)
{ cout << mylist[i]; }

uuuuuuuuuuuuuuu

lterators

* Listimplementations may allow us to use array-like indexing
(e.g. myvec[i], myvec.at(i), myvec.get(i)) that finds the
correct data “behind-the-scenes” (giving the illusion that data
is contiguous in memory though it may not be)

* To iterate over the whole set of items we could use a counter
variable and the array indexing (‘myvec]i]’), but it can be more
efficient (based on how the data structure is actually
implemented) to keep an internal pointer to the next item
and update it appropriately

 C++ STL containers define ‘helper’ classes called iterators that
store these internal pointers and help iterate over each item
or find an item in the container

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

III'[]S(j\ﬁteﬂbi<:::>

lterators

* |terators are a new class type defined in the scope of each container
— Typeis container: :iterator (vector<int>::iterator isa
type)
* [|nitialize them with objname.begin(), check whether they are finished by
comparing with objname.end(), and move to the next item with ++

operator // vector.h

#include <iostream> timplate<ilass T>
#include <vector> class vector
using namespace std; { class iterator {
int main()
{ .

vector<int> my vec(5); // 5 = init. size .}’

for(int i=0; i < 5; i++){ }s

my_vec.push_back(i+50);
}

vector<int>::iterator it;
for(it = my_vec.begin() ; it != my_vec.end(); ++it){
cout << *it << endl;
}
}

© 2022 by Mark Rel

i, TS(“Viterbi

School of Engineering

Iterators
* |terator variable has same semantics as a pointer to
an item in the container

— Use * to ‘dereference’ and get the actual item

— Since you're storing integers in the vector below, the
iterator acts and looks like an int*

#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<int> my_vec(5); // 5 = init. size
for(int i=0; i < 5; i++){
my vec.push_back(i+590);
}
for(vector<int>::iterator it = my_vec.begin() ; it != my vec.end(); ++it){
cout << *it << endl;

}

return 0;

© 2022 by Mark Redekopp. This content 1s protected and may not be shared, uploaded, or distributed.

Iterator Tips

* Think of an iterator variable as a pointer...when you
declare it, it points at nothing

* Think of begin() as returning the address of the first
item but really returns an iterator to the first item.

* Think of end() as returning the address AFTER the
last item (i.e. off the end of the collection or maybe
NULL) but really returns an iterator to the one-off-
the-end)

— So as long as your iterator is less than or not equal to the
end() iterator, you are safe

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Iterator Pro Tip 1

NEVER (accidentally) compare iterators from different containers (i.e. always
compare iterators obtained from the same instance of the data structure)

— May allow iterator to go off the end of a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

int main()

{

Scores s;

for(vector<int>::iterator it = s.mtGrades().begin() ; WRONG!

class Scores {
public:
vector<int> mtGrades()
{ return mt; }
private:
vector<int> mt;

}s

++it) T

{ ------- ’
cout << *it << endl;

}

return 0;

© 2022 by Mark Redekopp. This content is protected and may not be sha { oo }

vector<int> g = s.mtGrades();
} for(vector<int>::iterator it = g.begin();
it = g.end();

++it) RIGHT!

i, TS(“Viterbi)

C++ STL Algorithms

* Many useful functions defined in <algorithm> library

— http://www.cplusplus.com/reference/algorithm/sort/

— http://www.cplusplus.com/reference/algorithm/count/

* All of these functions usually accept iterator(s) to elements in a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

int main()
{
vector<int> my_vec(5); // 5 = init. size
for(int i=0; i < 5; i++){
my_vec.push_back(rand());

}

sort(my_vec.begin(), my vec.end());

for(vector<int>::iterator it = my_vec.begin() ; it != my vec.end(); ++it){
cout << *it << endl;

}

return 9;

}

© 2022 by ,\IQII’\ MRECUTRUPP. TS TCUTTTETIU TS PTUTETIEU AU TTTay TTUT DT STTArcu, uproaucu, Ur Ui_tuTuutcu.

http://www.cplusplus.com/reference/algorithm/sort/
http://www.cplusplus.com/reference/algorithm/count/

Maps (a.k.a. Dictionaries or Ordered Hashes)

ASSOCIATIVE CONTAINERS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N (S Viterbi '®
Student Class

class Student {
public:
Student();
Student(string myname, int myid);
~Student();
string get name() { return name; } // get their name
void add_grade(int score); // add a grade to their grade list
int get _grade(int index); // get their i-th grade
private:
string name;
int id;
vector<int> grades;

Iy

Note: This class is just a sample
to hold some data and will be
used as the 'value' in a map
shortly.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N (S Viterbi (4
Creating a List of Students

#include <vector>
#include "student.h"
using namespace std;

 How should | store multiple

students?
int main()

— Array, Vector, LinkedList? {

« It depends on what we want to do vector<Student> studs;

with the student objects and HOW

we want to access them unsigned int i; ITERATE OVERALL ELEMEINTS

(LIST GIVES FINE PERFORMANCE)
— If we only iterating over all elements // compute average of @-th score

a list performs fine double avg = ©;
P for(i=0; I < studs.size(); i++){

— If we want to access random avg += studs[i].get_grade(0);
(individual) elements where we have } ,
. i avg = avg / studs.size();
to search for them, lists give poor
performance. // check "Tommy"'s score

int tommy_score= -1;

— Of(n) [linear search] or O(log n) for(i=0; i < studs.size(); i++){

[binary search] to find student or if(studs[i].get_name() == "Tommy"){
test membership tommy_score = studs[i].get_grade (2);
} break; FIND A SINGLE ELEMENT
} (LIST GIVES BAD PERFORMANCE)

cout<< “Tommy’s score is: “ <«
tommy_score << endl;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or did

e — L L
Index and Data Relationships ™

#include <vector>
#include "student.h"
using namespace std;

* Arrays and vectors are indexed
with integers 0...N-1 and have | " ™"
no relation to the data

vector<student> studs;

 Could we some how index our unsigned int i;
data W|th a meaningful "keyS" // compute average of @-th score
double avg = 0;
— studs["Tommy"].get_score(2) for(i=e; I < studs.size(); i++){
avg += studs[i].get grade(9);
* YES!!l Associative Containers)

avg = avg / slizel.size();

// check "Tommy"'s score
int tommy score= -1;
for(i=0; i < studs.size(); i++){

if(studs[i].get_name() == "Tommy"){
tommy_score = studs[i].get_grade(2);
break;

}

}

cout<< “Tommy’s score is: “ <«
tommy_score << endl;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Maps / Dictionaries

e Stores key,value pairs

— Example: Map student names to their GPA

School of Engineering

e Keys must be unique (can only occur once in the structure)

* No constraints on the values

 No inherent ordering between key,value pairs

— Can't ask for the Oth item...

* QOperations:
— Insert

— Remove
— Find/Lookup

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

2.

5

“Tommy | 3.7
Trojan"

Harvard"

"Hanna

Grade Inflation in

"Donna

2.5

the vy League!!

——— ()5 CVitcrbi
C++ Pair Struct/Class

template <class T1, class T2>
struct pair {

e C++ library defines a struct T1 first;
‘ .) . . T2 second;
pair’ that is templatized to }
hold two values (first and
. #include <iostream>
second) of different types #include <utility>

#include <string>

— Templates (more in a few weeks) using namespace std;
J

allow types to be specified

differently for each map that is void func_with_?air_arg(pair<char,doub1e> p)
created { cout << p.first << " " << p.second <<endl; }
» C++map class internally stores | /™ main()
its key/values in these pair string mystr = "Bill";
. pair<string, int> pil(mystr, 1);
ObJeCtS cout << pl.first << " " << pl.second <<endl;

* Defined in ‘utility’ header but if // Option 1: Anonymous pair constructed and passed
you #include <map> you don't func_with_pair_arg(pair<char,double>('c', 2.3));

have to include utility // Option 2: Same thing as above but w/ less typing
func_with_pair_arg(make_pair(‘c', 2.3));

* (Can declare a pair as seenin }
option 1 or call library function Bill 1
make pair() todoit c 2.3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. C 2 . 3

(Ol I R——

_ USCViterbi
Assoclative Containers

School of Engineering

' #include <map>

C++ STL ‘map’ class can be used for this #include "student.h"
purpose using namespace std;
Maps store (key,value) pairs where: . '

— key =index/label to access the associated value 1nt main ()

— Stored value is a copy of actual data { .

, , map<string,Student> stumap;

Other If':\nguz.:\ges refer to these as ‘hashes Student s1("Tommy",86328);
or ‘dictionaries Student s2("Tina",54982);
Keys must be unique “e

— Just as indexes were unique in an array or list ;; Op'E_::._Oh 1:C thlS-FW]-i; insert the pair:

ommy,Copy of s

Value type shpuld have a default stumap["Tommy"] = si;
Key type must have less-than (<) operator stumap.insert(pair<string,Student>("Tina", s2));
defined for it // or stumap.insert(make_pair("Tina", s2));

— Use C++ string rather than char array o .

L o . int tommy_score= stumap["Tina"].get grade(1l);
Efficient at finding specified key/value , ,
.) Returns 'Copy of s2' and then you can call Student
and testing membership A)
(O(log,n)) stumap.erase("Tommy");
cout << "Tommy dropped the course..Erased!”;
NEVER use a 'for' loop to iterate cout << endl;
through a map to FIND a key,value pair. }
Just use find()...it's O(log n) stumap is a map that associates C++ strings (keys) with
RO PP ST ST aasyTeTsesrersarapreaded, or distributed. Student objects (values)

i, TS(“Viterbi

School of Engineering

Maps & Iterators

e |If you still want to process
each element in a map you
can still iterate over all
elements in the map using
an iterator object for that
map type

* Recall: Iteratorisa
"pointer'/iterator to a pair
struct

— it->first is the key
— it->second is the value

Pair<string,Student>

#include <map>
#include "student.h"
using namespace std;

int main()

{

}

map<string,student> stumap;
Student s1("Tommy",86328);
Student s2("Jill",54982);

stumap["Tommy"] = s1;
stumap[sl.get name()].add grade(85);

stumap["Jill"] = s2
stumap["Jill"].add_grade(93);

map<string,student>::iterator it;
for(it = stumap.begin(); it != stumap.end(); ++it){
cout << "Name/key is " << it->first;
cout << " and their oth score is ";

cout << it->second.get _grade(9);

}

Name/key is Tommy and their 0" score is 85
Name/key is Jill and their 0" score is 93

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Map Membership [Find()]

Check/search whether key is

in the map object using
find() function

Pass a key as an argument

Find returns an iterator

If key is IN the map

— Returns an iterator/pointer to
that (key,value) pair

If key is NOT IN the map

— Returns an iterator equal to
end()’s return value

Runs in log(n) time

— Do not loop/iterate to find
something in a map (or set)

#include <map>
#include "student.h"
using namespace std;

int main()

{
map<string,student> stumap;
Student s1("Tommy",86328), s2("Jill",14259);
string name;

stumap["Tommy"] = s1; // Insert an item
stumap["Tommy"].add grade(85); // Access it

if(stumap.find("Jill") != stumap.end()){
cout << "Jill exists!" << endl;
¥
else {
cout << "Jill does not exist" << endl;
stumap["Jill"] = s2; // So now add him
¥
cin >> name;
map<string,student>::iterator it = stumap.find(name);
if(it !'= stumap.end()){
cout << it->first << " got score=" <<
it->second.get_grade(0®) << endl;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uplodaded, or distributed.

i, TS(“Viterbi -«

School of Engineering

Another User of Maps: Sparse Arrays

* Sparse Array: One where there is a large range of possible

indices but only small fraction will be used (e.g. are non-zero,
etc.)

 Example 1: Using student ID’s to represent students in a
course (large 10-digit range, but only 30-40 used)

 Example 2: Count occurrences of zip codes in a user database

— Option 1: Declare an array of 100,000 elements (00000-99999)

e \Wasteful!! 0o 1 99999

— Option 2: Use a map

» Key = zipcode, Value = occurrences

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ STL "set" class is like a list but
each value can appear just once

Think of it as a map that stores just
keys (no associated value)

Keys are unique
insert() to add a key to the set
erase() to remove a key from the set

Very efficient at testing membership
(O(log,n))

Is a specific key in the set or not!

Key type must have a less-than (<)
operator defined for it

Use C++ string rather than char
array

Iterators to iterate over all elements
in the set

find() to test membership

] USCViterbi@
Set Class

{

#include <set>
#include <string>
using namespace std;

int main()

set<string> people;

insert("Tommy");
insert("Johnny");
myname = "Jill";
insert(myname);

people.
people.
string

people.

for(set<string>::iterator it=people.begin();
it != people.end();

++it){
cout << "Person: " << *it << endl;
}
myname = "Tommy";

if(people.find(myname) != people.end()){
cout<< "Tommy is a CS-related major!" << endl;
}
else {
cout<< "Tommy wants to change his major!" << endl;
}
people.erase("Johnny"); // erase Johnny
// more code
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

i, TS(“Viterbi)

Iterator Pro Tip 2a

* You should NOT MODIFY a container (vector, map, set) as you iterate through it
— May allow iterator to go off the end of a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

it
int main() ’”nx
{ >
VeCtOI“<int> S; /
for(vector<int>::iterator it = s.begin(); it != s.end(); ++it)
¢ if(*it == 0) s.erase(it); WRONG! Do NOT modify the container as
} you iterate throughit
return 0;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— 5 Viterbi >
Iterator Pro Tip 2b

* |f you must modify the container as you iterate through take time to understand
how the iterator works and research correct methods

— For vectors, use the std::remove and std::erase idiom (Wikipedia link)

— Though not efficient, one could iterate through a copy while erasing from the

original
vector<int>::iterator it = s.begin(); vector<int>::iterator it;
while(it != s.end()){ it = std::remove(s.begin(), s.end(), 9);
if(*it == 0) s.erase(it); s.erase(it, s.end());
else ++it;
}
. Before
it 5/0/3/00/4/2/0 remove ()
it
l After
/ 5/312/4/0/0/0/ 0 r‘emove()
end() After
513]2]4 “ erase()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom

A Deeper Look: Binary Tree

e Data structure where each node has at most 2 children (no
loops/cycles in the graph) and at most one parent

 Tree nodes w/o children are called "leaf" nodes
* Depth of binary tree storing N elements?

parent

parent

child child

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Deeper Look: Binary Tree

e Data structure where each node has at most 2 children (no
loops/cycles in the graph) and at most one parent

 Tree nodes w/o children are called "leaf" nodes
* Depth of binary tree storing N elements? log,n

parent

parent

child child

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — ()5 Viterbi
Binary Search Tree

 Tree where all nodes meet the property that:
— All descendants on the left are less than the parent’s value

— All descendants on the right are greater than the parent’s value

e Can find value (or determine it doesn’t exit) in log2n time by
doing binary search

Q:is 34in the tree?

Q:is 19in the tree?

19 < 25..left 34 > 25..right
19 > 18..right 34<47. left
34>32..right

19 < 20..left

34 =45 and we’re at
aleaf node...34 does
not exist

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

-] USCViterbi
Trees & Maps/Sets

School of Engineering

 Maps and sets use binary trees internally to store the keys

* This allows logarithmic find/membership test time

* This is why the less-than (<) operator needs to be defined for
the data type of the key

Map::find("Greg") key value
Returns iterator to "Jordan"| Student
corresponding object
pair<string, Student>
"Frank" | Student
object
"Anne" | Student "Greg" | Student
object object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map::find("Mark")

Returns iterator to end()
[i.e. NULL]

"Percy"

Student
| object

"Tommy"

Student
object

