
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
C++ STL; Iterators, Maps, Sets

Mark Redekopp

David Kempe

Revised: 05/2022

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Container Classes
• C++ Standard Template Library provides one or more

implementations of the various ADTs
– DynamicArrayList => C++: std::vector<T>

– LinkedList => C++: std::list<T>

– Deques => C++: std::deque<T>

– Sets => C++: std::set<T>

– Maps => C++: std::map<K,V>

• Question:
– Consider the get(i) method. What is its time complexity for…

– ArrayList => O(____)

– LinkedList => O(____)

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Container Classes

• ArrayLists, LinkedList, Deques, etc. are classes used simply for
storing (or contain) other items

• C++ Standard Template Library provides implementations of
all of these containers
– DynamicArrayList => C++: std::vector<T>

– LinkedList => C++: std::list<T>

– Deques => C++: std::deque<T>

– Sets => C++: std::set<T>

– Maps => C++: std::map<K,V>

• Question:
– Consider the get(i) method. What is its time complexity for…

– ArrayList => O(1) // contiguous memory, so just go to location

– LinkedList => O(i) or O(n) // must traverse the list to location i

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iteration
• Consider how you iterate over all the

elements in a list

– Use a for loop and get() or
operator[]

• For an array list this is fine since
each call to at() is O(1)

• For a linked list, calling get(i)
requires taking i steps through the
linked list

– 0th call = 1 step

– 1st call = 2 steps

– 2nd call = 3 steps

– 1+2+…+n-2+n-1+n = O(n2)

• You are re-walking over the linked
list a lot of the time

ArrayList<int> mylist;
...
for(int i=0; i < mylist.size(); ++i)
{

cout << mylist.get(i) << endl;
}

LinkedList<int> mylist;
...
for(int i=0; i < mylist.size(); ++i)
{

cout << mylist.get(i) << endl;
}

3 0x1c0 9 0x3e0

0x148

head

0x148 0x1c0

5 NULL

0x3e0

get(0)

get(1)

get(2)

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iteration: A Better Approach
• Solution: Don't use get()

• Use an iterator
– An object containing an internal state

variable (i.e. a pointer or index) that
moves one step in the list at a time as
you iterate, saving your position

• Iterator tracks the internal location
of each successive item

• Iterators provide the semantics of a
pointer to the values in the list

• Assume
– mylist.begin() returns an

iterator to the beginning item

– mylist.end() returns an
iterator "one-beyond" the last item

– ++it (preferred) or it++ moves
iterator on to the next value

// new iterator approach
LinkedList<int> mylist;
...
iterator it;
for(it = mylist.begin();

it != mylist.end();
++it)

{ cout << *it << endl; }

3 0x1c0 9 0x3e0

0x148

head

0x148 0x1c0

5 NULL

0x3e0

iterator iterator

You write:

iterator

Curr = head

Mylist.begin()

Mylist.end()

iterator

Curr = curr->next Curr = curr->next

mylist.begin() ++it ++it

What it does:

You write: *it

Curr = NULL

What it does: curr->val

*it

curr->val

*it

curr->val

// old index approach
int size =

mylist.size();
int i;
for(i = 0;

i < size;
i++)

{ cout << mylist[i]; }

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterators

• List implementations may allow us to use array-like indexing
(e.g. myvec[i], myvec.at(i), myvec.get(i)) that finds the
correct data “behind-the-scenes” (giving the illusion that data
is contiguous in memory though it may not be)

• To iterate over the whole set of items we could use a counter
variable and the array indexing (‘myvec[i]’), but it can be more
efficient (based on how the data structure is actually
implemented) to keep an internal pointer to the next item
and update it appropriately

• C++ STL containers define ‘helper’ classes called iterators that
store these internal pointers and help iterate over each item
or find an item in the container

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterators
• Iterators are a new class type defined in the scope of each container

– Type is container::iterator (vector<int>::iterator is a
type)

• Initialize them with objname.begin(), check whether they are finished by
comparing with objname.end(), and move to the next item with ++
operator

#include <iostream>
#include <vector>
using namespace std;
int main()
{

vector<int> my_vec(5); // 5 = init. size
for(int i=0; i < 5; i++){

my_vec.push_back(i+50);
}
vector<int>::iterator it;
for(it = my_vec.begin() ; it != my_vec.end(); ++it){

cout << *it << endl;
}

}

// vector.h
template<class T>
class vector
{

class iterator {

};
};

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterators
• Iterator variable has same semantics as a pointer to

an item in the container

– Use * to ‘dereference’ and get the actual item

– Since you're storing integers in the vector below, the
iterator acts and looks like an int*

#include <iostream>
#include <vector>
using namespace std;
int main()
{

vector<int> my_vec(5); // 5 = init. size
for(int i=0; i < 5; i++){

my_vec.push_back(i+50);
}
for(vector<int>::iterator it = my_vec.begin() ; it != my_vec.end(); ++it){

cout << *it << endl;
}
return 0;

}

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterator Tips

• Think of an iterator variable as a pointer…when you
declare it, it points at nothing

• Think of begin() as returning the address of the first
item but really returns an iterator to the first item.

• Think of end() as returning the address AFTER the
last item (i.e. off the end of the collection or maybe
NULL) but really returns an iterator to the one-off-
the-end)

– So as long as your iterator is less than or not equal to the
end() iterator, you are safe

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterator Pro Tip 1

• NEVER (accidentally) compare iterators from different containers (i.e. always
compare iterators obtained from the same instance of the data structure)

– May allow iterator to go off the end of a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

int main()
{

Scores s;
...
for(vector<int>::iterator it = s.mtGrades().begin() ;

it != s.mtGrades().end();
++it)

{
cout << *it << endl;

}
return 0;

}

class Scores {
public:

vector<int> mtGrades()
{ return mt; }

private:
vector<int> mt;

};

vector<int> g = s.mtGrades();
for(vector<int>::iterator it = g.begin();

it != g.end(); ++it)
{ ... }

WRONG!

RIGHT!

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ STL Algorithms
• Many useful functions defined in <algorithm> library

– http://www.cplusplus.com/reference/algorithm/sort/

– http://www.cplusplus.com/reference/algorithm/count/

• All of these functions usually accept iterator(s) to elements in a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

int main()
{

vector<int> my_vec(5); // 5 = init. size
for(int i=0; i < 5; i++){

my_vec.push_back(rand());
}
sort(my_vec.begin(), my_vec.end());
for(vector<int>::iterator it = my_vec.begin() ; it != my_vec.end(); ++it){

cout << *it << endl;
}
return 0;

}

http://www.cplusplus.com/reference/algorithm/sort/
http://www.cplusplus.com/reference/algorithm/count/

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ASSOCIATIVE CONTAINERS
Maps (a.k.a. Dictionaries or Ordered Hashes)

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Student Class

class Student {
public:
Student();
Student(string myname, int myid);
~Student();
string get_name() { return name; } // get their name
void add_grade(int score); // add a grade to their grade list
int get_grade(int index); // get their i-th grade
private:
string name;
int id;
vector<int> grades;

};
Note: This class is just a sample

to hold some data and will be
used as the 'value' in a map

shortly.

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Creating a List of Students
• How should I store multiple

students?

– Array, Vector, LinkedList?

• It depends on what we want to do
with the student objects and HOW
we want to access them

– If we only iterating over all elements
a list performs fine

– If we want to access random
(individual) elements where we have
to search for them, lists give poor
performance.

– O(n) [linear search] or O(log n)
[binary search] to find student or
test membership

#include <vector>
#include "student.h"
using namespace std;

int main()
{

vector<Student> studs;
...

unsigned int i;

// compute average of 0-th score
double avg = 0;
for(i=0; I < studs.size(); i++){
avg += studs[i].get_grade(0);

}
avg = avg / studs.size();

// check "Tommy"'s score
int tommy_score= -1;
for(i=0; i < studs.size(); i++){
if(studs[i].get_name() == "Tommy"){

tommy_score = studs[i].get_grade (2);
break;

}
}
cout<< “Tommy’s score is: “ <<

tommy_score << endl;
}

ITERATE OVER ALL ELEMENTS

(LIST GIVES FINE PERFORMANCE)

FIND A SINGLE ELEMENT

(LIST GIVES BAD PERFORMANCE)

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Index and Data Relationships

• Arrays and vectors are indexed
with integers 0…N-1 and have
no relation to the data

• Could we some how index our
data with a meaningful "keys"
– studs["Tommy"].get_score(2)

• YES!!! Associative Containers

#include <vector>
#include "student.h"
using namespace std;

int main()
{

vector<student> studs;
...

unsigned int i;

// compute average of 0-th score
double avg = 0;
for(i=0; I < studs.size(); i++){

avg += studs[i].get_grade(0);
}
avg = avg / slize1.size();

// check "Tommy"'s score
int tommy_score= -1;
for(i=0; i < studs.size(); i++){

if(studs[i].get_name() == "Tommy"){
tommy_score = studs[i].get_grade(2);
break;

}
}
cout<< “Tommy’s score is: “ <<

tommy_score << endl;
}

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Maps / Dictionaries

• Stores key,value pairs
– Example: Map student names to their GPA

• Keys must be unique (can only occur once in the structure)

• No constraints on the values

• No inherent ordering between key,value pairs
– Can't ask for the 0th item…

• Operations:
– Insert

– Remove

– Find/Lookup

"Tommy

Trojan"
3.7

"Billy

Bruin"
2.5

"Hanna

Harvard"
4.3

"Donna

Duck"
2.5

Grade Inflation in

the Ivy League!!

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ Pair Struct/Class

• C++ library defines a struct
‘pair’ that is templatized to
hold two values (first and
second) of different types
– Templates (more in a few weeks)

allow types to be specified
differently for each map that is
created

• C++ map class internally stores
its key/values in these pair
objects

• Defined in ‘utility’ header but if
you #include <map> you don't
have to include utility

• Can declare a pair as seen in
option 1 or call library function
make_pair() to do it

template <class T1, class T2>
struct pair {

T1 first;
T2 second;

}

#include <iostream>
#include <utility>
#include <string>
using namespace std;

void func_with_pair_arg(pair<char,double> p)
{ cout << p.first << " " << p.second <<endl; }

int main()
{
string mystr = "Bill";
pair<string, int> p1(mystr, 1);
cout << p1.first << " " << p1.second <<endl;

// Option 1: Anonymous pair constructed and passed
func_with_pair_arg(pair<char,double>('c', 2.3));

// Option 2: Same thing as above but w/ less typing
func_with_pair_arg(make_pair('c', 2.3));

}

Bill 1

c 2.3

c 2.3

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Associative Containers

• C++ STL ‘map’ class can be used for this
purpose

• Maps store (key,value) pairs where:
– key = index/label to access the associated value

– Stored value is a copy of actual data

• Other languages refer to these as ‘hashes’
or ‘dictionaries’

• Keys must be unique
– Just as indexes were unique in an array or list

• Value type should have a default
constructor [i.e. Student()]

• Key type must have less-than (<) operator
defined for it
– Use C++ string rather than char array

• Efficient at finding specified key/value
and testing membership
(O(log2n))

#include <map>
#include "student.h"
using namespace std;

int main()
{

map<string,Student> stumap;
Student s1("Tommy",86328);
Student s2("Tina",54982);
...
// Option 1: this will insert the pair:
// {Tommy,Copy of s1}
stumap["Tommy"] = s1;
// Option 2: using insert()
stumap.insert(pair<string,Student>("Tina", s2));
// or stumap.insert(make_pair("Tina", s2));
...
int tommy_score= stumap["Tina"].get_grade(1);

stumap.erase("Tommy");
cout << "Tommy dropped the course..Erased!”;
cout << endl;

}

stumap is a map that associates C++ strings (keys) with

Student objects (values)

"Tommy" Copy of

s1

"Tina" Copy of

s2

stumap

Returns 'Copy of s2' and then you can call Student

member functions

NEVER use a 'for' loop to iterate
through a map to FIND a key,value pair.

Just use find()…it's O(log n)

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Maps & Iterators

• If you still want to process
each element in a map you
can still iterate over all
elements in the map using
an iterator object for that
map type

• Recall: Iterator is a
"pointer'/iterator to a pair
struct

– it->first is the key

– it->second is the value

#include <map>
#include "student.h"
using namespace std;

int main()
{
map<string,student> stumap;
Student s1("Tommy",86328);
Student s2("Jill",54982);
...
stumap["Tommy"] = s1;
stumap[s1.get_name()].add_grade(85);

stumap["Jill"] = s2
stumap["Jill"].add_grade(93);
...

map<string,student>::iterator it;
for(it = stumap.begin(); it != stumap.end(); ++it){
cout << "Name/key is " << it->first;
cout << " and their 0th score is ";
cout << it->second.get_grade(0);

}
} Name/key is Tommy and their 0th score is 85

Name/key is Jill and their 0th score is 93

Tommy s1

Jill s2

slist1

Pair<string,Student>

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map Membership [Find()]

• Check/search whether key is
in the map object using
find() function

• Pass a key as an argument

• Find returns an iterator

• If key is IN the map
– Returns an iterator/pointer to

that (key,value) pair

• If key is NOT IN the map
– Returns an iterator equal to

end()’s return value

• Runs in log(n) time
– Do not loop/iterate to find

something in a map (or set)

#include <map>
#include "student.h"
using namespace std;

int main()
{
map<string,student> stumap;
Student s1("Tommy",86328), s2("Jill",14259);
string name;

stumap["Tommy"] = s1; // Insert an item
stumap["Tommy"].add_grade(85); // Access it

if(stumap.find("Jill") != stumap.end()){
cout << "Jill exists!" << endl;

}
else {

cout << "Jill does not exist" << endl;
stumap["Jill"] = s2; // So now add him

}
cin >> name;
map<string,student>::iterator it = stumap.find(name);
if(it != stumap.end()){

cout << it->first << " got score=" <<
it->second.get_grade(0) << endl;

}
}

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another User of Maps: Sparse Arrays

• Sparse Array: One where there is a large range of possible
indices but only small fraction will be used (e.g. are non-zero,
etc.)

• Example 1: Using student ID’s to represent students in a
course (large 10-digit range, but only 30-40 used)

• Example 2: Count occurrences of zip codes in a user database
– Option 1: Declare an array of 100,000 elements (00000-99999)

• Wasteful!!

– Option 2: Use a map

• Key = zipcode, Value = occurrences

0 1 99999

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Set Class
• C++ STL "set" class is like a list but

each value can appear just once

• Think of it as a map that stores just
keys (no associated value)

• Keys are unique

• insert() to add a key to the set

• erase() to remove a key from the set

• Very efficient at testing membership
(O(log2n))

– Is a specific key in the set or not!

• Key type must have a less-than (<)
operator defined for it

– Use C++ string rather than char
array

• Iterators to iterate over all elements
in the set

• find() to test membership

#include <set>
#include <string>
using namespace std;

int main()
{

set<string> people;

people.insert("Tommy");
people.insert("Johnny");
string myname = "Jill";
people.insert(myname);

for(set<string>::iterator it=people.begin();
it != people.end();
++it){

cout << "Person: " << *it << endl;
}
myname = "Tommy";
if(people.find(myname) != people.end()){
cout<< "Tommy is a CS-related major!" << endl;

}
else {
cout<< "Tommy wants to change his major!" << endl;

}
people.erase("Johnny"); // erase Johnny
// more code
return 0;

}

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterator Pro Tip 2a

• You should NOT MODIFY a container (vector, map, set) as you iterate through it

– May allow iterator to go off the end of a container

#include <iostream>
#include <vector>
#include <cstdlib>
using namespace std;

int main()
{

vector<int> s;
...
for(vector<int>::iterator it = s.begin(); it != s.end(); ++it)
{

if(*it == 0) s.erase(it);
}
return 0;

}

WRONG! Do NOT modify the container as

you iterate throughit

it

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterator Pro Tip 2b

• If you must modify the container as you iterate through take time to understand
how the iterator works and research correct methods

– For vectors, use the std::remove and std::erase idiom (Wikipedia link)

– Though not efficient, one could iterate through a copy while erasing from the
original

vector<int>::iterator it = s.begin();
while(it != s.end()){

if(*it == 0) s.erase(it);
else ++it;

}

it

vector<int>::iterator it;
it = std::remove(s.begin(), s.end(), 0);
s.erase(it, s.end());

end()

it

5 0 3 0 0 4 2 0

5 3 2 4 0 0 0 0

After
erase()5 3 2 4

After
remove()

Before
remove()

https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Deeper Look: Binary Tree

• Data structure where each node has at most 2 children (no
loops/cycles in the graph) and at most one parent

• Tree nodes w/o children are called "leaf" nodes

• Depth of binary tree storing N elements? ____________
parent

child
child

parent

childchild

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Deeper Look: Binary Tree

• Data structure where each node has at most 2 children (no
loops/cycles in the graph) and at most one parent

• Tree nodes w/o children are called "leaf" nodes

• Depth of binary tree storing N elements? log2n
parent

child
child

parent

childchild

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Search Tree

• Tree where all nodes meet the property that:
– All descendants on the left are less than the parent’s value

– All descendants on the right are greater than the parent’s value

• Can find value (or determine it doesn’t exit) in log2n time by
doing binary search

34 > 25..right

34<47..left

34>32..right

19 < 25..left

19 < 20..left

19 > 18..right

25

4718

7 20 32 56

3 9 19 24 28 45 48 76

Q: is 19 in the tree?
Q: is 34 in the tree?

34 != 45 and we’re at

a leaf node...34 does

not exist

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Trees & Maps/Sets

• Maps and sets use binary trees internally to store the keys

• This allows logarithmic find/membership test time

• This is why the less-than (<) operator needs to be defined for
the data type of the key

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object

Map::find("Greg") Map::find("Mark")

Returns iterator to

corresponding

pair<string, Student>

Returns iterator to end()

[i.e. NULL]

