
1

CSCI 104
Classes

Mark Redekopp

David Kempe

Sandra Batista

2

OVERVIEW AND CONCEPTS

3

C Structs

• Needed a way to group values that are
related, but have different data types

• NOTE: struct has changed in C++!

– C
• Only data members

• Some declaration nuances

– C++
• Like a class (data + member functions)

• Default access is public

struct Person{
char name[20];
int age;

};

int main()
{

// Anyone can modify
// b/c members are public
Person p1;
p1.age = -34;
// probably not correct

return 0;
}

4

Classes & OO Ideas
• Classes are used as the primary way to organize code

• Encapsulation

– Place data and operations on data into one code unit

– Keep state hidden/separate from other
programmers (or yourself) via private members

• Abstraction

– Depend only on an interface!

• Ex. a microwave…Do you know how it works?
But can you use it?

– Hide implementation details to create low
degree of coupling between different
components

• Unit of composition

– Create really large and powerful software systems from
tiny components

• Define small pieces that can be used to compose larger pieces

– Delegation/separation of responsibility

• Polymorphism & Inheritance

– More on this later…

struct Machine{
Piece* pieces;
Engine* engine;

};

int main()
{
Machine m;

init_subsystemA(&m);

change_subsystemB(&m);

replace_subsystemC(&m);

m.start();
// Seg. Fault!! Why?

}

Protect yourself from users &
protect your users from

themselves

5

Coupling

• Coupling refers to how much components depend on each
other's implementation details (i.e. how much work it is to
remove one component and drop in a new implementation of
it)
– Placing a new battery in your car vs. a new engine

– Adding a USB device vs. a new video card to your laptop

• OO Design seeks to reduce coupling as much as possible by
– Creating well-defined interfaces to change (write) or access (read) the

state of an object

– Allow alternate implementations that may be more appropriate for
different cases

6

PARTS OF A CLASS

7

Parts of a C++ Class

• What are the main parts of a
class?

– Member variables
• What data must be stored?

– Constructor(s)
• How do you build an instance?

– Member functions
• How does the user need to interact

with the stored data?

– Destructor
• How do you clean up an after an

instance?

class IntLinkedList {
public:
IntLinkedList();
IntLinkedList(int n) ;
˜IntLinkedList();
void prepend(int n);
void remove(int toRemove);
void printList();
void printReverse();

private :
void printHelper(Item *p);
Item ∗head;

};

8

Notes About Classes

• Member data can be public or private (for now)
– Defaults is private (only class functions can access)

– Must explicitly declare something public

• Most common C++ operators will not work by default
(e.g. ==, +, <<, >>, etc.)
– You can't cout an object (cout << myobject; won't work)

– The only one you get for free is '=' and even that may not work the
way you want (more on this soon)

• Classes may be used just like any other data type (e.g. int)
– Get pointers/references to them (Obj*, Obj&)

– Pass them to functions (by copy, reference or pointer)

– Dynamically allocate them (new Obj, new Obj[100])

– Return them from functions (Obj f1(int x);)

9

C++ Classes: Constructors
• Called when a class is instantiated

– C++ won't automatically initialize member variables

– No return value

• Default Constructor

– Can have one or none in a class

– Basic no-argument constructor

– Has the name ClassName()

– If class has no constructors, C++ will make a default

• But it is just an empty constructor (e.g. Item::Item() { })

• Overloaded Constructors

– Can have zero or more

– These constructors take in arguments

– Appropriate version is called based on how many and what type of
arguments are passed when a particular object is created

– If you define a constructor with arguments you should also define a default
constructor (otherwise no default constructor will be available)

class IntLinkedList {
public:
IntLinkedList();
IntLinkedList(int n);
˜IntLinkedList();
...

};

10

Identify that Constructor

• Prototype what constructors
are being called here

#include <string>
#include <vector>
using namespace std;

int main()
{

string s1;
string s2("abc");

vector<int> dat(30);

return 0;
}

11

Identify that Constructor

• Prototype what constructors
are being called here

• s1
– string::string()

// default constructor

• s2
– string::string(const char*)

• dat
– vector<int>::vector<int>(int);

#include <string>
#include <vector>
using namespace std;

int main()
{

string s1;
string s2("abc");

vector<int> dat(30);

return 0;
}

12

CONSTRUCTOR INITIALIZATION
LISTS

Initializing data members of a class

13

Consider this Struct/Class
• Examine this struct/class definition…

– How can I initialize the members?

#include <string>
#include <vector>

struct Student
{ Student(); // constructor
std::string name;
int id;
std::vector<double> scores;
// say I want 10 test scores per student

};

int main()
{
Student s1;

}

string name

int id

scores

14

Composite Objects

• Fun Fact 1: Memory for an
object comes alive before '{'
of the constructor code

• Fun Fact 2: Constructors
for objects get called (and
can ONLY EVER get called)
at the time memory is
allocated

#include <string>
#include <vector>

struct Student
{

std::string name;
int id;
std::vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{ // Can I call string & vector
// constructors to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{ Student s1;

//...
}

string name

int id

scores

15

Initializing Members

• To recap: When an object is constructed the
individual members are constructed first

– Members constructors are called before object's
constructor

Obj

Type1 mem1

Type2 mem2

Type3 mem3

TypeA(){…}

TypeB(){…}

TypeC(){…}

Obj(){…}

Members are

constructed

first…

…then Object

constructor

called after

Class Obj
{ public:

Obj();
// public members
private:
Type1 mem1;
Type2 mem2;
Type3 mem3;

};

16

#include <string>
#include <vector>

struct Student
{ std::string name;

int id;
std::vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{ // Can I do this to init. members?
string name("Tommy"); // or
// name("Tommy")
id = 12313;
vector <double> scores(10);

}
};
int main()
{ Student s1;

//...
}

What NOT to do!
• So we CANNOT call constructors on data members INSIDE the

constructor)
– So what can we do??? Use initialization lists!

This would be

"constructing"

name twice. It's

too late to do it in

the {…}

Stack Area of RAM

main 0xbf4
s1

0xbf8

00400120
Return

link
0xbfc

Student()
name0xbe8

004000ca0
Return

link
0xbec

scores

Tommy

id

0xbf0
name

0xbe4 scores

17

Old Initialization Approach

• Though you do not see it, realize that the default
constructors are implicitly called for each data
member before entering the {…}

• You can then assign values (left side code)

– But this is a 2-step process: default construct, then
replace with desired value

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan"; // now modify
id = 12313
scores.resize(10);

}

If you write this…
The compiler will still generate this.

18

New Initialization Approach

• We can initialize with a 1-step process using a
C++ constructor initialization list
– Constructor(param_list) : member1(param/val), …, memberN(param/val)

{ … }

• We are really calling the respective constructors
for each data member at the time memory is
allocated

Student::Student() :
name(), id(), scores() /* compiler generated */
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{
}

Default constructors implicitly called and

then values reassigned in constructor

You would have to call the member

constructors in the initialization list context

19

Summary

• You can still assign values in the constructor but realize that the
default constructors will have been called already

• So generally if you know what value you want to assign a data
member it's good practice to do it in the initialization list

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

You can still assign data

members in the {…}

But any member not in the initialization list will

have its default constructor invoked before the

{…}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{ }

This would be the preferred approach especially for

any non-scalar members (i.e. an object)

Exercise: cpp/cs104/classes/constructor_init2

20

struct Student
{ std::string name;

int id;
std::vector<double> scores;

Student()
{ name = "Tommy Trojan"; // default
id = -1; // default
scores(10); // default 10 assignments

}
Student(string n)
{ Student();
name = n;

}
};

int main()
{

Student s1("Jane Doe");
// more code...

}

Calling Constructors
• You CANNOT use one constructor as a helper function to help

initialize members
– DON'T call one constructor from another constructor for your class

Can we use Student() inside Student(string

name) to init the data members to defaults

and then just replace the name?

string name

int id

scores

No!! Calling a constructor always allocates

another object. So rather than initializing the

members of s1, we have created some new,

anonymous Student object which will die at the

end of the constructor

21

Allocating and Deallocating Members

• Members of an object
have their constructor
called automatically
before the Object's
constructor executes

• When an object is
destructed the members
are destructed
automatically AFTER the
object's destructor runs

ObjB

Type1 mem1

Type2 mem2

Type3 mem3

~TypeA(){…}

~TypeB(){…}

~TypeC(){…}

~ObjB(){…}

Destructor is

called first to

cleanup whatever

members are

referencing…

…then the

destructor for

each data

member is called

automatically

ObjB

Type1 mem1

Type2 mem2

Type3 mem3

TypeA(){…}

TypeB(){…}

TypeC(){…}

ObjB(){…}

F
ir

s
t

Second

Construction

Destruction

22

C++ Classes: Destructors
• Destructors are called when an object goes out of

scope or is freed from the heap (by “delete”)

• Destructors

– Can have one or none (if no destructor defined by the
programmer, compiler will generate an empty destructor)

– Have no return value

– Have the name ~ClassName()

– Data members of an object have their destructor's called
automatically upon completion of the destructor.

• Why use a destructor?

– Not necessary in simple cases

– Clean up resources that won't go away automatically (e.g.
when data members are pointing to dynamically
allocated memory that should be deallocated when the
object goes out of scope)

– Destructors are only needed only if you need to do more
than that (i.e. if you need to release resources, close files,
deallocate what pointers are point to, etc.)

– The destructor need only clean up resources that are
referenced by data members.

class Item
{ string s1;
int* x;
public:
Item();
~Item();

};

Item::Item()
{ s1 = "Hi";
x = new int;
*x = 7;

}

Item::~Item()
{
delete x;

} // data members
// destructed here

"Hi"s1

0x148x

70x148

23

OTHER IMPORTANT CLASS DETAILS

24

Member Functions

• Object member access uses
dot (.) operator

• Pointer-to-object member
access uses arrow (->)
operator

• Member functions have
access to all data members
of a class

• Use “const” keyword if it
won't change member data

class Item
{ int val;
public:
void foo();
void bar() const;

};

void Item::foo()
{ val = 5; }

void Item::bar() const
{ }

int main()
{

Item x;
x.foo();
Item *y = &x;
(*y).bar();
y->bar(); // equivalent
return 0;

}

25

'const' Keyword

ObjectA

int
mem1

int const & memFunc1(const string& s) const
{ return s == "Hi" ? mem1 : mem2; }

string
mem2

int
mem3

int const &

string arg1 = "Hi"
int& z =

objA.memFunc1(arg1);

string
arg1

• const keyword can be used with
– Input arguments to ensure they aren't modified

– After a member function to ensure data members aren't modified by
the function

– Return values to ensure they aren't modified

This Photo by Unknown Author

is licensed under CC BY-SA

https://commons.wikimedia.org/wiki/File:Crystal_Project_Lock.png
https://creativecommons.org/licenses/by-sa/3.0/

26

Exercises

• cpp/cs104/classes/const_members

• cpp/cs104/classes/const_members2

• cpp/cs104/classes/const_return

27

C++ Classes: Other Notes
• Classes are generally split across two

files
– ClassName.h – Contains interface

description

– ClassName.cpp – Contains
implementation details

• Make sure you remember to prevent
multiple inclusion errors with your
header file by using #ifndef, #define,
and #endif

#ifndef CLASSNAME_H

#define CLASSNAME_H

class ClassName { … };

#endif

#include "string.h"

string::string()
{ /* ... */ }

size_t string::length() const
{ /* ... */ }

string.h

string.cpp

#ifndef STRING_H
#define STRING_H
class string{

string();
size_t length() const;
/* ... */

};
#endif

28

Multiple Inclusion

• Often separate files may
#include's of the same header
file

• This may cause compiling
errors when a duplicate
declaration is encountered
– See example

• Would like a way to include only
once and if another attempt to
include is encountered, ignore it

string.h

class string{

... };

#include "string.h"
class Widget{
public:
string s;

};

widget.h

#include "string.h"
#include "widget.h"
int main()
{ }

main.cpp

class string { // inc. from string.h
};

class string{ // inc. from widget.h
};
class Widget{
... }
int main()
{ }

main.cpp after preprocessing

29

Conditional Compiler Directives

• Compiler directives start with
'#'
– #define XXX

• Sets a flag named XXX in the
compiler

– #ifdef, #ifndef XXX … #endif
• Continue compiling code below

until #endif, if XXX is (is not)
defined

• Encapsulate header
declarations inside a
– #ifndef XX

#define XX
…
#endif

string.h

#ifndef STRING_H
#define STRING_H
class string{ ... };
#endif

#include "string.h"
class Widget{
public:
string s;

};

widget.h

#include "string.h"
#include "string.h"

main.cpp

class string{ // inc. from string.h
};

class Widget{ // inc. from widget.h

...

main.cpp after preprocessing

30

CONDITIONAL COMPILATION

31

Conditional Compilation
• Often used to compile

additional DEBUG code
– Place code that is only needed for

debugging and that you would not want to
execute in a release version

• Place code in a
#ifdef NAME...#endif bracket

• Compiler will only compile if a
#define NAME is found

• Can specify #define in:
– source code

– At compiler command line with
(-DNAME) flag
• g++ -o stuff –DDEGUG

stuff.cpp

stuff.cpp

int main()
{

int x, sum=0, data[10];
...
for(int i=0; i < 10; i++){

sum += data[i];
#ifdef DEBUG

cout << "Current sum is ";
cout << sum << endl;

#endif
}

cout << "Total sum is ";
cout << sum << endl;

$ g++ -o stuff –DDEBUG stuff.cpp

