
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Abstract Data Types

Mark Redekopp

David Kempe

Revised: 05/2022

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Abstract Data Types
• An abstract data type, or ADT, as a specification or model for a group of

values/data and the operations on those values

• A data structure is a specific implementation of an ADT in a given
programming language

• As an analogy think of the ADT as the class declaration (header file) and
the data structures are various implementations of a specific ADT
(source files)

• Given an application we can quickly identify the ADT and then proceed
to choose an appropriate data structure

• Each data structure we will examine in this course has certain:

– Well defined operations and capabilities that are often useful

– Time & space advantages

– Time & space disadvantages

• You need to know those operations, advantages and
disadvantages

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Popular ADTs

• The "Big 3" ADTs

– List

• 3 specialized List ADTs: Queues, Stacks, Deques

– Set

– Map (Dictionary)

• Other ADTs

– Priority Queue

– Graphs

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Lists
• Ordered collection of items, which may contain duplicate

values, usually accessed based on their position (index)
– Ordered = Each item has an index and there is a front and back (start

and end)

– Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

– Accessed based on their position (list[0], list[1], etc.)

• What are some operations you perform on a list?

list[0]
list[1]

list[2]

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

List Operations

Operation Description Input(s) Output(s)

insert Add a new value at a particular
location shifting others back

Index : int
Value

remove Remove value at the given location Index : int Value at location

get / at Get value at given location Index : int Value at location

set Changes the value at a given location Index : int
Value

empty Returns true if there are no values in
the list

bool

size Returns the number of values in the
list

int

push_back /
append

Add a new value to the end of the list Value

find Return the location of a given value Value Int : Index

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Queues and Stacks

• Two specialized List ADTs

Items enter from

one side (often the

back…push_back)

Items leave from

the other side

(often the

front…pop_front)

(push_back)

(pop_front)

(pop)(push)

Stack

Top

Queue

Items enter and leave from

the same side (i.e. the top)

12

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Queue & Stack Operations

Queues Stacks
Operations
Relative to
Lists

Notes

insert

remove

get (front) Can only get front item

set

empty

size

push_back Add to one side

pop_front Remove from the other

Operations
Relative to
Lists

Notes

insert

remove

get (top) Can only get top item

set

empty

size

push Add to one side

pop Remove from the same

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Maps / Dictionaries

• Stores key, value pairs
– Example: Map student names to their GPA

• Keys must be unique (can only occur
once in the structure)

• No constraints on the values (can have
duplicates)

• What operations do you perform on a
map/dictionary?

• No inherent ordering between
key,value pairs
– Can't ask for the 0th item…

• Primary operations:
– Insert, remove, find/lookup

"Tommy

Trojan"
3.7

"Billy

Bruin"
2.5

"Iris

Ivy"
4.3

"Donna

Duck"
2.5

Grade Inflation!!

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map / Dictionary Operations

Operation Description Input(s) Output(s)

Insert / add Add a new key,value pair to the
dictionary (assuming its not there
already)

Key, Value

Remove Remove the key,value pair with the
given key

Key

Get / lookup Lookup the value associated with the
given key or indicate the key,value
pair doesn't exist

Key Value associated with
the key

In / Find Check if the given key is present in
the map

Key bool
(or ptr to pair/NULL)

empty Returns true if there are no values in
the list

bool

size Returns the number of values in the
list

int

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Set
• A set is a dictionary where we only store keys (no associated

values)
– Example: All the courses taught at USC (ARLT 100, …, CSCI 104, MATH

226, …)

• Items (a.k.a. Keys) must be unique
– No duplicate keys (only one occurrence)

• Not accessed based on index but on key
– We wouldn't say, "What is the 0th course at USC?"

• What operations do we perform
on a set?
– Similar to a map

– Insert, remove, find/in

EE

109

ARLT 100

CSCI

104

MATH

226

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Set Operations
Operation Description Input(s) Output(s)

Insert / add Add a new key to the set (assuming its
not there already)

Key

Remove Remove Key

In / Find Check if the given key is present in the
map

Key bool
(or ptr to item/NULL)

empty Returns true if there are no values in the
list

bool

size Returns the number of values in the list Int

intersection Returns a new set with the common
elements of the two input sets

Set1, Set2 New set with all elements
that appear in both set1
and set2

union Returns a new set with all the items that
appear in either set

Set1, Set2 New set with all elements
that appear in either set1
and set2

difference Returns a set with all items that are just in
set1 but not set2

Set1, Set2 New set with only the
items in set1 that are not in
set2

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Intersection, Union, Difference

• May be familiar from CS 170

• Set intersection

– S1  S2

• Set Union

– S1  S2

• Set Difference
– S1 – S2

EE 109

S1

ARLT 100

MATH 226

CSCI 104

EE 109

S2

CSCI 170

WRIT 140

CSCI 104

EE 109

Intersection

CSCI 104

Union

WRIT 140

CSCI 170

Difference

EE 109

ARLT 100

MATH 226

CSCI 104

ARLT 100

MATH 226

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What's Your ADT?
• Scores on a test

• Students in a class

• Courses & their enrollment

• Temperature Reading at a
location

• Usernames and password

• Index in a textbook

• Facebook friends

• List

• Set (maybe List)

• Map (Key = course, Value = enrollment)

• List

• Map

• Map

• Set

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Some Implementation Details
• List

– An array acts as a list

– Index provides ordering

• First at location 0

• Last at location n-1

• Set
– Can use an array

– Must check for duplicate on
insertion

• O(n) solution

– Can we do better? Yes…

• Map
– Can also use an array

– Again check for duplicate key on
insertion

30 51 30 53 30

0 1 2 3 4 5

10

6 7 8 9 10 11

30 51 53

0 1 2 3 4 5 6 7 8 9 10 11

10

"Tommy" 3.7 "Billy" 2.5 "Harry" 4.3

0 1 2 3

struct Pair{
string key;
double value;;

};

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Priority Queue ADT

• Operations

– Can add items in any order

– Only allows retrieval of the "best/top" priority item
(however "best" is defined: smallest, largest, etc.)

– Only allows removal of the "best/top" item

• Can be stored as a "sorted" list

– But there are more efficient implementations

15 33 62 81

47

(push)

(pop)

Priority Queue

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Graph ADT

• Stores nodes (aka vertices) and edges between the
nodes

– Edges model relationships between vertices

– Note: a "tree" is common form of a graph

• Can be stored as a list of lists or a __________

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o
f
V

e
rt

ic
e
s

A
d
ja

c
e
n
c
y
 L

is
ts

How else would you express this

using the ADTs you've just learned?

	Slide 1: CSCI 104 Abstract Data Types
	Slide 2: Abstract Data Types
	Slide 3: Popular ADTs
	Slide 4: Lists
	Slide 5: List Operations
	Slide 6: Queues and Stacks
	Slide 7: Queue & Stack Operations
	Slide 8: Maps / Dictionaries
	Slide 9: Map / Dictionary Operations
	Slide 10: Set
	Slide 11: Set Operations
	Slide 12: Intersection, Union, Difference
	Slide 13: What's Your ADT?
	Slide 14: Some Implementation Details
	Slide 15: Priority Queue ADT
	Slide 16: Graph ADT

