
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Simple Recursion

Mark Redekopp

Revised: 01/2022

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion in CS 104

• Problem in which the solution can be expressed in terms of
itself (usually a smaller instance/input of the same problem)
and a base/terminating case

• Recursion is a key concept in this course
– But it rarely comes easily to students. You must work at it!

• Many problems that would be VERY difficult to solve without
recursion (i.e. only loops) have extremely elegant solutions to
problems
– Learn to look for those elegant solutions

– In this class, assume the recursive approach has an elegant/simple
solution

– If you find yourself writing a large, complex recursive solution, assume
you are doing something you should not!

• Stop and reconsider how it should be done

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Definition of C++
Rule Expansion

expr constant
| variable_id
| function_call
| assign_statement
| ‘(‘ expr ‘)’
| expr binary_op expr
| unary_op expr

assign_statement variable_id ‘=‘ expr

expr_statement ‘;’
| expr ‘;’

5 * (9 + max);
expr * (expr + expr);

expr * (expr);

expr * expr;

expr;

expr_statement

Example: Example: x + 9 = 5;
expr + expr = expr;

expr = expr;

NO SUBSTITUTION
Compile Error!

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ Grammar
Rule Expansion

statement expr_statement
| if (expr) statement
| while (expr) statement
…

statement_list statement
| statement_list statement
| '{' statement_list '}'

while(x > 0) { doit(); x = x-2; }
while(expr) { expr; assign_statement; }
while(expr) { expr; expr; }
while(expr) { expr_statement expr_statement }

while(expr) { statement statement }

while(expr) { statement_list statement }

while(expr) { statement_list }

while(expr) statement_list
statement_list

E
x
a
m

p
le

: while(x > 0)
x--;
x = x + 5;

while(expr)

statement

statement

statement

statement
E

x
a
m

p
le

:

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FORMULATING PROBLEMS USING
RECURSION

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Steps to Formulating Recursive
Solutions

1. Solve a few instances of the problem to discover the
recursive structure

2. Identify how the problem can be decomposed into smaller
problems of the same form
– Does solving the problem on an input of smaller value or size help

formulate the solution to the larger

3. Identify the base case
– An input for which the answer is trivial

4. Assume the recursive call for the smaller problem
"magically" computes the correct solution(s) to those
problem(s) and identify how to combine those solution(s)
from the smaller problem(s) into the solution for the larger
problem

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Formulation Ex

This Photo by Unknown Author is licensed under CC BY-SA

• Suppose we only have 1 and 3 dollar bills

• You need to pay off an n dollar debt but
must only pay 1 bill per day.

• How many ways, f(n), are there to use 1
and 3 dollar bills to pay n dollars?
– Follow the suggested steps:

• Write out solutions to some problems

• Try to find how solutions to smaller problems can be
combined to solve the solution to the harder problem

• What is the "1 thing" we can handle and then use
recursion for the remaining problem?

• Now formulate the recursive answer
– Base case: _________________________

– Recursive case: ____________________

f(1)=__:

f(2)=__:

f(3)=__:

f(4)=__:

f(5)=__:

f(6)=__:

f(7)=__:

http://commons.wikipedia.org/wiki/file:symbol-money.svg
https://creativecommons.org/licenses/by-sa/3.0/

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Formulation Ex

This Photo by Unknown Author is licensed under CC BY-SA

• Suppose we only have 1 and 3 dollar
bills

• You need to pay off an n dollar debt but
must only pay 1 bill per day.

• How many ways, f(n), are there to use 1
and 3 dollar bills to pay n dollars?

• Now formulate the recursive answer
– Base case: ________________________

– Recursive case: _____________________

int f(int n)
{

if(n <= 2) return __;
else if(n == 3) return __;
else {

return ________________
}

}

http://commons.wikipedia.org/wiki/file:symbol-money.svg
https://creativecommons.org/licenses/by-sa/3.0/

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Simple vs. Multiple Recursion
• "Simple" recursion refers to functions that

contain just ONE recursive call
– Can be head or tail recursion (explained soon)

– Can easily be replaced by a loop

• The power of recursion usually comes
when the function makes 2 OR MORE
recursive calls (aka "multiple recursion")
– Elegant recursive solutions that would be

MUCH harder to implement iteratively
(usually need a separate stack data structure)

• We'll focus on simple recursion first and
later on multiple recursion)

int fact(int n) {
if(n == 1) return 1;
return n * fact(n-1);
}

Simple Recursion

(1 recursive call)

int f(int n)
{

if(n <= 2) return 1;
else if(n == 3) return 2;
else {

return f(n-1)+f(n-3);
}

}

Multiple Recursion

(2 or more recursive calls)

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Guiding Principle

• A useful principle when trying to
develop recursive solutions is that
the recursive code should handle
only 1 element, which might be:
1. An element in an array

2. A node a linked list

3. A node in a tree

4. One choice in a sequence of choices

• Then use recursion to handle the
remaining elements

• And finally combine the solution(s)
from the recursive call(s) with the
one element being handled

50 51 52 53 54

0 1 2 3 4

val next

3 0x1c0

val next

9 0x380

0x148

0x148 0x1c0

val next

7
0x0

NULL

0x380

f(n) f(n-1)

f(head) f(head->next)

f(n)

f(left)

f(right)

1

2

3

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion & the Stack
• Must return back through the each call int fact(int n)

{
if(n == 1){

// base case
return 1;

}
else {

// recursive case
return n * fact(n-1);

}
}

int main()

{

int val = 4;

cout << fact(val) << endl;

}

Stack Area of RAM

main
4 val0xbf8

00400120
Return

link
0xbfc

4 n0xbf0

004001844
Return

link
0xbf4

fact

3 n0xbe8

004001844
Return

link
0xbec

fact

2 n0xbe0

004001844
Return

link
0xbe4

fact

1 n0xbd8

004001844
Return

link
0xbdc

fact

1

2

6

24

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Analysis Tip: Box Diagrams

• To analyze recursive functions draw
a box diagram which is…
– A simplified view of each function

instance on the stack

• One box per function

– Show arguments, pertinent local
variables, and return values

4 3n n 2 n

fact(4) fact(3) fact(2) fact(1)

11*2=22*3=64*6=24

Main()

1 n

int fact(int n)
{

if(n == 1){
return 1;

}
else {

return n * fact(n-1);

}
}

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RECURSION & LINKED LISTS

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion and Linked Lists

• Notice that one Item's next pointer looks like a head
pointer to the remainder of the linked list

– If we have a function that processes a linked list by
receiving the head pointer as a parameter we can
recursively call that function by passing our 'next' pointer
as the 'head'

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2
0x0

(Null)

0x168

head The 'next' pointer of an Item

struct can act as a "head"

pointer to the remaining list

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Operations on Linked List
• Many linked list operations can be recursively defined

• Can we make a recursive iteration function to print items?

– Recursive case: Print one item then the problem becomes to print the n-1 other items.

• Notice that any 'next' pointer can be though of as a 'head' pointer to the remaining sublist

– Base case: Empty list
(i.e. Null pointer)

• How could you print values in reverse order?

void print(Item* ptr)
{

if(ptr == NULL) return;
else {
cout << ptr->val << endl;
print(ptr->next);

}
}
int main()
{ Item* head;

...
print(head);

}

val next

3 0x1c0

val next

9
0x0

NULL

0x148head 0x148 0x1c0

main
0x148 head0xbf8

00400120
Return

link
0xbfc

0x148 ptr0xbf0

004001844
Return

link
0xbf4

print

0x1c0 ptr0xbe8

004001844
Return

link
0xbec

print

0x0 ptr0xbe8

004001844
Return

link
0xbec

print

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Operations on Linked List

• How could you print values in reverse order?

void print(Item* ptr)
{

if(ptr == NULL) return;
else {

}
}
int main()
{ Item* head;

...
print(head);

}

val next

3 0x1c0

val next

9
0x0

NULL

0x148head 0x148 0x1c0

void print(Item* ptr)
{

if(ptr == NULL) return;
else {
cout << ptr->val << endl;
print(ptr->next);

}
}
int main()
{ Item* head;

...
print(head);

}

Print in Order Print in Reverse Order

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summing a Linked List

• Given a linked list of integers, write a recursive
routine to find the sum of all values.

val next

3 0x1c0

val next

9 0x168

0x148 0x148 0x1c0

val next

2
0x0

(Null)

0x168

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Head vs. Tail Recursion

• Using recursion provides a choice for when to do our work
(processing)
– Before recursing (on our way down the recursive call sequence) = TAIL

recursion

• Process one element first and then recurse by passing the results to the next

• Once we hit the base case we return the answer back up through the call sequence

– After recursing (on our way back up the recursive call sequence) = HEAD
recursion

• Recurse first and then do our processing on the way back up (in reverse order) by
combining our one element with the solution returned by the recursive call

Tail Recursion: Process before recursing (i.e. on the way down)
Head Recursion: Process after recursing (i.e. on the way back up)

down

up

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Head Recursion
• Recurse first (to the end of the chain when our argument

is NULL) and then start summing as we return from each
recursion (on the way back up)
– What should the base case return

– What should recursive cases (normal nodes) return?

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2
0x0

(Null)

0x168

head

sum(0x148) sum(0x1c0) sum(0x168) sum(0x0)

00+2=22+9=113+11=14

Main()

What would the prototype of this recursive function be?

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tail Recursion

• Produce sum as you walk down the list then just
return the final answer back up the list

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2
0x0

(Null)

0x168

head

sum(0x148,0) sum(0x1c0, 3) sum(0x168,12) sum(0x0,14)

14141414

Main()

3 12 14

What would the prototype of this recursive function be?

0

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ANALYZING RUNTIME OF
RECURSION

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What about Recursion

• Assume N items in the linked
list

• Setup and solve a recurrence
relationship for the runtime

• T(n) = 1 + _______; T(0) = __

• Now unroll the recurrence
relationship to find a
series/summation that you
can solve

void print(Item* head)
{

if(head==NULL) return;
else {
cout << head->val << endl;
print(head->next);

}
}

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What about Recursion
• Assume N items in the linked

list

• Setup and solve a recurrence
relationship for the runtime

• T(n) = 1 + T(n-1); T(0) = 1

• Now unroll the recurrence
relationship to find a
series/summation that you
can solve

• = 1 + 1 + T(n-2)

• = 1 + 1 + 1 + T(n-3)

• = 1 + 1 + 1 + ... + 1 + T(0)

• = n + 1 = 𝜃(n)

void print(Item* head)
{

if(head==NULL) return;
else {
cout << head->val << endl;
print(head->next);

}
}

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solving Recurrence Relationships

1) Find the recurrence relationship

– T(n) = T(n-1) + n and T(0) = 1 or

– T(n) = T(n/2) + 1 and T(1) = 1

2) Unroll/unravel the relationship a few times to see
the pattern emerging

3) Write an expression for T(n) for the k-th
iteration/unrolling

4) Determine what value of k will cause you to hit the
base case

5) Substitute the value you found for k from part 4) into
the expression for T(n) you found in part 3)

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Search

• Search an ordered list (array) for a
specific value, k, and return the
location

• Binary Search
– Compare k with middle element of list

and if not equal, rule out ½ of the list and
repeat on the other half

– "Range" Implementations in most
languages are [start, end)

– Start is inclusive, end is non-inclusive (i.e.
end will always point to 1 beyond true
ending index to make arithmetic work out
correctly)

2 3 4 6 9 11 13 15 19List

index

2 3 4 6 9 11 13 15 19List

index

mid

k = 11

endstart

mid endstart

2 3 4 6 9 11 13 15 19List

index

endstart
mid

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

2 3 4 6 9 11 15 19List

index

endstart

mid

0 1 2 3 4 5 6 7 8

13

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Search

• Assume n is (end-start)
– # of items to be searched

• T(n) = _________________
and T(1) = 𝜃(1)

int bsearch(int data[],
int start, int end,
int target)

{
if(start >= end)
return -1;

int mid = (start+end)/2;
if(target == data[mid])
return mid;

else if(target < data[mid])
return bsearch(data, start, mid,

target);
else
return bsearch(data, mid+1, end,

target);
}

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Search

• Assume n is (end-start)
– # of items to be searched

• T(n) = 𝜃(1) + T(n/2) and
T(1) = 𝜃(1)

• = 1 + T(n/2)

• = 1 + 1 + T(n/4)

• = 1 + 1 + 1 + T(n/8)

• = k + T(n/2k)

• Stop when 2k = n
– Implies log2(n) recursions

• 𝜃(log2(n))

int bsearch(int data[],
int start, int end,
int target)

{
if(end >= start)
return -1;

int mid = (start+end)/2;
if(target == data[mid])
return mid;

else if(target < data[mid])
return bsearch(data, start, mid,

target);
else
return bsearch(data, mid+1, end,

target);
}

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MORE RECURSIVE LINKED LIST
EXERCISES

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Linked List Copy
• How could you make a copy of a linked list using

recursion
struct Item {
int val;
Item* next;
Item(int v, Item* n){

val = v; next = n;
}

};

Item* copyLL(Item* head)
{

if(head == NULL) return NULL;
else {

}
}
int main()
{ Item* oldhead, *newhead;

...
newhead = copyLL(oldhead);

}

val next

3 0x1c0

val next

9
0x0

NULL

0x148oldhead 0x148 0x1c0

???newhead

What work can you do as you recurse

down the list and what needs to be

done on the way back up?

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Linked List Copy
• We always work inside out so start with the recursive

call and then the 'new' and then the return.

struct Item {
int val;
Item* next;
Item(int v, Item* n){
val = v; next = n;

}
};

Item* copyLL(Item* head)
{
if(head == NULL) return NULL;
else {

return new Item(head->val,
copyLL(head->next));

}
}
int main()
{ Item* oldhead, *newhead;

...
newhead = copyLL(oldhead);

}

val next

3 0x1c0

val next

9
0x0

NULL

0x148oldhead

0x148 0x1c0

val next

3 0x7c0

val next

9
0x0

NULL

0x7c0

0x840

newhead

copyLL(0x148) copyLL(0x1c0) copyLL(0x0)

0x00x7c0

0x840

1

2

3

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive DL Append

• Add a new item to end of doubly linked list
given head and new value (and no tail pointer)

struct DLItem {
int val; DLItem* prev; DLItem* next;
DLItem(int v, DLItem* p, DLItem* n);

};

void append(DLItem*& head, int v)
{
if (__________________){
head = new DLItem(v, NULL, NULL);

} else if (__________________){
head->next = new DLItem(v, ______, NULL);

} else {
append(head->next, v);

}
}

:

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Practice Exercises

• Exercises on course web page: llsum_head, llsum_tail,
llmax_head

• Recursively reverse a singly linked list: Given a pointer to the
head, return pointer to the new head without allocating any
more memory,
– Item* reverse(Item * head);

• Recursively remove an item with a specified value from a
singly linked list : Given a pointer to the head and the value to
remove,
– void remove(Item *& head, int valToRemove);

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

HELPER FUNCTIONS AND
RECURSIVE PARAMETER PASSING

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise – Helper Function
• Head recursion • Tail recursion

// The client only wants this
int maxVal(int* data, int len);

// And with head recursion we can do our job
// with that same signature

int maxVal(int* data, int len)
{
if(0 == len) return 0;
else {

int prevmax = maxVal(data+1, len-1);
return std::max(*data, prevmax);

}
}

int data[4] = {8, 9, 7, 6};

// The client only wants this
int maxVal(int* data, int len);

// But to do the job we need this
int maxHelp(int* data, int len, int curr, int cmax);

int maxVal(int* data, int len)
{ int mymax = 0;
mymax = maxHelp(data, len, 0, mymax);
return mymax;

}

int maxHelp(int* data, int len, int curr, int cmax)
{
if(curr == len) return cmax;
else {

if(data[curr] > cmax)
cmax = data[curr];

return maxHelp(data, len, curr+1, cmax);
}

We don't need 'curr' here and can
iterate just by incrementing 'data'

and decrementing 'len'

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Head vs. Tail Recursion Box Diagram

8 9data[curr] data[curr] 7

maxH(0,-1) maxH(1,8) maxH(2,9) maxH(3,9)

9999

max()

6

8 9 7 6

0 1 2 3data[4]:

800

data[curr] data[curr]

maxH(4,9)

9

- data[curr]

8 9*data *data 7

max(800,4) max(804,3) max(808,2) max(812,1)

6799

max()

6*data *data

max(816,0)

-1

- *data

int* data, int len

int

int

int* data, int len, int curr, int cmax
Tail Recursion

Head Recursion

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Tail Recursion Impl.

• Suppose we couldn't use the return value? We can
use a reference parameter

// The client only wants this
int maxVal(int* data, int len);

// But to do the job we need this
void maxHelp(int* data, int len, int curr, int& mx);

int maxVal(int* data, int len)
{ int mymax = 0;
maxHelp(data, len, 0, mymax);
return mymax;

}

void maxHelp(int* data, int len, int curr, int& mx)
{
if(curr == len) return;
else {
if(data[curr] > mx)

mx = data[curr];
maxHelp(data, len, curr+1, mx);

}

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tail Recursion w/ Reference Parameter

8 9data[curr] data[curr] 7

maxH(0,ref) maxH(1,ref) maxH(2,ref) maxH(3,ref)

max()

6

8 9 7 6

0 1 2 3data[4]:

800

data[curr] data[curr]

maxH(4,ref)

- data[curr]

int* data, int len, int curr, int& mx

Tail Recursion

8

mymax

9

int maxVal(int* data, int len)
{ int mymax = 0;
maxHelp(data, len, 0, mymax);
return mymax;

}

void maxHelp(int* data, int len, int curr, int& mx)
{

if(curr == len) return;
else {
if(data[curr] > mx)
mx = data[curr];

maxHelp(data, len, curr+1, mx);
}

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Do's and Don'ts

• When using recursion for linked lists (and later trees)
some generally useful guidelines are:

– Use the check for head==NULL (when possible) rather than
head->next == NULL (in case you get an empty list)
• A more general guideline is make sure you can prove the pointer

you are about to dereference (with * or ->) is not NULL otherwise
it might segfault

• Another implication of this is we will actually recurse off the end of
the list (call our function with a NULL pointer) but the immediate
base case check will catch this and return

– Each function should only access/modify the data of one
node/item (usually the one pointed to by the argument)

– If you need multiple "return" values you can use reference
parameters

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Formulation Ex

This Photo by Unknown Author is licensed under CC BY-SA

• Suppose we only have 1 and 3 dollar bills

• You need to pay off an n dollar debt but
must only pay 1 bill per day.

• How many ways, f(n), are there to use 1
and 3 dollar bills to pay n dollars?
– Follow the suggested steps:

• Write out solutions to some problems

• Try to find how solutions to smaller problems can be
combined to solve the solution to the harder problem

• What is the "1 thing" we can handle and then use
recursion for the remaining problem? What bill do we
pay for 1 day?

• Now formulate the recursive answer
– Base case: f(1) = 1, f(2) = 1, f(3) = 2;

– Recursive case: f(n) = f(n-1) + f(n-3)

f(1)=1: 1

f(2)=1: 1+1

f(3)=2: 1+1+1, 3

f(4)=3:
1+1+1+1, 1+3, 3+1

f(5)=4:
1+1+1+1+1, 1+1+3,
1+3+1, 3+1+1

f(6)=6:

1+1+1+1+1+1, 1+1+1+3,
1+1+3+1, 1+3+1+1,
3+1+1+1, 3+3

f(7)=9:

http://commons.wikipedia.org/wiki/file:symbol-money.svg
https://creativecommons.org/licenses/by-sa/3.0/

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Formulation Ex

This Photo by Unknown Author is licensed under CC BY-SA

• Suppose we only have 1 and 3 dollar
bills

• You need to pay off an n dollar debt but
must only pay 1 bill per day.

• How many ways, f(n), are there to use 1
and 3 dollar bills to pay n dollars?

• Now formulate the recursive answer
– Base case: f(1) = 1, f(2) = 1, f(3) = 2;

– Recursive case: f(n) = f(n-1) + f(n-3)

int f(int n)
{

if(n <= 2) return 1;
else if(n == 3) return 2;
else {

return f(n-1)+f(n-3);
}

}

http://commons.wikipedia.org/wiki/file:symbol-money.svg
https://creativecommons.org/licenses/by-sa/3.0/

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive DL Append

• Add a new item to end of doubly linked list
given head and new value (and no tail pointer)

struct DLItem {
int val; DLItem* prev; DLItem* next;
DLItem(int v, DLItem* p, DLItem* n);

};

void append(DLItem*& head, int v)
{
if (head == NULL){
head = new DLItem(v, NULL, NULL);

} else if (head->next == NULL){
head->next = new DLItem(v, head, NULL);

} else {
append(head->next, v);

}
}

:

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKUP

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What about Recursion

• Assume N items in the linked
list

• Setup and solve a recurrence
relationship for the runtime

• T(n) = 1 + _______; T(0) = __

• Now unroll the recurrence
relationship to find a
series/summation that you
can solve

void print(Item* head)
{

if(head==NULL) return;
else {
cout << head->val << endl;
print(head->next);

}
}

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What about Recursion

• Assume N items in the linked
list

• Setup and solve a recurrence
relationship for the runtime

• T(n) = 1 + T(n-1); T(0) = 1

• Now unroll the recurrence
relationship to find a
series/summation that you
can solve

• = 1 + 1 + T(n-2)

• = 1 + 1 + 1 + T(n-3)

• = 1 + 1 + 1 + ... + 1 + T(0)

• = n + 1 = 𝜃(n)

void print(Item* head)
{

if(head==NULL) return;
else {
cout << head->val << endl;
print(head->next);

}
}

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summing an Array: Recursive Timeline

Each instance of rsum_it has its own len argument and sum variable

Every instance of a function has its own copy of local variables

rsum_it(data,4)

int sum=

rsum_it(data,4-1)

Time

len = 4 len = 3

len = 2 len = 1rsum_it(data,3)

int sum=

rsum_it(data,3-1)
rsum_it(data,2)

int sum=

rsum_it(data,2-1) rsum_it(data,1)

return data[0];

int main(){
int data[4] = {8, 6, 7, 9};
int size=4;
cout << rsum_it(data, size);
...

}

8

int rsum_it(int data[], int len)
{
if(len == 1)
return data[0];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

int sum = 8

return 8+data[1];
int sum = 14

return 14+data[2];
int sum = 21

return 21+data[3];

14

21

30

8 6 7 9

0 1 2 3data[4]:

800

3

2

1

4

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Head vs. Tail Recursion

• Recall: When using recursion we have to come back through and
return from each function call we made

• So we have a choice to do our work
– On our way down the recursive call sequence

• Process our element first and then recurse by passing the results to the next

• This is known as TAIL recursion since we recurse AFTER processing

• Once we hit the base case we return the answer back up through the call sequence

– On our way back up the recursive call sequence

• Recurse first and then do our processing on the way back up combining our work
with the solution from the recursion

• This is known as HEAD recursion since we recurse BEFORE processing

Tail Recursion: Process on the way down (process then recurse)
Head Recursion: Process on the way back up (recurse then process)

int data[4] = {8, 9, 7, 6};

