
1

CSCI 104
List Implementations

Mark Redekopp

David Kempe

Sandra Batista



2

Lists
• Ordered collection of items, which may contain duplicate 

values, usually accessed based on their position (index)
– Ordered = Each item has an index and there is a front and back (start 

and end)

– Duplicates allowed (i.e. in a list of integers, the value 0 could appear 
multiple times)

– Accessed based on their position ( list[0], list[1], etc. )

• What are the operations you perform on a list?

list[0]
list[1]

list[2]



3

List Operations

Operation Description Input(s) Output(s)

insert Add a new value at a particular 
location shifting others back

Index : int
Value

remove Remove value at the given location Index : int Value at location

get / at Get value at given location Index : int Value at location

set Changes the value at a given location Index : int
Value

empty Returns true if there are no values in 
the list

bool

size Returns the number of values in the 
list

int

push_back / 
append

Add a new value to the end of the list Value

find Return the location of a given value Value Int : Index



4

Implementation Options

Linked Implementations

• Allocate each item separately

• Random access (get the i-th
element) is O(___)

• Adding new items never requires 
others to move

• Memory overhead due to 
pointers

Array-based Implementations

• Allocate a block of memory to 
hold many items

• Random access (get the i-th
element) is O(___)

• Adding new items may require 
others to shift positions

• Memory overhead due to 
potentially larger block of 
memory with unused locations

val next

3 0x1c0

val next

9
0x0

NULL

0x148head 0x148 0x1c0

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

data 21



5

Singly-Linked List

Implementation Options

• Singly-Linked List

– With or without tail 
pointer

• Doubly-Linked List

– With or without tail 
pointer

• Array-based List

val next

3 0x1c0

val next

9 0x168

0x148head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

0x168tail

Doubly-Linked List
0x148

head

0x168

tail

3 0x1c0
0x0

(Null)

val nextprev

9
0x0

(Null)
0x148

val nextprev

0x148 0x1c0

3size

3size

Array-based List
7size 12cap0x200data

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

0x200 21



6

LINKED IMPLEMENTATIONS



7

Array Problems
• Once allocated an array cannot grow or shrink

• If we don't know how many items will be added we could just allocate an 
array larger than we need but…

– We might waste space 

– What if we end up needing more…would need to allocate a new array and 
copy items

• Arrays can't grow with the needs of the client 

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

30 51 52 53 54

0 1 2 3 4 5

10

21append(21) =>

Old, full array

Copy over items

0 1 2 3 4 5 6 7 8 9 10 11

Allocate new 

array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

Add new item 21



8

Motivation for Linked Lists
• Can we create a list implementation that can easily grow or 

shrink based on the number of items currently in the list

• Observation: Arrays are allocated and deallocated in LARGE 
chunks
– It would be great if we could allocate/deallocate at a finer granularity

• Linked lists take the approach of allocating in small chunks 
(usually enough memory to hold one item)

Bulk Item

(i.e. array)
Single Item

(i.e. linked 

list)



9

Note

• The basics of linked list implementations was 
taught in CS 103

– We assume that you already have basic exposure 
and practice using a class to implement a linked 
list

– We will highlight some of the more important 
concepts



10

Linked List
• Use structures/classes and pointers 

to make ‘linked’ data structures 

• A linked list is…

– Arbitrarily sized collection of values

– Can add any number of new values 
via dynamic memory allocation

– Supports typical List ADT operations:
• Insert

• Get

• Remove

• Size (Should we keep a size data member?)

• Empty

• Can define a List class to encapsulate 
the head pointer and operations on 
the list

#include<iostream>
using namespace std;

struct Item {
int val;
Item* next;

};

class List
{

public:
List();
~List();
void push_back(int v); ...

private:
Item* head_;

};

int

val

Item*

next

Item blueprint:

Rule of thumb:  Still use ‘structs’ for objects that are 

purely collections of data and don’t really have 

operations associated with them.  Use ‘classes’ when 

data does have associated functions/methods.

val next

3 0x1c0

val next

9 0x168

0x148head
0x148 0x1c0

val next

2
0x0

(Null)

0x168



11

Don't Need Classes
• Notice the class on the 

previous slide had only 1 data 
member (the head pointer)

• We don't have to use classes…
– The class just acts as a wrapper 

around the head pointer and the 
operations

– So while a class is probably the 
correct way to go in terms of 
organizing your code, for today we 
can show you a less modular, 
procedural approach 

• Define functions for each 
operation and pass it the head 
pointer as an argument

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};
// Function prototypes
void append(Item*& head, int v);
bool empty(Item* head);
int size(Item* head);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
int size1 = size(head1);
bool empty2 = empty(head2);
append(head1, 4);

}

0x0

head_

int

val

Item*

next

Item blueprint:

class List:

Rule of thumb:  Still use ‘structs’ for objects that are 

purely collections of data and don’t really have 

operations associated with them.  Use ‘classes’ when 

data does have associated functions/methods.



12

Linked List Implementation

• To maintain a linked list you need only 
keep one data value: head

– Like a train engine, we can attach any 
number of 'cars' to the engine

– The engine looks different than all the 
others

• In our linked list it's just a single pointer 
to an Item

• All the cars are Item structs

• Each car has a hitch for a following car 
(i.e. next pointer)

Each car = 

"Item"

Engine = 

"head"

0x0

NULL

head1

#include<iostream>

struct Item {
int val;
Item* next;

};

void append(Item*& head, int v);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;

}

0x0

NULL

head2



13

A Common Misconception
• Important Note:

– 'head' is NOT an Item, it is a pointer to 
the first item

– Sometimes folks get confused and think 
head is an item and so to get the location 
of the first item they write 'head->next'

– In fact, head->next evaluates to the 2nd

items address

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

head->next yields a pointer to the 2nd item!

head yields a pointer to the 1st item!

head->next



14

Append
• Adding an item (train car) to the 

back can be split into 2 cases:
– Case 1: Attaching the car to the 

engine (i.e. the list is empty and we 
have to change the head pointer)

• Changing the head pointer is a special case 
since we must ensure that change 
propagates to the caller

– Case 2: Attaching the car to another 
car (i.e. the list has other Items 
already) and so we update the next 
pointer of an Item

val next

0x0

head1

0x148

3 NULL

0x148

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
append(head1, 3);

}



15

NULL

Linked List
• Adding an item (train car) to the 

back can be split into 2 cases:
– Attaching the car to the engine (i.e. 

the list is empty and we have to 
change the head pointer)

– Attaching the car to another car (i.e. 
the list has other Items already) and 
so we update the next pointer of an 
Item

val next

3 0x1c0

val next

9
0x0

NULL

0x148

head

0x148 0x1c0

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
append(head1,3); append(head1,9);

}



16

Linked List
• Adding an item (train car) to the 

back can be split into 2 cases:
– Attaching the car to the engine (i.e. 

the list is empty and we have to 
change the head pointer)

– Attaching the car to another car (i.e. 
the list has other Items already) and 
so we update the next pointer of an 
Item

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
append(head1, 3); append(head1, 9);
append(head1, 2);

}



17

Iterating Through a Linked List
• Start from head and iterate 

to end of list
– Allocate new item and fill it in

– Copy head to a temp pointer 
(because if we modify head we 
can never recover where the list 
started)

– Use temp pointer to iterate 
through the list until we find the 
tail (element with next field = 
NULL)

– To take a step we use the line:
temp = temp->next;

– Update old tail item to point at 
new tail item

val next

3 0x1c0

val next

9
0x0

NULL

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168
0x168

0x148

temp

Given only head, we don’t know where the list ends so 

we have to traverse to find it

0x1c0

temp

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}



18

Passing Pointers "by-Value"
• Look at how the head parameter is 

passed…Can you explain it?
– Append() may need to change the value of 

head and we want that change to be visible 
back in the caller.

– Even pointers are passed by value…wait, huh?

– When one function calls another and passes a 
pointer, it is the data being pointed to that can 
be changed by the function and seen by the 
caller, but the pointer itself is passed by value.

– You email your friend a URL to a Google doc.  
The URL is copied when the email is sent but 
the document being referenced is shared.

– If we want the pointer to be changed and 
visible we need to pass the pointer by 
reference

– We choose Item*& but we could also pass an 
Item**

val next

3
0x0

NULL
0x0

head
0x148

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

0x148

void append(Item** head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(*head == NULL){
*head = newptr;

}
else {

Item* temp = *head;
// iterate to the end
...

}
}

0xbf8main



19

Passing Pointers by…

void append(Item* head, int v)
{
Item* newptr = new Item;
newptr->val = v; 
newptr->next = NULL;
if(head == 0){ head = newptr;}
else {

Item* temp = head;
...

} }

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return 

link
0xb??

a
p

p
e
n

d

3 v0xbe8

0 head0xbec

004000ca0
Return 

link
0xbf0

148

head1

…

void append(Item** head, int v)
{
Item* newptr = new Item;
newptr->val = v; 
newptr->next = NULL;
if(*head == 0){ *head = newptr;}
else {

Item* temp = head;
...

} }

148 newptr0xbe4

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return 

link
0xb??

a
p

p
e
n

d

3 v0xbe8

?0xbf8? head0xbec

004000ca0
Return 

link
0xbf0

head1

…

148 newptr0xbe4

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return 

link
0xb??

a
p

p
e
n

d

3 v0xbe8

0xbf8 head0xbec

004000ca0
Return 

link
0xbf0

head1

…

148 newptr0xbe4

148 148

int main() {
Item* head1 = 0;
append(head1, 3);

void append(Item*& head, int v)
{
Item* newptr = new Item;
newptr->val = v; 
newptr->next = NULL;
if(head == 0){ head = newptr;}
else {
Item* temp = head;
...

} }

int main() {
Item* head1 = 0;
append(head1, 3);

int main() {
Item* head1 = 0;
append(&head1, 3);

val next

3
0x0

NULL
0x0

head 148

0x148
0xbf8

Pointer 

Passed-by-

Value

Pointer 

Passed-by-

C++ 

Reference

Pointer 

Passed-by-

Pointer 

Reference



20

Arrays/Linked List Efficiency
• Arrays are contiguous pieces of memory

• To find a single value, computer only needs

– The start address 

• Remember the name of the array evaluates to 
the starting address (e.g. data = 120)

– Which element we want

• Provided as an index (e.g. [20])

– This is all thanks to the fact that items are 
contiguous in memory

• Linked list items are not contiguous

– Thus, linked lists have an explicit field to 
indicate where the next item is

– This is "overhead" in terms of memory usage

– Requires iteration to find an item or move to 
the end

Memory

100

45 31 21 04 98 73 …

104 108 112 116 120

data = 100

#include<iostream>
using namespace std;

int main()
{

int data[25];
data[20] = 7;
return 0;

}

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168



21

Using a 'for' Loop to Iterate

• Just as a note, you can use a for loop structure to iterate 
through a linked list

• Identify the three parts:
– Initialization

– Condition check

– Update statement

void print(Item* head)
{

Item* temp = head;    // init
while(temp->next){    // condition
cout << temp->val << endl;
temp = temp->next;  // update

}
}

void print(Item* head)
{

for(Item* temp = head;   // init
temp->next;         // condition
temp = temp->next)  // update

{
cout << temp->val << endl;

}
}

Note:  The condition (temp->next) is equivalent to (temp->next != NULL).  Why?



22

INCREASING EFFICIENCY OF 
OPERATIONS + DOUBLY LINKED 
LISTS



23

Adding a Tail Pointer

• If in addition to maintaining a head 
pointer we can also maintain a tail 
pointer

• A tail pointer saves us from 
iterating to the end to add a new 
item

• Need to update the tail pointer 
when… 
– We add an item to the end

• Easy, fast!

– We remove an item from the end
• _______________________

val next

2
0x0

(Null)

0x168
0x168

val next

3 0x1c0

val next

9 NULL

0x148

head

0x148 0x1c0

0x1c0

tail

0x168

tail



24

Removal

• To remove the last item, we need to update the 2nd

to last item (set it's next pointer to NULL)

• We also need to update the tail pointer

• But this would require us to traverse the full list 
requiring O(n) time

• ONE SOLUTION:  doubly-linked list

val next

5 0x1c0

val next

9 NULL

0x200 0x1c0

0x1c0

tail

val next

3 0x200

0x148

head

0x148

…



25

Doubly-Linked Lists
• Includes a previous pointer in 

each item so that we can 
traverse/iterate backwards or 
forward

• First item's previous field 
should be NULL

• Last item's next field should be 
NULL

• The key to performing 
operations is updating all the 
appropriate pointers correctly!

– Let's practice identifying this.

– We recommend drawing a picture 
of a sample data structure before 
coding each operation

#include<iostream>

using namespace std;
struct DLItem {

int val;
DLItem* prev;
DLItem* next;

};

int main()
{

DLItem* head, *tail;
};

int

val

DLItem *

next

struct Item blueprint:

DLItem *

prev

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail



26

Doubly-Linked List Add Front

• Adding to the front requires you to update…

• …Answer
– Head

– New front's next & previous

– Old front's previous

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190



27

Doubly-Linked List Add Middle

• Adding to the middle requires you to update…
– Previous item's next field

– Next item's previous field

– New item's next field

– New item's previous field

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190



28

Doubly-Linked List Add Middle

• Adding to the middle requires you to update…
– Previous item's next field

– Next item's previous field

– New item's next field

– New item's previous field

0x148

head

3 0x1c0NULL

val nextprev

9 0x1900x148

val nextprev

0x148 0x1c0

6 NULL0x190

val nextprev

0x210

12 0x2100x1c0

val nextprev

0x190



29

Doubly-Linked List Remove Middle

• Removing from the middle requires you to update…
– Previous item's next field 

– Next item's previous field

– Delete the item object

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210



30

Doubly-Linked List Remove Middle

• Removing from the middle requires you to update…
– Previous item's next field 

– Next item's previous field

– Delete the item object

0x148

head

3 0x210NULL

val nextprev

9 0x2100x148

val nextprev

0x148

0x1c0

6 NULL0x148

val nextprev

0x210



31

Doubly-Linked List Prepend

• Assume DLItem constructor:
– DLItem(int val, DLItem* next, DLItem* prev)

• Add a new item to front of doubly linked list 
given head and new value

void prepend(DLItem *& head, int n)
{
DLItem* elem = new DLItem(n, head, NULL);
head = elem;
if (head->next != NULL){
head->next->prev = head;

}
};

:



32

Doubly-Linked List Remove

• Remove item given its pointer

void remove(DLItem *& head, DLItem *splice)
{

if (splice != head){
______________________________________

} 
else {

head = ___________________________;
}
if (splice->next != NULL){

_____________________________________________;
}
delete splice;

}

:



33

Summary of Linked List 
Implementations

• What is worst-case runtime of get(i)?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?

Operation vs 
Implementation 

for Edges

Push_front Pop_front Push_back Pop_back Memory 
Overhead 
Per Item

Singly linked-list 
w/ head ptr ONLY

1 pointer
(next)

Singly linked-list 
w/ head and tail 

ptr

1 pointer
(next)

Doubly linked-list 
w/ head and tail 

ptr

2 pointers
(prev + next)



34

ARRAY-BASED IMPLEMENTATIONS



35

BOUNDED DYNAMIC ARRAY 
STRATEGY



36

A Bounded Dynamic Array Strategy
• Allocate an array of some 

user-provided size

– Capacity is then fixed

• What data members do I 
need?

• Together, think through 
the implications of each 
operation when using a 
bounded array (what 
issues could be caused 
due to it being bounded)?

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int  size() const;
void insert(int pos, 

const int& val);
void remove(int pos);
int& const  get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif

balistint.h



37

A Bounded Dynamic Array Strategy
• What data members do I 

need?

– Pointer to Array

– Current size

– Capacity

• Together, think through the 
implications of each 
operation when using a static 
(bounded) array

– Push_back:  Run out of room?

– Insert: Run out of room, invalid 
location

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos, 

const int& val);
void remove(int pos);
int const & get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const int& val);

private:
int* data_;
unsigned int size_;
unsigned int cap_;

};
#endif

balistint.h



38

Implementation
• Implement the 

following 
member 
functions

– A picture to help 
write the code

BAListInt::BAListInt (unsigned int cap)
{

}

void BAListInt::push_back(const int& val)
{

}

void BAListInt::insert(int loc, const int& val)
{

} 

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp



39

Implementation (cont.)
• Implement the 

following member 
functions

– A picture to help 
write the code

void BAListInt::remove(int loc)
{

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

balistint.cpp



40

Array List Runtime Analysis

• What is worst-case runtime of set(i, value)?

• What is worst-case runtime of get(i)?

• What is worst-case runtime of pushback(value)?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?



41

Const-ness
• Notice the get() 

functions?

• Why do we need two 
versions of get?

• Because we have two use 
cases…

– 1. Just read a value in the 
array w/o changes

– 2. Get a value w/ intention 
of changing it

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;
unsigned int size() const;
void insert(int pos, const int& val);
bool remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push_back(const int& val);

private:

};
#endif



42

Constness
// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc) 
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(const BAListInt& mylist)
{
// This calls the const version of get.
// W/o the const-version this would not compile
//  since mylist was passed as a const parameter
cout << mylist.get(0) << endl;
mylist.insert(0, 57); // won't compile..insert is non-const

}

int main()
{

BAListInt mylist;
f1(mylist);

}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data



43

Returning References

Moral of the Story:  We need both versions of get()

// ---- Recall List Member functions ------
// const version
int& const BAListInt::get(int loc) const
{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc) 
{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(BAListInt& mylist)
{
// This calls the non-const version of get
// if you only had the const-version this would not compile
//  since we are trying to modify what the 
//  return value is referencing
mylist.get(0) += 1;  // equiv. mylist.set(0, mylist.get(0)+1);
mylist.insert(0, 57); 
// will compile since mylist is non-const

}
int main()
{ BAListInt mylist;

f1(mylist); 
}

30 51 52 53 54

0 1 2 3 4 5

10

6 7

mylist

6size

8cap

data



44

UNBOUNDED DYNAMIC ARRAY 
STRATEGY



45

Unbounded Array
• Any bounded array solution runs the risk of running out of room 

when we insert() or push_back()

• We can create an unbounded array solution where we allocate a 
whole new, larger array when we try to add a new item to a full 
array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

30 51 52 53 54

0 1 2 3 4 5

10

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5 6 7 8 9 10 11

Allocate new array

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

Add new item 21

We can use the strategy of 
allocating a new array 
twice the size of the old 

array



46

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val); 
void push_back(const T& new_val);
private:

int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif



47

Activity
• What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val); 
void push_back(const T& new_val);
private:
void resize(); // increases array size
int* _data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif



48

A Unbounded Dynamic Array Strategy

• Implement the 
push_back method 
for an unbounded 
dynamic array

#include "alistint.h"

void AListInt::push_back(const int& val)
{

}

alistint.cpp



49

AMORTIZED RUNTIME



50

Example

• You love going to Disneyland.  You purchase an 
annual pass for $240.  You visit Disneyland once a 
month for a year.  Each time you go you spend $20 
on food, etc.  

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or 
averaged) over the duration of its usefulness

• Often times an operation on a data structure will 
have similar "irregular" (i.e. if we can prove the worst 
case can't happen each call) costs that we can then 
amortize over future calls



51

Amortized Run-time

• Used when it is impossible for the worst case of an operation 
to happen on each call (i.e. we can prove after paying a high 
cost that we will not have to pay that cost again for some 
number of future operations)

• Amortized Runtime = (Total runtime over k calls) / k
– Average runtime over k calls

– Use a "period" of calls from when
the large cost is incurred until the 
next time the large cost will be incurred



52

Amortized Array Resize Run-time

• What is the run-time of 
insert or push_back:
– If we have to resize?

– O(n)

– If we don't have to resize?

– O(1)

• Now compute the total 
cost of a series of 
insertions using resize by 
1 at a time

• Each new insert costs 
O(n)… not good

30 51 52 53 54

0 1 2 3 4 5

21

30 51 52 53 54

0 1 2 3 4

21push_back(21) =>

Old, full array

Copy over items

0 1 2 3 4 5

Increase old array 

size by 1

Resize by 1 strategy

30 51 52 53 54

0 1 2 3 4 5

21Copy over items

0 1 2 3 4 5

Increase old array 

size by 1

5

33

6

33push_back(33) =>



53

Amortized Array Resize Run-time
• What if we resize by adding 5 

new locations each time

• Start analyzing when the list is 
full…

– 1 call to insert will cost: n+1

– What can I guarantee about the 
next 4 calls to insert?

• They will cost 1 each because I 
have room

– After those 4 calls the next 
insert will cost: (n+5)

– Then 4 more at cost=1

• If the list is size n and full
– Next insert cost = n+1

– 4 inserts after than = 1 each = 4 total

– Thus total cost for 5 inserts = n+5

– Runtime = cost / inserts = (n+5)/5 = 
O(n)

30 51 52 54

0 1 2 … 99

21push_back(21) =>

Old, full array

Resize by 5 strategy

30 51 52 53 54

0 1 2

21Copy over items

0 1 2 … 99 100

Increase old array 

size by 5

101 102 103 104

… 99 100 101 102 103 104



54

Consider a Doubling Size Strategy

• Start when the list is full and at size n

• Next insertion will cost?
– O(n+1)

• How many future insertions will be guaranteed to be cost = 1?
– n-1 insertions 

– At a cost of 1 each, I get n-1 total cost

• So for the n insertions my total cost was 
– n+1 + n-1 = 2*n

• Amortized runtime is then:
– Cost / insertions

– O(2*n / n) = O(2) 
= O(1) = constant!!!



55

When To Use Amortized Runtime
• When should I use amortized runtime?

– When it is impossible for the worst case of an operation to 
happen on each call (i.e. we can prove after paying a high cost 
that we will not have to pay that cost again for some number 
of future operations)

– Generally, a necessary condition for using amortized analysis 
is some kind of state to be maintained from one call to the 
next (i.e. in a global variable or more often a data member of 
an object) that determines when additional work is required

• E.g. the size_ member in the ArrayList

• Over how many calls should I average the runtime?

– Determine the period between the worst case occurring (i.e. 
how many calls between the worst cases occurring)

– Average the cost over the that number of calls



56

Example

• What is the worst case 
runtime of f1()?

– 𝑇 𝑛 = σ𝑖=1
𝑛 σ𝑗=1

𝑖 𝜃(1) =

𝜃(𝑛2)

• Can the worst case 
happen each time?

– No, only every n-th time

• Amortized runtime

–
𝜃 𝑛2 +1+⋯+1

𝑛
= 𝜃(𝑛)

int n = // set somehow;
int x = n;

int f1()
{

if(x == 0){
for(int i=0; i < n; i++) {

for(int j=0; j < i; j++){
// do O(1) task

}
}
x = n;

}
else {  x--; }

}



57

Another Example
• Let's say you are writing an algorithm to 

take a n-bit binary combination (3-bit 
and 4-bit combinations are to the right) 
and produce the next binary 
combination

• Assume all the cost in the algorithm is 
spent changing a bit (define that as 1 
unit of work)

• I could give you any combination, what 
is the worst case run-time?  Best-case?

– O(n) => 011 to 100

– O(1) => 000 to 001

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



58

Another Example

• Now let's consider an object that stores an n-bit 
binary number and a member function that 
increments it (in order) w/ no other way to alter 
its value

– Starting at 000 => 001   :  cost = 1

– Starting at 001 => 010   :  cost = 2

– Starting at 010 => 011   :  cost = 1

– Starting at 011 => 100   :  cost = 3

– Starting at 100 => 101   :  cost = 1

– Starting at 101 => 110   :  cost = 2

– Starting at 101 => 111   :  cost = 1

– Starting at 111 => 000   :  cost = 3

– Total = 14 / 8 calls = 1.75

• Repeat for the 4-bit

– 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + …

– Total = 30 / 16 = 1.875

• As n gets larger…Amortized cost per call = 2

3-bit Binary

000

001

010

011

100

101

110

111

4-bit Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



59

SOLUTIONS



60

Doubly-Linked List Prepend

• Assume DLItem constructor:

– DLItem(int val, DLItem* next, DLItem* prev)

• Add a new item to front of doubly linked list 
given head and new value

void prepend(DLItem *& head,
int n)

{
DLItem* elem = new DLItem(n, head, NULL);
head = elem;
if (head->next != NULL){

head->next->prev = head;
}

};

:



61

Doubly-Linked List Remove

• Remove item given its pointer

void remove(DLItem *& head, DLItem *splice)
{

if (splice != head){
splice->prev->next = splice->next;

} 
else {

head = splice->next;
}
if (splice->next != NULL){

splice->next->prev = splice->prev;
}
delete splice;

}

:



62

Summary of Linked List 
Implementations

Operation vs 
Implementation 

for Edges

Push_front Pop_front Push_back Pop_back Memory 
Overhead 
Per Item

Singly linked-list 
w/ head ptr ONLY

Θ(1) Θ(1) Θ(n) Θ(n) 1 pointer
(next)

Singly linked-list 
w/ head and tail 

ptr

Θ(1) Θ(1) Θ(1) Θ(n) 1 pointer
(next)

Doubly linked-list 
w/ head and tail 

ptr

Θ(1) Θ(1) Θ(1) Θ(1) 2 pointers
(prev + next)

• What is worst-case runtime of get(i)? Θ(i)  

• What is worst-case runtime of insert(i, value)? Θ(i)

• What is worst-case runtime of remove(i)? Θ(i)


