CSCl 104
List Implementations

Mark Redekopp
David Kempe
Sandra Batista

i, TS(“Viterbi -

School of Engineering

* Ordered collection of items, which may contain duplicate
values, usually accessed based on their position (index)

— Ordered = Each item has an index and there is a front and back (start
and end)

— Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

— Accessed based on their position (list[0], list[1], etc.)

 What are the operations you Eerform on a{st?

e USCVlterb1®
List Operations

T S 7

insert Add a new value at a particular Index :

location shifting others back Value
remove Remove value at the given location Index : int Value at location
get / at Get value at given location Index : int Value at location
set Changes the value at a given location Index : int

Value

empty Returns true if there are no values in bool

the list
size Returns the number of values in the int

list

push_back / Add a new value to the end of the list Value
append

find Return the location of a given value Value Int : Index

i, TS(“Viterbi 9

School of Engineering

Implementation Options

Linked Implementations

head

Allocate each item separately

Random access (get the i-th
element) isO(__)

Adding new items never requires
others to move

Memory overhead due to
pointers

0x148 0x148 0x1cO
| S 0x0
3 9 NULL

val next val next

0x1cO

Array-based Implementations

data |30(51|52(53(54|10]21

Allocate a block of memory to
hold many items

Random access (get the i-th
element) isO(__)

Adding new items may require
others to shift positions

Memory overhead due to
potentially larger block of
memory with unused locations

O 1 2 3 4 5 6 7 8 9 10 11

e

Implementation Options

* Singly-Linked List

— With or without tail
pointer

* Doubly-Linked List

— With or without tail
pointer

* Array-based List

Singly-Linked List

size | 3 head |0x148 tail 0x168—i
0x148 0x1cO 0x168
0x0
3 |0x1co O |ox1ies 2 (Null)
val next val next val next
head tail Doubly-Linked List
0x148 0x168 \L size 3
0x148 0x1cO
0x0 0x0
(Null) 3 |oxico 0x148 | 9 (Null)
prev val next prev val next
Array-based List
data |0x200| Size 7 cap| 12

H

0

1 2 3 4 5 6 7 8 9 10 11

0x200 |30

51|52|53|54

10|21

e

1

LINKED IMPLEMENTATIONS

— ()5 Viterbi
Array Problems

* Once allocated an array cannot grow or shrink
* |f we don't know how many items will be added we could just allocate an
array larger than we need but...
— We might waste space

— What if we end up needing more...would need to allocate a new array and
copy items

e Arrays can't grow with the needs of the client

append(21) => [
0 1 2 3 4 5
Old, full array 30(51(52|53|54|10

O 1 2 3 4 5 6 7 8 9 10 11

————F—— e ——— T m— T ———pm—— 4 ———r——— T ———p———p———————4

Allocate new
array

Copy over items [30|51|52(53|54 (10

Add new item |30|51|52|53|54|10(21

Motivation for Linked Lists

* Can we create a list implementation that can easily grow or
shrink based on the number of items currently in the list

* Observation: Arrays are allocated and deallocated in LARGE
chunks
— It would be great if we could allocate/deallocate at a finer granularity

* Linked lists take the approach of allocating in small chunks
(usually enough memory to hold one item)

Bulk Item
(i.e. array)

Single Item

(i.e. linked
list)

* The basics of linked list implementations was
taught in CS 103

— We assume that you already have basic exposure
and practice using a class to implement a linked
list

— We will highlight some of the more important
concepts

i, TS(“Viterbi

Linked List

* Use structures/classes and pointers
to make ‘linked’ data structures

#include<iostream>
using namespace std;

struct Item {

School of Engineering

e Alinked list is... int val; Item blueprint:
o _ Item* next; int | Tem* |
— Arbitrarily sized collection of values }; | val | next |
— Can add any number of new values class List
via dynamic memory allocation {
))) public:
— Supports typical List ADT operations: List();
* Insert ~llsiE)2
void push _back(int v); ...
* Get private:
e Remove } Item* head ;
* Size (Should we keep a size data member?) ’
* Empty
* Can define a List class to encapsulate| head |ox14s 0x148 0x1c0 Ox168
. . 0x0
the head pointer and operations on ———> 3 |0x1co 9 |ox168 2 |
the list val next val next val next

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have
operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

B ()5 C Viterbi
Don't Need Classes

#include<iostream>
H using namespace std; Item bl int:
* Notice the class on the A o
: : int val; :] !
previous slide had only 1 data Tremt naxts el loren.

member (the head pointer) s

// Function prototypes

void append(Item*& head, int v);
« We don't have to use classes... bool empty(Item* head);

. int size(Item* head);

— The class just acts as a wrapper

around the head pointer and the ?{nt main()
operations Item* headl = NULL;
Item* head2 = NULL;

— So while a class is probably the it Sl = Sl L)
correct way to go in terms of bool empty2 = empty(head2);
.. append(headl, 4);
organizing your code, for today we }
can show you a less modular,

class List:
procedural approach head.
* Define functions for each 0x0
operation and pass it the head
. . Stillu j
Rule of thumb: Still use ‘structs’ for objects that are
pOInter dasS an argument purely collections of data and don’t really have

operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

i, TS(“Viterbi 2

School of Engineering

Linked List Implementation

#tinclude<iostream>

. . . . struct Item {
* To maintain a linked list you need only e vl

keep one data value: head }_Item* next;

— Like a train engine, we can attach any

| | . void append(Item*& head, int v);
number of 'cars' to the engine

int main()

— The engine looks different than all the (

others Item* headl
Item* head2

NULL ;
NULL ;

* Inour linked list it's just a single pointer
to an Item }

e All the cars are Item structs

* Each car has a hitch for a following car

(i.e. next pointer) head1l
0x0
NULL
=YY
Engine = Each car = X0
"head" "ltem" NULL

head?2

i, TS(“Viterbi -

A Common Misconception

* |mportant Note:

— 'head'is NOT an Item, it is a pointer to
the first item

— Sometimes folks get confused and think
head is an item and so to get the location
of the first item they write 'head->next'

head
— Infact, head->next evaluates to the 2 [72
items address head->next
0x148 0x1c0 0x168
| 0x0
3 ||ox1co | O |ox168 2 (Null)
val next val next val next

head->next yields a pointer to the 2"d item!
head yields a pointer to the 1st item!

i, TS(“Viterbi

* Adding an item (train car) to the
back can be split into 2 cases:

— Case 1: Attaching the car to the
engine (i.e. the list is empty and we
have to change the head pointer)

* Changing the head pointer is a special case
since we must ensure that change
propagates to the caller

— Case 2: Attaching the car to another
car (i.e. the list has other Items
already) and so we update the next
pointer of an Item

School of Engineering

#include<iostream>
using namespace std;
struct Item {

int val;

Item* next;

}s

void append(Item*& head, int v)
{
if(head == NULL){
head = new Item;
head-»>val = v; head->next = NULL;
}
else {...}

}

int main()

{
Item* headl
Item* head2

NULL;
NULL;

append(headl, 3);
}

B

0x148
3 | NULL
val next

i, TS(“Viterbi 9

Linked List

School of Engineering

#include<iostream>
* Adding an item (train car) to the ey renrece S
I . int val;
back can be split into 2 cases: Tremt noxts
— Attaching the car to the engine (i.e. v
the list is empty and we have to ‘{’°id append(Ttem=& head, Intiv)
change the head pointer) if(head == NULL){
. . head = new Item;
— Attaching the car to another car (i.e. head->val = v; head->next = NULL;
: }
the list has other Items already) and else {...}
so we update the next pointer of an ¥
ltem int main()
{
Item* headl = NULL;
Item* head2 = NULL;
append(head1,3); append(headl,9);
}

head
0x148 { 0x148 0x1c0
0x0
E > 3 | 0x1c0 9 UL
% val next val next
e _

i, TS(“Viterbi

School of Engineering

Linked List

#tinclude<iostream>

* Adding an item (train car) to the | using nanespace std;

struct Item {

back can be split into 2 cases: int val;

Item* next;

— Attaching the car to the engine (i.e. g

the list is empty and we have to void append(Item*& head, int v)
. {
change the head pointer) if(head == NULL){
.) head = new Item;
— Attaching the car to another car (i.e. Neersvall = wa ERtlesneds = [ULLs
the list has other Items already) and - (.3
so we update the next pointer of an }
ltem int main()
{
Item* headl = NULL;
Item* head2 = NULL;

append(headl, 3); append(headl, 9);
append(headl, 2);

-

head

0x148 0x148 0x1c0 Y\ (oxi6s
0x0
ﬂ > 3 | 0x1co O |oxi68 2 (Null
\»val next val nextAJ \ val next

i, TS(“Viterbi -

e Start from head and iterate Ttem* newptr = new Ttem;
to end of list

School of Engineering

Iterating Through a Linked List

void append(Item*& head, int v)
{

newptr->val = v; newptr->next = NULL;

if(head == NULL){

Allocate new item and fill it in } head = newptr;

Copy head to a temp pointer diie;* R ——

(because if we modify head we // iterate to the end

can never recover where the list y

started) ;

Use temp pointer to iterate head

through the list until we find the b

tail (element with next field = 0x148 0X1CO o 1o OXI6B
NULL 3 Toush {0 [2 170
To take a step we use the line: val next val next val next
temp = temp->next; I I

Update old tail item to point at 0x148 0x1c0

new tail item temp temp

Given only head, we don’t know where the list ends so
we have to traverse to find it

i, TS(“Viterbi

School of Engineering

Passing Pointers "by-Value"

. 3 £ 3 .
e Look at how the head parameter is ?{/01d append(Item*& head, int v)

passed...Can you explain it? Item* newptr = new Item;

newptr->val = v; newptr->next = NULL;
— Append() may need to change the value of

head and we want that change to be visible iféhe:d == NUtL?{
back in the caller. } sad = NEWPEr
— Even pointers are passed by value...wait, huh? else {
) Item* temp = head;
— When one function calls another and passes a // iterate to the end
pointer, it is the data being pointed to that can
be changed by the function and seen by the))

caller, but the pointer itself is passed by value.

— You email your friend a URL to a Google doc. void append(Item** head, int v)
The URL is copied when the email is sent but {

the document being referenced is shared. Item* newptr = new Item;
. newptr->val = v; newptr->next = NULL;
— If we want the pointer to be changed and

visible we need to pass the pointer by if(*head == NULL){
*head = newptr;
reference }
— We choose Item*& but we could also pass an else {
% % Item* temp = *head;
Item head // iterate to the end
nea 0x148 ..
main | oubrs 0%\3x148 3 | 00 }
N NULL }

val next

I (S C Viterbi (2
Passing Pointers by...

School of Engineering

int main() {
Item* headl

0;

Pointer

Passed-by-

append(headl, 3);

Value

head 148
Oxbf8 &e&‘“g 3 | OO
. NULL
val next
. . Pointer . . Pointer
int main() { int main() {
Item* headl = ©; Paséeiby' Ttem* headl = ©; Pass.e‘f'by'
append(headl, 3); append(&headl, 3); eSS
2l > 33 Reference ppend() Reference

void append(Item* head, int v)

{

Item* newptr
newptr->val
newptr->next

new Item;

Vs

NU

LL;

if(head == 0){ head =

else {

Item* temp = head;

newptr;}

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;

if(head
else {

Item* temp = head;

0){ head = newptr;}

}}...

void append(Item** head, int v)
{

Item* newptr = new Item;
newptr->val = v;

newptr->next = NULL;

if(*head == 0){ *head = newptr;}
else {

Item* temp = head;

}}...

}}
Stack Area of RAM Stack Area of RAM

Oxbe4 148 newptr Oxbe4 148 newptr

g Oxbe8 3 Vv § Oxbe8 3 v

§ Oxbec 0 148_ head § Oxbec ?0xbf8? head
OxbfO | o0o4000ca0 | "°" OxbfO | 0o4000ca0 | "°"

—] Oxbf4 ~ Oxbf4

2 | oxbrfs 0 head1 | | £ [oxbf8 0/148]| head1q-
Oxb?? | 00400120 | Reu™ Oxb?? | 00400120 | F¢4"

Stack Area of RAM
Oxbe4 148 newptr
£ |oxbes 3 v
% Oxbec Oxbf8 head
OxbfO | o0o4000ca0 | "°"
_ | Oxbf4
Z | oxbfs 0 1148| head1
Oxb?? | 00400120 | R&u"

i, TS(“Viterbi

Arrays/Linked List Efficiency

e Arrays are contiguous pieces of memory

* To find a single value, computer only needs
— The start address

* Remember the name of the array evaluates to
the starting address (e.g. data = 120)

— Which element we want

* Provided as an index (e.g. [20])

— This is all thanks to the fact that items are

contiguous in memory

e Linked list items are not contiguous

Thus, linked lists have an explicit field to
indicate where the next item is

This is "overhead" in terms of memory usage

Requires iteration to find an item or move to
the end

School of Engineering

#include<iostream>
using namespace std;

int main()

{
int data[25];
data[20] = 7;
return 9;

}

data =100

100 104 108 112 116 120

45312110498 | 73] ...

Memory
head
0x148
0x148 0x1c0 0x168
0x0
3 |ox1co O |oxi68 2 (Null

val

next val next

val

next

i, TS(“Viterbi -«

School of Engineering

Using a 'for' Loop to lterate

e Just as a note, you can use a for loop structure to iterate
through a linked list

* |dentify the three parts:
— Initialization
— Condition check
— Update statement

void print(Item* head) void print(Item* head)
{ {
Item* temp = head; // init for(Item* temp = head; // init
while(temp->next){ // condition temp->next; // condition
cout << temp->val << endl; temp = temp->next) // update
temp = temp->next; // update {
} cout << temp->val << endl;
} }
}

Note: The condition (temp->next) is equivalentto (temp->next != NULL). Why?

INCREASING EFFICIENCY OF
OPERATIONS + DOUBLY LINKED
LISTS

i, TS(“Viterbi)

Adding a Tail Pointer

 |f in addition to maintaining a head ™ l l
. . . . 0x148 Ox1cO 0x168
pointer we can also maintain a tail
. t 0x148 0x1cO Ox168 O_Jél._G? _____
poInter 3 [ouco}—>{ 9 Mo [2 [ih !
* Atail pointer saves us from val next val next = val next
iterating to the end to add a new
item
* Need to update the tail pointer
when...
— We add an item to the end
* Easy, fast!

— We remove an item from the end

Removal

* To remove the last item, we need to update the 2"
to last item (set it's next pointer to NULL)

* We also need to update the tail pointer

e But this would require us to traverse the full list

requiring O(n) time
e ONE SOLUTION: doubly-linked list

head

0x148

0x148

3 |0x200

0x200

tail

0x1cO

0x1cO

val next

5 |oxico

9

NULL

val next

val

next

Includes a previous pointer in
each item so that we can
traverse/iterate backwards or
forward

First item's previous field
should be NULL

Last item's next field should be
NULL

The key to performing
operations is updating all the
appropriate pointers correctly!
— Let's practice identifying this.
— We recommend drawing a picture

of a sample data structure before
coding each operation

#tinclude<iostream>

using namespace std;
struct DLItem {
int val;
DLItem* prev;
DLItem* next;

- 00000000 USCViterbi@
Doubly-Linked Lists

School of Engineering

struct Item blueprint:

}s

int main()

{

DLItem* head, *tail;

}s

head

0x148
0x148 0x1c0

NULL | 3 |oxico[Z]ox148| 9 |0x210

N
prev. val next prev. val next

tail

0x210

Oi%p
Ox1cO| 6 |NULL
prev val next

i, TS(“Viterbi

* Adding to the front requires you to update...

School of Engineering

Doubly-Linked List Add Front

JAnswer

— Head

— New front's next & previous

— Old front's previous

head
0x148

0x190

12

prev

val

next

: 0x148

0x1c0 0x210
NULL | 3 |0Ox1cO 0x148 | 9 |0x210 Ox1cO| 6 ([NULL
prev. val next prev. val next prev. val next

i, TS(“Viterbi 2

School of Engineering

Doubly-Linked List Add Middle

 Adding to the middle requires you to update...
— Previous item's next field
— Next item's previous field
— New item's next field
— New item's previous field

0x190
head 12
0x148 prev val next
0x148 0x1cO @ 0x210
> NULL 3 |0x1cO 0x148 9 0X210\ 0x1cO 6 NULL
N

prev. val next prev. val next prev. val next

i, TS(“Viterbi

 Adding to the middle requires you to update...

School of Engineering

Doubly-Linked List Add Middle

Previous item's next field

Next item's previous field

New item's next field

New item's previous field

head

0x148

0x190

0Ox1cO

12

0x210

0x148 0x1c0
NULL | 3 |0x1cO 0x148 | 9 |0x190
prev. val next prev. val next

prev

val

next

0x210
0x190 | 6 |NULL
prev. val next

i, TS(“Viterbi

School of Engineering

Doubly-Linked List Remove Middle

Removing from the middle requires you to update...

— Previous item's next field

— Next item's previous field

— Delete the item object

head

0x148

0x148

0x1cO

0x210

NULL

0Ox1cO

pd

0x148

0x210

0Ox1cO

NULL

prev

val

next

prev

val

next

prev

val

next

i, TS(“Viterbi

School of Engineering

Doubly-Linked List Remove Middle

Removing from the middle requires you to update...
— Previous item's next field
— Next item's previous field

— Delete the item object

head

0x148

0x148

0x210

NULL

0x210

0x148

NULL

prev

val

next

prev

val

next

* Assume DLItem constructor:
— DLItem(int val, DLItem* next, DLItem* prev)

 Add a new item to front of doubly linked list
given head and new value

void prepend(DLItem *& head, int n)
{
DLItem* elem = new DLItem(n, head, NULL);
head = elem;
if (head->next != NULL){
head->next->prev = head;

}
}s

Doubly-Linked List Remove

* Remove item given its pointer

void remove(DLItem *& head, DLItem *splice)

{
if (splice != head){

}

else {
head =

}
if (splice->next != NULL){

¥

delete splice;

. B JSC Viterbi (22
Summary of Linked List s

Implementations
Operation vs Push_front | Pop_front Push_back Pop_back Memory
Implementation Overhead
for Edges Per Item
Singly linked-list 1 pointer
w/ head ptr ONLY (next)
Singly linked-list 1 pointer
w/ head and tail (next)
ptr
Doubly linked-list 2 pointers
w/ head and tail (prev + next)
ptr

* What is worst-case runtime of get(i)?
 What is worst-case runtime of insert(i, value)?
 What is worst-case runtime of remove(i)?

ARRAY-BASED IMPLEMENTATIONS

BOUNDED DYNAMIC ARRAY
STRATEGY

A Bounded Dynamic Array Strategy

* Allocate an array of some
user-provided size

— Capacity is then fixed

e What data members do |
need?

* Together, think through
the implications of each
operation when using a
bounded array (what
issues could be caused
due to it being bounded)?

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;

unsigned int size() const;

void insert(int pos,

const int& val);

void remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push back(const int& val);
private:

};
#tendif

balistint.h

A Bounded Dynamic Array Strategy

* What data members do |
need?
— Pointer to Array
— Current size
— Capacity

e Together, think through the
implications of each
operation when using a static
(bounded) array
— Push_back: Run out of room?

— Insert: Run out of room, invalid
location

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {

public:
BAListInt(unsigned int cap);

bool empty() const;

unsigned int size() const;
void insert(int pos,

const int& val);

void remove(int pos);

int const & get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push back(const int& val);
private:

int* data_;

unsigned int size_;

unsigned int cap_;

};
#tendif

balistint.h

Implementation

¢ Implement the BAListInt::BAListInt (unsigned int cap)
following {
member }
functions \éoid BAListInt::push_back(const int& val)

— A picture to help
write the code

O 1 2 3 4 5 6 7

30[51|52|53|54]|10 l i }
______ void BAListInt::insert(int loc, const int& val)

{

} balistint.cpp

Implementation (cont.)

* Implement the

following member

functions

— A picture to help
write the code

30

51

void BAListInt::remove(int loc)

{

balistint.cpp

Array List Runtime Analysis

 What is worst-case runtime of set(i, value)?
 What is worst-case runtime of get(i)?

 What is worst-case runtime of pushback(value)?
 What is worst-case runtime of insert(i, value)?

 What is worst-case runtime of remove(i)?

i, TS(“Viterbi

School of Engineering

Const-ness

Notice the get()
functions?

Why do we need two
versions of get?

Because we have two use
cases...

— 1. Just read a value in the
array w/o changes

— 2. Get a value w/ intention
of changing it

#ifndef BALISTINT_H
#define BALISTINT_H

class BAListInt {
public:
BAListInt(unsigned int cap);

bool empty() const;

unsigned int size() const;

void insert(int pos, const int& val);
bool remove(int pos);

int& const get(int loc) const;
int& get(int loc);

void set(int loc, const int& val);
void push_back(const int& val);
private:

};
#tendif

i, TS(“Viterbi

School of Engineering

Constness

{

}

{

// ---- Recall List Member functions ------
// const version

int& const BAListInt::get(int loc) const

{ return data_[i]; }

// non-const version

int& BAListInt::get(int loc)

{ return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void fl(const BAListInt& mylist)

// This calls the const version of get.

// W/o the const-version this would not compile

// since mylist was passed as a const parameter

cout << mylist.get(@) << endl;

mylist.insert(@, 57); // won't compile..insert is non-const

int main()

BAListInt mylist;
fl(mylist);

mylist
size [:::]
cap [8]
data |_—_|

53

54

10

i, TS(“Viterbi

Returning References

{

{

}
{
}

// ---- Recall List Member functions ------
// const version

int& const BAListInt::get(int loc) const

{ return data_[i]; }

// non-const version
int& BAListInt::get(int loc)

return data_[i]; }

void BAListInt::insert(int pos, const int& val);

// ---- Now consider this code ------
void f1(BAListInt& mylist)

// This calls the non-const version of get

// if you only had the const-version this would not compile
// since we are trying to modify what the

// return value is referencing

mylist.get(@) += 1; // equiv. mylist.set(@, mylist.get(0)+1);
mylist.insert(Q, 57);

// will compile since mylist is non-const

int main()

BAListInt mylist;
fl(mylist);

School of Engineering

mylist
size [:::]
cap [8]
data |_—_|

30|51(52

53

54

10

Moral of the Story: We need both versions of get()

UNBOUNDED DYNAMIC ARRAY
STRATEGY

i, TS(“Viterbi

Unbounded Array

School of Engineering

 Any bounded array solution runs the risk of running out of room

when we insert() or push_back()

 We can create an unbounded array solution where we allocate a
whole new, larger array when we try to add a new item to a full

array

push_back(21) =>

Old, full array

0

21

1

2

3

4

30

51

52

53

54

10

0

1

2

3

4

5

6

7

8

osmenewaray | | | | L L AL L L1 L

Copy over items

Add new item

0

1

2

3

4

5

30

51

52

53

54

10

0

1

2

3

4

5

30

51

52

53

54

10

21

We can use the strategy of
allocating a new array
twice the size of the old
array

i, TS(“Viterbi

School of Engineering

Activity

 What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const;
void insert(int loc, const int& val);
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);
void set(int loc, const int& val);
void push_back(const T& new_val);
private:

int* data;
unsigned int _size;
unsigned int _capacity;

};

// implementations here
#endif

i, TS(“Viterbi

School of Engineering

Activity

 What function implementations need to change if any?

#ifndef ALISTINT_H
#define ALISTINT_H

class AListInt {
public:
bool empty() const;
unsigned int size() const:
void insert(int loc, const int& valj;
void remove(int loc);
int& const get(int loc) const;
int& get(int loc);

vnid cot/lint 1ac ranct intl a1\

\ J 77
void push back(const T& new val);
private:

void resize(); // increases array size
int* _data;

unsigned int _size;

unsigned int _capacity;

};

// implementations here
#endif

* Implement the
push_back method
for an unbounded
dynamic array

#include "alistint.h"

void AListInt::push_back(const int& val)

{

alistint.cpp

AMORTIZED RUNTIME

Example

* You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend $S20
on food, etc.

— What is the cost of a visit?

* Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

e Often times an operation on a data structure will
have similar "irregular” (i.e. if we can prove the worst
case can't happen each call) costs that we can then
amortize over future calls

Amortized Run-time

* Used when it is impossible for the worst case of an operation
to happen on each call (i.e. we can prove after paying a high
cost that we will not have to pay that cost again for some
number of future operations)

 Amortized Runtime = (Total runtime over k calls) / k

— Average runtime over k calls e

— Use a "period" of calls from when
the large cost is incurred until the
next time the large cost will be incurred

20

15

Runtime

10

5

0 Illl‘llll EEENEEEN
1 3 5 7 9 11 13 15 17 19

Call Sequence

i, TS(“Viterbi 2

School of Engineering

Amortized Array Resize Run-time

What is the run-time of
insert or push_back:

— If we have to resize?

— 0O(n)

— If we don't have to resize?

— 0(1)

Now compute the total
cost of a series of
insertions using resize by
1 at a time

Each new insert costs
O(n)... not good

push_back(21) => |21

Old, full array 30(51|52]|53

Increase old array
size by 1 :

Copy over items 30(51|52|53|54]|21

push_back(33) => |33

Increase old array
size by 1

Copy over items 30(51|52(53|54|21|33

Resize by 1 strategy

i, TS(“Viterbi -«

School of Engineering

Amortized Array Resize Run-time

 What if we resize by adding 5
new locations each time

e Start analyzing when the list is
full...

— 1 call to insert will cost: n+1
— What can | guarantee about the
next 4 calls to insert?

* They will cost 1 each because |
have room

— After those 4 calls the next
insert will cost: (n+5)

— Then 4 more at cost=1

e If the listis size n and full
— Next insert cost = n+1
— 4 inserts after than = 1 each =4 total
— Thus total cost for 5 inserts = n+5

— Runtime = cost / inserts = (n+5)/5 =
O(n)

push_back(21) =>|?2!

O 1 2 .. 99
Old, full array 30|51 |52 54 ‘
O 1 2 99 100101 102 103 104

Increase old array
size by 5

0 1 2
Copy over items 30|51|52|53|54|21

. 99 100101 102 103 104

L

Resize by 5 strategy

Resize by 5 Strategy

30

25

20

15

s Cost

10 7 —4—Capacity

9 11 13 15 17 19 21 23 25

Number of Calls to Insert

i, TS(“Viterbi

School of Engineering

Consider a Doubling Size Strategy

e Start when the list is full and at size n

e Nextinsertion will cost?
— O(n+1)

* How many future insertions will be guaranteed to be cost =17

— n-1insertions

— At a cost of 1 each, | get n-1 total cost

e So for the n insertions my total cost was

— n+l+n-1=2%n
e Amortized runtime is then:

— Cost / insertions
— O(2*n/n)=0(2)
= O(1) = constant!!!

45
40
35
30
25

20 +

15
10

Doubling Resize Strategy

2 4 6 810121416182022242628303234363840

Number of Calls to Insert

. Cost

== Capacity

i, TS(“Viterbi -«

School of Engineering

When To Use Amortized Runtime

e When should | use amortized runtime?

— When it is impossible for the worst case of an operation to
happen on each call (i.e. we can prove after paying a high cost
that we will not have to pay that cost again for some number
of future operations)

— Generally, a necessary condition for using amortized analysis
is some kind of state to be maintained from one call to the
next (i.e. in a global variable or more often a data member of
an object) that determines when additional work is required

* E.g.thesize_ member in the ArrayList

* Over how many calls should | average the runtime?

— Determine the period between the worst case occurring (i.e.
how many calls between the worst cases occurring)

— Average the cost over the that number of calls

Example

e What is the worst case

runtime of f1()?
~T() =X, Xj=, 0() =

6(n?%)

* Can the worst case
happen each time?

— No, only every n-th time

e Amortized runtime

6(n?)+1+-+1

n

int n = // set somehow;
int x = n;

int f1()
{
if(x 0){
for(int i=0; i < n; i++) {
for(int j=0; j < i; j++){
// do 0(1) task
}

}
X
}

else { x--; }

=n;

= 0(n)

i, TS(“Viterbi s

School of Engineering
Another Example
* Let's say you are writing an algorithm to
000

take a n-bit binary combination (3-bit 0000
and 4-bit combinations are to the right) 001 0001
and produce the next binary 010 0010
combination 011 0011

e Assume all the cost in the algorithm is — JLILO
spent changing a bit (define that as 1 e —
unit of work) LS —

111 0111

* | could give you any combination, what
is the worst case run-time? Best-case?

— O(n)=>011to0 100
— O(1) => 000 to 001

1000
1001
1010
1011
1100
1101
1110
1111

i, TS(“Viterbi

* Now let's consider an object that stores an n-bit
binary number and a member function that
increments it (in order) w/ no other way to alter

Another Example

its value

Starting at 000 => 001
Starting at 001 => 010
Starting at 010 => 011
Starting at 011 => 100
Starting at 100 => 101
Starting at 101 => 110
Starting at 101 => 111
Starting at 111 => 000

* Repeat for the 4-bit
1+2+1+3+1+2+1+4+ ..

Total =30/ 16 =1.875
* Asn gets larger...Amortized cost per call =2

: cost=1
: cost=2
: cost=1
: cost=3
: cost=1
: cost=2
: cost=1
: cost=3
Total =14 / 8 calls = 1.75

3-bit Binary

000
001
010
011
100
101
110
111

School of Engineering

4-bit Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

SOLUTIONS

e Assume DLItem constructor:

— DLItem(int val, DLItem™ next, DLItem™ prev)

 Add a new item to front of doubly linked list
given head and new value

void prepend(DLItem *& head,
int n)
{
DLItem* elem = new DLItem(n, head, NULL);
head = elem;
if (head->next != NULL){
head->next->prev = head;
}
¥

i, TS(“Viterbi

School of Engineering

Doubly-Linked List Remove

* Remove item given its pointer

void remove(DLItem *& head, DLItem *splice)
{
if (splice != head){
splice->prev->next = splice->next;
}
else {
head = splice->next;
}
if (splice->next != NULL){
splice->next->prev = splice->prev;
}

delete splice;

USC Viterbi

Summary of Linked List

School of Engineering

Implementations
Operation vs Push_front | Pop_front Push_back Pop_back Memory
Implementation Overhead
for Edges Per Item
Singly linked-list ©(1) ©(1) O(n) O(n) 1 pointer
w/ head ptr ONLY (next)
Singly linked-list ©(1) O(1) O(1) O(n) 1 pointer
w/ head and tail (next)
ptr
Doubly linked-list ©(1) ©(1) O(1) ©(1) 2 pointers
w/ head and tail (prev + next)
ptr

* What is worst-case runtime of get(i)? O(i)

 What is worst-case runtime of insert(i, value)? O(i)

 What is worst-case runtime of remove(i)? O(i)

