CSCI 104
Copy Semantics

Mark Redekopp
David Kempe

Revised: 01/22/2020



R (S Viterbi (2
Review from CS 103 [1]

class Complex

 What is the correct prototype for ¢

the copy constructor call when ¢3 | Peomioxe);
is created in the code to the right? Selpie(eouale [y CoLlie )2
// What constructor definition do I
_ Complex(Complex); // need for c3's declaration below
private:
doubl 1, imag;
— Complex(const Complex &) e TR R

int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl);




Review from CS 103 [2]

Which function? Default Versions

* For each of the following,  What kind of copy does the
identify whether the copy default copy constructor
constructor is called or the and assignment operator
assignment operator perform?

— Complex c1;
Complex c2 = cl;

— Complex c1;
Complex c2(cl);

class MyArray
— Complex cl1l, c2; {
c2 = C1; private:

int* data; // ptr to dynamic array
size t len;

};




R (]S C Viterbi _©
Review from CS 103 [3]

State the Rule of 3

The rule of 3:

School of Engineering

Assignment Operator Specifics?

What extra considerations does the
assignment operator need to handle
vs. the copy constructor?

What should operator= return?

class MyArray
{

private:
int* data; // ptr to dynamic array

};

MyArray& operator=(const MyArray& other)
{




Copy constructors and assignment operators

COPY SEMANTICS



d1is implicitly
passed to shuffle()

USC Viterbi 9

School of Engineering

this Pointer

How do member functions know which

object’s data to be operating on?

d1 is implicitly passed via a special pointer

call the 'this' pointer

#include<iostream>
#tinclude “deck.h”

int main(int argc, char *argv[]) {
Deck di, d2;
dl.shuffle();

~.

cards[52] |137|21| 4 | 9 [16[43|20|39

top_index 0

d2

cards[52] 141|27| 8 |39|25| 4 |11|17

dl

top_index 1

.

#include<iostream>
#include “deck.h”

void Deck::shuffle()
{
cut(); // calls cut()
// for this object
for(i=0; i < 52; i++){
int r = rand() % (52-i);

int temp = cards[r];
cards[r] = cards[i];
cards[i] = temp;

}

} Actual code you write

h

~—+ | ddoiayod

ddo»o8p

IS int main() { Deck di;

dl.shuffle();

}
void Deck::shuffle(Deck *this)

{
this->cut(); // calls cut()
// for this object
for(i=0; i < 52; i++){
int r = rand() % (52-1i);
int temp = this->cards[r];
this->cards[r] this->cards[i];
this->cards[i] temp;
}
}

Compiler-generated code

ddo»o8p




i, TS(“Viterbi -

Another Use of 'this’

class Student {

° Thls can be used to pg:i(ij;rzlt(str'ing name, int id, double gpa);
resolve scoping B PR
. . . . rivate:
issues with similar " tring nane;
int id;
named variables |, double gpa;

- ExerCise: thiS_SCOpe Student: :Student(string name, int id, double gpa)

{ // which is the member and which is the arg?
name = name; id = id; gpa = gpa;

}

Student: :Student(string name, int id, double gpa)
{ // Now it's clear

this->name = name;

this->id = id;

this->gpa = gpa;
}




Struct/Class Assignment

* Assigning one struct or class object to another will
perform an element by element copy of the source

struct/class to the destination struct/class

#include<iostream>
using namespace std;

enum {CS, CECS };

struct student {
char name[80];
int id;
int major;
}s
int main(int argc, char *argv[])
{
student s1,s2;
strncpy(sl.name,”Bill”,80);
sl.id = 5; sl.major = CS;
s2 = sl;
return 9;

0x00 ‘B’
0x01 4’
Ox4F 00
0x50 5
0x54 1
B
i
00
5
1

name

major
—

name

major
—

sl

s2



— 5 Viterbi >
Multiple Constructors

. class Student {
¢ Can have mUItlpIe public:
. Student(); // Constructor 1
COﬂStrUCtOrS W|th Student(string name, int id, double gpa);
// Constructor 2 0
1 1 ~Student(); // Destructor =
different argument lists e e 5
int get_id(); =3
double get _gpa(); ol
void set _name(string name);
void set_id(int id);
void set_gpa(double gpa);
#include<iostream> private:
#include “student.h” SErliy IR
int main() int _id;
{ double _gpa;
Student s1; // calls Constructor 1 }s
string myname;
cin >> myname; Student: :Student()
sl.set_name(myname); {
sl.set _id(214952); _name = “”, _id = @; _gpa = 2.0; 0
sl.set_gpa(3.67); ¥ g_
Student s2(myname, 32421, 4.0); Student::Student(string name, int id, double gpa) @
// calls Constructor 2 { =
} _name = name; _id = id; _gpa = gpa; S
}




i, TS(“Viterbi

School of Engineering

Copy Constructors

Write a prototype for the constructor that
would want to be called by the red line of
code

Realm of Reasonable Answers:

We want a constructor that will build a
new Complex object (c3) by making a
copy of another (c1)

class Complex

{
public:

Complex();
Complex(double r, double i);

// What constructor definition do I
// need for c3's declaration below

private:
double real, imag;

};

int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl);




i, TS(“Viterbi )

School of Engineering

Copy Constructors

class Complex

* Write a prototype for the {
constructor that would wantto be | "comioxo;
Ca”ed by the red “ne Of COde Complex(double r, double i);

// What constructor definition do I

 Realm of Reasonable Answers: // need for c3's declaration below
— Complex(Complex); private: .
double real, imag;
* We will see that this can't be right... b5

int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl);

— Complex(const Complex &)

 Best! (Making a copy shouldn't
change the input argument, thus
"const')

 We want a constructor that will
build a new Complex object (c3) by
making a copy of another (c1)



i, TS(“Viterbi 2

School of Engineering

Assignment & Copy Constructors

« C++ compiler automatically generatesa | ci@ss Complex

{
default copy constructor public:
. . Complex(int r, int 1i);
— Constructor called when an object is allocated // compiler will provide by default:
and initializes the object to be a copy of // Complex(const Complex& );
another object of the same type // Complex& operator=(const Complex&);
~Complex()
— Signature would look like private: .
Complex(const Complex &); }.d"“ble TRk AR lass Complée
— Called by either of the options shown in the int real_
code int main() int imag_

— Simply performs an element by element copy { Complex c1(2,3), c2(4,5)

e C++ compiler automatically generates a Complex c3(c1); // copy constructor
default assignment function Complex c4 = c1; // copy constructor

c4 = c2; // default assignment oper.

— Called when you assign to an object that is // c4.operator=(c2)

already allocated (memory already exists)
— Simply performs an element by element copy ’ m m
— Complex& operator=(const Complex &); int real_ int real_

int imag_ l int imag_




i, TS(“Viterbi -

School of Engineering

Assignment & Copy Constructors

* C++ compiler automatically generates a Elass MyArray
default copy constructor public:
] ] MyArray(int d[], int num); //normal
* C++ compiler automatically generates a ~MyArray () ;

. . int len; int *dat;
default assignment function
. . }s
e See picture below of what al looks like as | /7 normal constructor
it is constructed l:ElyAr'r‘ay: :MyArray(int d[], int num)
dat = new int[num]; len = num;
for(int i=0; i < len; i++){
dat[i] = d[i];

¥
¥
int main()
{
vals 0 1 2 3 int vals[] = {9,3,7,5};
913|715 MyArray al(vals,4);
MyArray a2(al); // calls default copy

MyArray a3 = al; // calls default copy

4 = al; // calls default assignment
0x200 0 1 2 3 > .
0x200|__Q_ 12 __?3_,' X // how are the contents of a2, a3, a4
! ] } ] ' 913|715 // related to al
coodo_ 11 1 }

After 'new’ After constructor




i, TS(“Viterbi

School of Engineering

Assignment & Copy Constructors

vals 0 1 2 3
93|75
A7l allen 4
al.dat | 0x200 0x200
0o 1 2 3
93|75
A2 a2len 4 After constructor
a2.dat 0x200 [
/\:3 a3.len 4
a3.dat| 0x200 V]
A4 adlen 7 Default copy constructor
' and assignment operator
ad4l.dat| 0x200
make a SHALLOW COPY

(data members only)
rather than a DEEP copy
(data members + what
they point at)

class MyArray

{

public:
MyArray(int d[], int num); //normal
~MyArray();
int len; int *dat;

}s
// Normal constructor
MyArray: :MyArray(int d[], int num)
{
dat = new int[num]; len = num;
for(int i=0; i < len; i++){
dat[i] = d[i];
¥
¥

int main()

{
int vals[] = {9,3,7,5};
MyArray al(vals,4);
MyArray a2(al); // calls default copy
MyArray a3 = al; // calls default copy
MyArray a4;
a4 = al; // calls default assignment
// how are the contents of a2, a3, a4
// related to al




Default copy constructor and assignment operator ONLY
perform SHALLOW copies

— SHALLOW COPY (data members only)

— DEEP copy (data members + what they point at)

— [Like saving a webpage to your HD...it makes a shallow copy and

doesn't copy the pages linked to]

You SHOULD/MUST define your own copy constructor and
assignment operator when a DEEP copy is needed

— When you have pointer data members that point to data that should
be copied when a new object is made

— Often times if your data members are pointing to dynamically
allocated data, you need a DEEP copy

If a Shallow copy is acceptable, you do NOT need to define a
copy constructor



i, TS(“Viterbi

School of Engineering

Defining Copy Constructors

class MyArray
{public:

e Same name as MyArray(int d[], int num);

MyArray(const MyArray& rhs);

normal constructor ~MyArray () ;

private:

but should take in an |, ™ "% i fen

// Normal constructor

argument Of the MyArray: :MyArray(int d[], int num)
. {
. dat = new int[num]; len = num;
ObJECt type' // copy values from d to dat
}
- USUB”V d ConSt // Copy constructor
reference l‘élyAr‘ray: :MyArray(const MyArray &rhs){
len = rhs.len; dat = new int[len];
e MyArray(const MyArray&); // copy from rhs.dat to dat
}

int main()
{
intvals[] = {9,3,7,5};
MyArray al(vals,4);
MyArray a2(al);
MyArray a3 = al;
// how are the contents of a2 and al related?




i, TS(“Viterbi -

School of Engineering

Implicit Calls to Copy Constructor

* Recall pass-by-value |{=°“™*

public:

passes a copy of an Complex(); |
Complex(double r, double i);
ObJECtIf defined ngzﬁzx%iTpleX(const Complex &rhs);

double real, imag;

the copy constructor |;;

J
// Copy constructor

W|” automat|ca”y be ({Zomplex::Complex(const Complex &c)

1 cout << "In copy constructor" << endl;
Ca”ed to make thls real = c.real; imag = c.imag;
. }
COpy OtherWISG the // ** Copy constructor called for pass-by-value

int dummy(Complex rhs)

default copy will {
perform a shallow ;

intmain()

copy {

cout << "In dummy"” << endl;

Complex c1(2,3), c2(4,5);
int x = dummy(cl);
// ** Copy Constructor called on c1l **




i, TS(“Viterbi

School of Engineering

Copy Constructors

class Complex

* Write a prototype for the ;

constructor that would want to be | "tomiexo);
. Complex(double r, double i);
called by the red line of code e e b pass
] ] // by value req. copy to be made
* Now we see why the first option // ...chicken/egg problem
. . Complex(const Complex &c); // Good
can't be right...because to pass cl ~Complex()

private:

by value requires a call to the copy | double real, inag;
constructor which we are just now |~ 5
.. . . int main
defining (circular reference/logic) |«
Complex c1(2,3), c2(4,5)
— Complex(Complex) Complex c3(c1);
* We will see that this can't be right...

* The argument must be passed by
reference

— Complex(const Complex &)



i, TS(“Viterbi

School of Engineering

Defining Copy Assighment Operator

class MyArray
{

e operator=() is public:
. MyArray();
called when an object MyArray(int d[], int num);
. MyArray(const MyArray& rhs);
already EX|StS and then MyArray& operator=(const MyArray& rhs);
. . ~MyArray () ;
yOU aSS|gn tO |t int*dat; intlen;
}
— Copy constructor called
when you assign during a DélyAr‘r‘ay: :MyArray(const MyArray &rhs){
declaration: len = rhs.len; dat = new int[len];
_ E.g. MyArray a2=a1; } // copy from rhs.dat to dat
¢ Can dEfIne OperatOr fOF MyArray& MyArray::operator=(const MyArray &rhs){
. . {
= to |nd|Cate hOW to len = rhs.len; dat = new int[len];
. // copy from rhs.dat to dat
make a copy via }
assignment int main()
{
° Gotchas? intvals[] = {9,3,7,5};

MyArray al(vals,4);
MyArray a2;
a2 = al; // operator=() since a2 already exists




i, TS(“Viterbi

School of Engineering

Defining Copy Assignment Operator

e Gotchas?

— Dest. object may
already be initialized
and simply
overwriting data
members may lead
to a memory leak

— Self assignment
(which may also lead
to memory leak or
lost data)

class MyArray
{

public:

MyArray();

MyArray(int d[], int num);

MyArray(const MyArray& rhs);

MyArray& operator=(const MyArray& rhs);

~MyArray();

int *dat; int len;

}

MyArray: :MyArray(const MyArray &rhs){
{ len = rhs.len; dat = new int[len];
// copy from rhs.dat to dat

}
MyArray& MyArray::operator=(const MyArray &rhs){

{
if(this == &rhs) return *this;
if(dat) delete dat;
len = rhs.len; dat = new int[len];
// copy from rhs.dat to dat
return *this;

}

int main()
{
int valsl[] = {9,3,7,5}, vals2[] = {8,3,4,1};
MyArray al(valsl,4);
MyArray a2(vals2,4);
al = al; a2 = al;




i, TS(“Viterbi -«

School of Engineering

Assignment Operator Practicals

* RHS should be a const
reference
— Const so we don't change it

— Reference so we don't pass-
by-value and make a copy
(which would actually call a
copy constructor)

e Return value should be a
reference

— Allows for chained
assignments

— Should return (*this)

— Reference so another copy
isn't made

class Complex
{
public:
Complex(int r, int i);
~Complex()
Complex operator+(Complex right_op);
Complex& operator=(const Complex &rhs);
private:
int real, imag;

};

Complex& Complex::operator=(const Complex & rhs)

{

real
imag
return

}

int main()

{
Complex c1(2,3), c2(4,5);

rhs.real;
rhs.imag;
*this;

Complex c3, c4;
c4 = c3 = c2;
// same as c4.operator=( c3.operator=(c2) );




i, TS(“Viterbi (2

School of Engineering

Assignment Operator Overloading

class Complex

{
* If a different publie:
omplex(int r, int i);
~Complex();
type argument Complex operator+(const Complex &rhs);
Complex &operator=(const Complex &r);
can be acceptEd Complex &operator=(const int r);

int real, imag;
we can overload |¥

_ Complex& Complex::operator=(const int& r)
the = operator ;
real = r; imag = 0;
return *this;

}

int main()
{
Complex c1(3,5);
Complex c2,c3,c4;
c2 =¢c3 =c4 =5;
// c2 = (c3 = (c4 =5) );
// c4.operator=(5); // Complex::operator=(int&)
// c3.operator=(c4); // Complex: :operator=(Complex&)
// c2.operator=(c3); // Complex: :operator=(Complex&)
return 9;




Copy Constructor Summary

If you are okay with a shallow copy, you don’t need
to define a copy constructor or assignment operator

Rule of Three:

— Usually if you have dynamically allocated memory, you’ll
need a copy constructor, an assignment operator, and a
destructor (i.e. if you need 1 you need all 3)

Copy constructor should accept a const reference of

the same object type

Assignment operators should be careful to cleanup
initialized members and check for self-assignment

Assignment operators should return a reference type
and return *this



i, TS(“Viterbi

School of Engineering

Exercises For Home

Suppose you are given a class
that implements a singly-
linked of integers (with a
head pointer data member)

Write a '-=' operator that
takes one element and
removes it from the list if it
exists

Write a '==' operator that
checks whether the contents
and order of one list matches
another

#include <iostream>
#include "listint.h"
using namespace std;

int main()

{

List<int> ml, m2;
ml.push_back(5);
m2.push_back(5);

if(ml == m2){
cout << "Should print!";

}

m2.push_back(7);
m2 -= 5; // now m2 would just have [7]

if(ml == m2){
cout << "Should not print!"; << endl;

}

return 0;




SOLUTIONS



N (S Viterbi (>
Review from CS 103 [1]

class Complex

 What is the correct prototype for ¢

blic:
the copy constructor call when ¢3 o lox();
. . . 1 , double 1i);
is created in the code to the right? | rpiex(doudie n dowble 1)
// What constructor definition do I
— ComPIEX(ComPIEX)3 // need for c3's declaration below
* We will see that this can't be right... S —
double real, imag;
};
int main()
— {
Complex(const Complex &) S (e, O
 Best! (Making a copy shouldn't Complex c3(cl);

change the input argument, thus
‘const') }




I (/S C Viterbi ‘@
Review from CS 103 [2]

Which function? Default Versions
* For each of the following,  What kind of copy does the
identify whether the copy default copy constructor
constructor is called or the and assignment operator
assignment operator perform?
— Complex c1; — Shallow copy (member by
Complex c2 = cl; member copy)

* Copy constructor

- Complex Cl—; class MyArray
Complex c2(cl); {
 Copy constructor private:
int* data; // ptr to dynamic array
— Complex cl, c2; size_t len;
c2 = cl; )

 Assignment operator



i, TS(“Viterbi

School of Engineering

Review from CS 103 [3]

State the Rule of 3

* The rule of 3:
— If a class needs a user-defined

version of any one of the 3: copy

constructor, assignment
operator, or destructor, it needs
ALL 3.

class MyArray
{

private:
int* data; // ptr to dynamic array

};

MyArray& operator=(const MyArray& other)
{

Assignment Operator Specifics?

What extra considerations
does the assignment
operator need to handle vs.
the copy constructor?

— Must clean up old resources
before copying

— Beware of self assignment

What should operator=
return?

— A reference to an instance of
the class which should be
*this;



