
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Linked Lists

Mark Redekopp

Revised: 01/2022

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Lists
• Ordered collection of items, which may contain duplicate

values, usually accessed based on their position (index)
– Ordered = Each item has an index and there is a front and back (start

and end)

– Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

– Accessed based on their position (list[0], list[1], etc.)

• What are the operations you perform on a list?

list[0]
list[1]

list[2]

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

List Operations

Operation Description Input(s) Output(s)

insert Add a new value at a particular
location shifting others back

Index : int
Value

remove Remove value at the given location Index : int Value at location

get / at Get value at given location Index : int Value at location

set Changes the value at a given location Index : int
Value

empty Returns true if there are no values in
the list

bool

size Returns the number of values in the
list

int

push_back /
append

Add a new value to the end of the list Value

find Return the location of a given value Value Int : Index

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Singly-Linked List

List Implementation Options

• Singly-Linked List

– With or without tail
pointer

• Doubly-Linked List

– With or without tail
pointer

• Array-based List

val next

3 0x1c0

val next

9 0x168

0x148head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

0x168tail

Doubly-Linked List
0x148

head

0x168

tail

3 0x1c0
0x0

(Null)

val nextprev

9
0x0

(Null)
0x148

val nextprev

0x148 0x1c0

3size

3size

Array-based List
7size 12cap0x200data

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

0x200 21

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Implementation Options

Linked Implementations

• Allocate each item separately

• Random access (get the i-th
element) is O(___)

• Adding new items never requires
others to move

• Memory overhead due to
pointers

Array-based Implementations

• Allocate a block of memory to
hold many items

• Random access (get the i-th
element) is O(___)

• Adding new items may require
others to shift positions

• Memory overhead due to
potentially larger block of
memory with unused locations

val next

3 0x1c0

val next

9
0x0

NULL

0x148head 0x148 0x1c0

30 51 52 53 54

0 1 2 3 4 5

10

6 7 8 9 10 11

data 21

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LINKED IMPLEMENTATIONS

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Note

• The basics of linked list implementations was
taught in CS 103

– We assume that you already have basic exposure
and practice using a class to implement a linked
list

– We will highlight some of the more important
concepts

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Linked List
• Use structures/classes and pointers

to make ‘linked’ data structures

• A linked list is…

– Arbitrarily sized collection of values

– Can add any number of new values
via dynamic memory allocation

– Supports typical List ADT operations:
• Insert

• Get

• Remove

• Size (Should we keep a size data member?)

• Empty

• Can define a List class to encapsulate
the head pointer and operations on
the list

#include<iostream>
using namespace std;

struct Item {
int val;
Item* next;

};

class List
{
public:
List();
~List();
void push_back(int v); ...

private:
Item* head_;

};

int

val

Item*

next

Item blueprint:

Rule of thumb: Still use ‘structs’ for objects that are

purely collections of data and don’t really have

operations associated with them. Use ‘classes’ when

data does have associated functions/methods.

val next

3 0x1c0

val next

9 0x168

0x148head
0x148 0x1c0

val next

2
0x0

(Null)

0x168

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Common Misconception
• Important Note:

– 'head' is NOT an Item, it is a pointer to
the first item

– Sometimes folks get confused and think
head is an item and so to get the location
of the first item they write 'head->next'

– In fact, head->next evaluates to the 2nd

items address

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

head->next yields a pointer to the 2nd item!

head yields a pointer to the 1st item!

head->next

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Don't Need Classes
• Notice the class on the

previous slide had only 1 data
member (the head pointer)

• We don't have to use classes…
– The class just acts as a wrapper

around the head pointer and the
operations

– So while a class is probably the
correct way to go in terms of
organizing your code, for today we
can show you a less modular,
procedural approach

• Define functions for each
operation and pass it the head
pointer as an argument

#include<iostream>
using namespace std;
struct Item {
int val;
Item* next;

};
// Function prototypes
void append(Item*& head, int v);
bool empty(Item* head);
int size(Item* head);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
int size1 = size(head1);
bool empty2 = empty(head2);
append(head1, 4);

}

0x0

head_

int

val

Item*

next

Item blueprint:

class List:

Rule of thumb: Still use ‘structs’ for objects that are

purely collections of data and don’t really have

operations associated with them. Use ‘classes’ when

data does have associated functions/methods.

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Linked List Implementation

• To maintain a linked list you need only
keep one data value: head

– Like a train engine, we can attach any
number of 'cars' to the engine

– The engine looks different than all the
others

• In our linked list it's just a single pointer
to an Item

• All the cars are Item structs

• Each car has a hitch for a following car
(i.e. next pointer)

Each car =

"Item"

Engine =

"head"

0x0

NULL

head1

#include<iostream>

struct Item {
int val;
Item* next;

};

void append(Item*& head, int v);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;

}

0x0

NULL

head2

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Append
• Adding an item (train car) to the

back can be split into 2 cases:
– Case 1: Attaching the car to the

engine (i.e. the list is empty and we
have to change the head pointer)

• Changing the head pointer is a special case
since we must ensure that change
propagates to the caller

– Case 2: Attaching the car to another
car (i.e. the list has other Items
already) and so we update the next
pointer of an Item

val next

0x0

head1

0x148

3 NULL

0x148

#include<iostream>
using namespace std;
struct Item {
int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{
Item* head1 = NULL;
Item* head2 = NULL;
append(head1, 3);

}

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

NULL

Linked List
• Adding an item (train car) to the

back can be split into 2 cases:
– Attaching the car to the engine (i.e.

the list is empty and we have to
change the head pointer)

– Attaching the car to another car (i.e.
the list has other Items already) and
so we update the next pointer of an
Item

val next

3 0x1c0

val next

9
0x0

NULL

0x148

head

0x148 0x1c0

#include<iostream>
using namespace std;
struct Item {
int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{
Item* head1 = NULL;
Item* head2 = NULL;
append(head1,3); append(head1,9);

}

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Passing Pointers "by-Value"
• Look at how the head parameter is

passed…Can you explain it?
– Append() may need to change the value of head

and we want that change to be visible back in the
caller.

– Even pointers are passed by value…wait, huh?

– When one function calls another and passes a
pointer, it is the data being pointed to that can be
changed by the function and seen by the caller, but
the pointer itself is passed by value.

– You email your friend a URL to a Google doc. The
URL is copied when the email is sent but the
document being referenced is shared.

– If we want the pointer to be changed and visible
we need to pass the pointer by reference

– We choose Item*& but we could also pass an
Item**

val next

3
0x0

NULL0x0

0x148

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

void append(Item** head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(*head == NULL){
*head = newptr;

}
else {

Item* temp = *head;
// iterate to the end
...

}
}

0xbf8

(head)
main

0x0
0x1480xbec

(head)
append

???0x148

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Passing Pointers by…

void append(Item* head, int v)
{
Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;
if(head == 0){ head = newptr;}
else {

Item* temp = head;
...

} }

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return

link
0xb??

a
p

p
e
n

d

3 v0xbe8

0 head0xbec

004000ca0
Return

link
0xbf0

148

head1

…

void append(Item** head, int v)
{
Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;
if(*head == 0){ *head = newptr;}
else {

Item* temp = *head;
...

} }

148 newptr0xbe4

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return

link
0xb??

a
p

p
e
n

d

3 v0xbe8

?0xbf8? head0xbec

004000ca0
Return

link
0xbf0

head1

…

148 newptr0xbe4

Stack Area of RAM

m
a

in

0xbf4

00xbf8

00400120
Return

link
0xb??

a
p

p
e
n

d

3 v0xbe8

0xbf8 head0xbec

004000ca0
Return

link
0xbf0

head1

…

148 newptr0xbe4

148 148

int main() {
Item* head1 = 0;
append(head1, 3);

void append(Item*& head, int v)
{
Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;
if(head == 0){ head = newptr;}
else {
Item* temp = head;
...

} }

int main() {
Item* head1 = 0;
append(head1, 3);

int main() {
Item* head1 = 0;
append(&head1, 3);

val next

3
0x0

NULL
0x0

head 148

0x148
0xbf8

Pointer

Passed-by-

Value

Pointer

Passed-by-

C++

Reference

Pointer

Passed-by-

Pointer

Reference

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterating Through a Linked List
• Start from head and iterate

to end of list
– Copy head to a temp pointer

(because if we modify head we
can never recover where the list
started)

– Use temp pointer to iterate
through the list until we find the
tail (element with next field =
NULL)

– To take a step we use the line:
temp = temp->next;

– Optional: Update old tail item to
point at new tail item)

val next

3 0x1c0

val next

9
0x0

NULL

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168
0x168

0x148

temp

Given only head, we don’t know where the list ends so

we have to traverse to find it

0x1c0

temp

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Adding a Tail Pointer

• If in addition to maintaining a head
pointer we can also maintain a tail
pointer

• A tail pointer saves us from
iterating to the end to add a new
item

• Need to update the tail pointer
when…
– We add an item to the end

• Easy, fast!

– We remove an item from the end
• _______________________

val next

2
0x0

(Null)

0x168
0x168

val next

3 0x1c0

val next

9 NULL

0x148

head

0x148 0x1c0

0x1c0

tail

0x168

tail

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Removal

• To remove the last item, we need to update the 2nd

to last item (set it's next pointer to NULL)

• We also need to update the tail pointer

• But this would require us to traverse the full list
requiring O(n) time

• ONE SOLUTION: doubly-linked list

val next

5 0x1c0

val next

9 NULL

0x200 0x1c0

0x1c0

tail

val next

3 0x200

0x148

head

0x148

…

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Doubly-Linked Lists
• Includes a previous pointer in

each item so that we can
traverse/iterate backwards or
forward

• First item's previous field
should be NULL

• Last item's next field should be
NULL

• The key to performing
operations is updating all the
appropriate pointers correctly!

– Let's practice identifying this.

– We recommend drawing a picture
of a sample data structure before
coding each operation

#include<iostream>

using namespace std;
struct DLItem {

int val;
DLItem* prev;
DLItem* next;

};

int main()
{

DLItem* head, *tail;
};

int

val

DLItem *

next

struct Item blueprint:

DLItem *

prev

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary of Linked List
Implementations

• What is worst-case runtime of get(i)?

• What is worst-case runtime of insert(i, value)?

• What is worst-case runtime of remove(i)?

Operation vs
Implementation

for Edges

Push_front Pop_front Push_back Pop_back Memory
Overhead
Per Item

Singly linked-list
w/ head ptr ONLY

1 pointer
(next)

Singly linked-list
w/ head and tail

ptr

1 pointer
(next)

Doubly linked-list
w/ head and tail

ptr

2 pointers
(prev + next)

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Key Ideas for Linked Lists

• A head pointer is all that is needed to maintain a linked list

• When iterating…

– Don't lose the head

– Given a pointer to an item, taking a step to the next node is accomplished with
ptr = ptr->next

– Carefully consider when to stop: at the end, one before the end, on the
desired item, one before the desired item based on what needs to be updated

• For a singly linked list, use of a tail pointer allows for fast insertion at the
end but not removal

• When writing functions that take (head) pointers to linked lists:

– Always ensure you check and handle if the pointer is NULL

– If the head/pointer will change, consider how to return that new value (or use
pass-by-reference)

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary of Linked List
Implementations

Operation vs
Implementation

for Edges

Push_front Pop_front Push_back Pop_back Memory
Overhead
Per Item

Singly linked-list
w/ head ptr ONLY

Θ(1) Θ(1) Θ(n) Θ(n) 1 pointer
(next)

Singly linked-list
w/ head and tail

ptr

Θ(1) Θ(1) Θ(1) Θ(n) 1 pointer
(next)

Doubly linked-list
w/ head and tail

ptr

Θ(1) Θ(1) Θ(1) Θ(1) 2 pointers
(prev + next)

• What is worst-case runtime of get(i)? Θ(i)

• What is worst-case runtime of insert(i, value)? Θ(i)

• What is worst-case runtime of remove(i)? Θ(i)

