CSCl 104
Linked Lists

Mark Redekopp

Revised: 01/2022

i, TS(“Viterbi -

School of Engineering

* Ordered collection of items, which may contain duplicate
values, usually accessed based on their position (index)

— Ordered = Each item has an index and there is a front and back (start
and end)

— Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

— Accessed based on their position (list[0], list[1], etc.)

 What are the operations you Eerform on a{st?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e USCVlterb1®
List Operations

T I 7

insert Add a new value at a particular Index :

location shifting others back Value
remove Remove value at the given location Index : int Value at location
get / at Get value at given location Index : int Value at location
set Changes the value at a given location Index : int

Value

empty Returns true if there are no values in bool

the list
size Returns the number of values in the int

list
push_back / Add a new value to the end of the list Value
append
find Return the location of a given value Value Int : Index

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi ®

School of Engineering

List Implementation Options

Singly-Linked List

¢ S|n | 'LinkEd L|St size | 3 head |0x148| tail |0x168
gly 1

— With or without tail 0:148 0x1c0 b
. 3 |ox1co O |ox168 2|
pointer . .
val next val next val next
° Doubly-Linked List head tal Doubly-Linked List
. . . 0x148| |0x168 size | 3
— With or without tail v
. 0x148 0x1c0
POl nter (gﬁ?l) 3 |oxico=> ox148| Q (|C\)|EC|)|)
prev. val next prev. val next

* Array-based List

Array-based List

data |0x200| Size 7 cap| 12

H

0 1 2 3 45 6 7 8 9 10 11

78
0x200 [30(|51|52|53|54|10[21| |
__-L__

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1 B 1 1
| | | |
| | | 1
| | | 1

[I O |

i, TS(“Viterbi -

School of Engineering

Implementation Options

Linked Implementations

head

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Allocate each item separately

Random access (get the i-th
element) isO(__)

Adding new items never requires
others to move

Memory overhead due to
pointers

0x148 0x148 0x1cO
0x0
9 3 |oxico 0 UL
val next val next

Array-based Implementations

* Allocate a block of memory to
hold many items

 Random access (get the i-th
element) isO(__)

 Adding new items may require
others to shift positions

e Memory overhead due to
potentially larger block of
memory with unused locations

0O 1 2 3 4 5 6 7 8 9 101

78
data |30|51(52|53|54|10|21| |
__-L__

1 B 1 1
| | | |
| | | 1
| | | 1

[I O |

i, TS(“Viterbi -

School of Engineering

LINKED IMPLEMENTATIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

* The basics of linked list implementations was
taught in CS 103

— We assume that you already have basic exposure
and practice using a class to implement a linked
list

— We will highlight some of the more important
concepts

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Linked List

* Use structures/classes and pointers
to make ‘linked’ data structures

#include<iostream>
using namespace std;

struct Item {

School of Engineering

e Alinked list is... int val; Item blueprint:
. _ . _ Item* next; Cint | Item*
— Arbitrarily sized collection of values }; :__ya_tl_l__r_u_ax;__
— Can add any number of new values class List
via dynamic memory allocation {
))) public:
— Supports typical List ADT operations: List();
* Insert ~List();
void push_back(int v); ...
* Get private:
e Remove Item* head_;
* Size (Should we keep a size data member?) b
* Empty
* Can define a List class to encapsulate| head |ox14s 0x148 0x1c0 0x168
. . 0x0
the head pointer and operations on ——> 3 |oxico O |ox1e8 2 | qum
the list val next val next val next

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have
operations associated with them. Use ‘classes’ when

data does have associated functions/methods.

i, TS(“Viterbi -

A Common Misconception

* |mportant Note:

— 'head'is NOT an Item, it is a pointer to
the first item

— Sometimes folks get confused and think
head is an item and so to get the location
of the first item they write 'head->next'

— In fact, head->next evaluates to the 2nd o148
items address head->next

head

0x148 0x1c0 0x168

0x0
3 [|oxico O |ox168 2 (Null)

val next val next val next

head->next yields a pointer to the 2"d item!
head yields a pointer to the 1st item!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Don't Need Classes

* Notice the class on the
previous slide had only 1 data
member (the head pointer)

e We don't have to use classes...

— The class just acts as a wrapper
around the head pointer and the
operations

— So while a class is probably the
correct way to go in terms of
organizing your code, for today we
can show you a less modular,
procedural approach

* Define functions for each
operation and pass it the head
pointer as an argument

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

#include<iostream>

using namespace std; Item blueprint:

struct Item { Snt T item* !
int val; :L_\ze_ll_l__n@xz__'

Item* next;
}s
// Function prototypes
void append(Item*& head, int v);
bool empty(Item* head);
int size(Item* head);

int main()

{
Item* headl NULL;
Item* head2 NULL;
int sizel = size(headl);
bool empty2 = empty(head2);
append(headl, 4);

class List:
head_

0x0

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have
operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

e — ()5 \terbi
Linked List Implementation

#tinclude<iostream>

. . . . struct Item {
* To maintain a linked list you need only e vl

keep one data value: head }_Item* next;

— Like a train engine, we can attach any

| | . void append(Item*& head, int v);
number of 'cars' to the engine

int main()

— The engine looks different than all the (

others Item* headl
Item* head2

NULL ;
NULL ;

* Inour linked list it's just a single pointer
to an Item }

e All the cars are Item structs

* Each car has a hitch for a following car

(i.e. next pointer) head1l
0x0
NULL
=YY
Engine = Each car = X0
"head" "ltem" NULL

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. head2

i, TS(“Viterbi 2

School of Engineering

#include<iostream>
. . . using namespace std;
 Adding an item (train car) to the struct Item {
oy int val;
back can be split into 2 cases: Ttem* next;
. }s
— Case 1: Attaching the car to the
engine (i.e. the list is empty and we (oid sppend(Trem™ head, int v)
have to change the head pointer) if(head == NULL){
head = new Item;
e Changing the head pointer is a special case head->val = v; head->next = NULL;
since we must ensure that change }
else {...}
propagates to the caller }
— Case. 2: Attac.hmg the car to another int main()
car (i.e. the list has other Items {

Item* headl = NULL;
already) and so we update the next Item* head2 = NULL;
pointer of an Item , append(headt, 3);

0x148
3 | NULL
val next

© 2022 by . ThiS'Content 1s protected and may not be shared, uploaded, or distributed.

- USCViterbi @
Linked List

#include<iostream>
* Adding an item (train car) to the ey renrece S
R . int val;
back can be split into 2 cases: Tremt noxts
— Attaching the car to the engine (i.e. v
the list is empty and we have to void append(Item*& head, int v)
. {
change the head pointer) if(head == NULL){
. . head = new Item;
— Attaching the car to another car (i.e. head->val = v; head->next = NULL;
the list has other Items already) and ilse (.9
so we update the next pointer of an ¥
ltem int main()
{
Item* headl = NULL;
Item* head2 = NULL;
append(head1,3); append(headl,9);
}
head
0x148 (0x148 0x1c0
> 3 |oxico o] NOSEL
\ val next val next

© 2022 by Mark Redekopp. Ihiscontent Is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Passing Pointers "by-Value"

* Look at how the head parameter is
passed...Can you explain it?

© 2022 by Mark Redekopp. This\

Append() may need to change the value of head
and we want that change to be visible back in the
caller.

Even pointers are passed by value...wait, huh?

When one function calls another and passes a
pointer, it is the data being pointed to that can be
changed by the function and seen by the caller, but
the pointer itself is passed by value.

You email your friend a URL to a Google doc. The
URL is copied when the email is sent but the
document being referenced is shared.

If we want the pointer to be changed and visible
we need to pass the pointer by reference

We choose Item*& but we could also pass an
ltem™*

append| Oxbec 0x148
(head)| 9*O 0x148
0x0
i 0x148 229
main | 0xbf8 0x0 = 3 NULL
(head)

2 shared, uploackgai or diﬁ@'%ted.

void append(Item*& head, int v)
{

Item* newptr =
newptr->val =

new Item;
V; newptr->next

if(head == NULL){
head = newptr;
¥
else {
Item* temp = head;
// iterate to the end

NULL ;

void append(Item** head, int v)

{

Item* newptr =
newptr->val =

new Item;
V; newptr->next

if(*head == NULL){
*head = newptr;

¥

else {
Item* temp = *head;
// iterate to the end

NULL;

- 00000000 USCViterbi@
Passing Pointers by...

School of Engineering

int main() {
Item* headl

0;

Pointer

Passed-by-

append(headl, 3);

Value

head 148
Oxbf8 &e&‘“g 5o bd
. NULL
val next
i | Pointer : . Pointer
int main() { int main() {
Item* headl = 0; Paséig;by_ Item* headl = 0; PifS??'bY'
append(headl, 3); append(&headl, 3); ointer
EEMER » 3 Reference ppend()3 Reference

void append(Item* head, int v)

{

Item* newptr
newptr->val
newptr->next

new Item;

Vs

NU

LL;

if(head == 0){ head =

else {

Item* temp = head;

newptr;}

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;

if(head
else {

Item* temp = head;

0){ head = newptr;}

}}...

void append(Item** head, int v)
{
Item* newptr = new Item;
newptr->val = v;
newptr->next = NULL;
if(*head == 0){ *head =
else {
Item* temp = *head;

newptr;}

}}...

}}
Stack Area of RAM Stack Area of RAM
Oxbe4 148 newptr Oxbe4 148 newptr
g Oxbe8 2 v g Oxbe8 3 v
o H o
g [Oxbec 0(148|| head & [Oxbec | 20xbfs? head
OxbfO | 0o4000ca0 | "°" OxbfO | 0o4000ca0 | "°"
c Oxbf4 c Oxbf4
= |
£ | oxbfs 0 headl £ | Oxbf8 0(148|| headl<
Oxb?? | 00400120 | Reu™ Oxb?? | 00400120 | Rou™
© 2422 by Mark Red ay not belshared, uploaded Or QISINDUTE]

Stack Area of RAM
Oxbe4 148 newptr
£ |oxbes 3 v
% Oxbec Oxbf8 head
OxbfO | o0o4000ca0 | "O"
_ | Oxbf4
£ | oxbfs 0 1148| head1
Oxb?? | 00400120 | R&4"

i, TS(“Viterbi

School of Engineering

Iterating Through a Linked List

void append(Item*& head, int v)
{

e Start from head and iterate Ttem* newptr = new Ttem;
to end of list

Copy head to a temp pointer
(because if we modify head we
can never recover where the list
started)

Use temp pointer to iterate
through the list until we find the
tail (element with next field =
NULL)

To take a step we use the line:
temp = temp->next;

Optional: Update old tail item to
point at new tail item)

newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;
¥
else {
Item* temp = head;
// iterate to the end

}
}
head
0x148
0x148 0x1cO 0x168 £§E€8 ______
0 i 0x0 |
3 | oxte0 9 [nodn[22 | vt
val next val next val next
0x148 0Ox1cO
temp temp

Given only head, we don’t know where the list ends so

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. we have to traverse to flnd |t

i, TS(“Viterbi -

Adding a Tail Pointer

* If in addition to maintaining a head
pointer we can also maintain a tail
pointer

* Atail pointer saves us from
iterating to the end to add a new
item

* Need to update the tail pointer
when...

— We add an item to the end
* Easy, fast!

— We remove an item from the end

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

head

0x148

School of Engineering

tail tail
Ox1cO 0x168
0x148 0x1c0 Ox168 04}68
3 |oxico o) M

val

next

val

next

Removal

* To remove the last item, we need to update the 2"
to last item (set it's next pointer to NULL)

* We also need to update the tail pointer

e But this would require us to traverse the full list

requiring O(n) time
* ONE SOLUTION: doubly-linked list

head

0x148

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

0x148

3

0x200

0x200

tail

0x1cO

0x1cO

val

next

S

0x1cO

9

NULL

val

next

val

next

Includes a previous pointer in
each item so that we can
traverse/iterate backwards or
forward

First item's previous field
should be NULL

Last item's next field should be
NULL

The key to performing
operations is updating all the
appropriate pointers correctly!
— Let's practice identifying this.
— We recommend drawing a picture

of a sample data structure before
coding each operation

#include<iostream>

using namespace std;
struct DLItem {
int val;
DLItem* prev;
DLItem* next;

- 00000000 USCViterbi
Doubly-Linked Lists

School of Engineering

struct Item blueprint:
i DLItem #}" _iﬁf_l_ljl__l_t_eﬁ_; 5

s

int main()

{

DLItem* head, *tail;

¥

head tail

0x148 0x210
0x148 0x1c0 OJ§E0

NULL | 3 [ox1co[]ox148| 9 |0x210{ 2] Ox1c0| 6 [NULL
prev. val next prev. val next prev val next

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

: . USC Viterbi
Summary of Linked List =~ s

Implementations
Operation vs Push_front | Pop_front Push_back Pop_back Memory
Implementation Overhead
for Edges Per Item
Singly linked-list 1 pointer
w/ head ptr ONLY (next)
Singly linked-list 1 pointer
w/ head and tail (next)
ptr
Doubly linked-list 2 pointers
w/ head and tail (prev + next)
ptr

* What is worst-case runtime of get(i)?
 What is worst-case runtime of insert(i, value)?
* What is worst-case runtime of remove(i)?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCV1terb1@
Key Ideas for Linked Lists

* A head pointer is all that is needed to maintain a linked list

* When iterating...
— Don't lose the head

— Given a pointer to an item, taking a step to the next node is accomplished with
ptr = ptr->next

— Carefully consider when to stop: at the end, one before the end, on the
desired item, one before the desired item based on what needs to be updated

* Forasingly linked list, use of a tail pointer allows for fast insertion at the
end but not removal
When writing functions that take (head) pointers to linked lists:
— Always ensure you check and handle if the pointer is NULL

— If the head/pointer will change, consider how to return that new value (or use
pass-by-reference)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi (2
School of Engineering

Summary of Linked List

Implementations
Operation vs Push_front | Pop_front Push_back Pop_back Memory
Implementation Overhead
for Edges Per Item
Singly linked-list ©(1) 0(1) O(n) O(n) 1 pointer
w/ head ptr ONLY (next)
Singly linked-list O(1) O(1) O(1) O(n) 1 pointer
w/ head and tail (next)
ptr
Doubly linked-list ©(1) ©(1) O(1) ©(1) 2 pointers
w/ head and tail (prev + next)
ptr

 What is worst-case runtime of get(i)? O(i)

 What is worst-case runtime of insert(i, value)? O(i)

 What is worst-case runtime of remove(i)? O(i)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

