CSCI 104
Runtime Complexity

Mark Redekopp
David Kempe
Sandra Batista

Revised: 12/20/2019
REVIEW FROM CS 170
Steps for Deriving $T(n)$

- Considering an input of size n that requires the maximum runtime, go through each line of the algorithm or code.
- Assume elementary operations such as incrementing a variable occur in constant time.
- If sequential blocks of code have runtime $T_1(n)$ and $T_2(n)$ respectively, then their total runtime will be their sum $T_1(n) + T_2(n)$.
- When we encounter loops, sum the runtime for each iteration of the loop, $T_i(n)$, to get the total runtime for the loop.
 - Nested loops often lead to summations of summations, etc.
Asymptotic Notation

• $T(n)$ is said to be $O(f(n))$ if...
 - $T(n) < a \cdot f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially an upper-bound
 - We'll focus on big-O for the worst case

• $T(n)$ is said to be $\Omega(f(n))$ if...
 - $T(n) > a \cdot f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially a lower-bound

• $T(n)$ is said to be $\Theta(f(n))$ if...
 - $T(n)$ is both $O(f(n))$ AND $\Omega(f(n))$
Helpful Common Summations

• \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2) \]
 – This is called the arithmetic series

• \[\sum_{i=1}^{n} \theta(i^p) = \theta(n^{p+1}) \]
 – This is a general form of the arithmetic series

• \[\sum_{i=0}^{n} c^i = \frac{c^{n+1}-1}{c-1} = \theta(c^n) \]
 – This is called the geometric series

• \[\sum_{i=1}^{n} \frac{1}{i} = \theta(\log n) \]
 – This is called the harmonic series
Runtime Practice #4

- It may seem like you can just look for nested loops and then raise n to that power
 - 2 nested for loops => $O(n^2)$
- But be careful!!
- Find $T(n)$ for this example

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{\log_2(n)} \theta(1)
\]

=

- Use the geometric sum eqn.

\[
\sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}
\]
- So our answer is...

```cpp
for (int i = 0; i <= log2(n); i ++)
    for (int j=0; j < (int) pow(2,i); j++)
        cout << j << endl;
```

Hint: Geometric series
Runtime Practice #3

- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) + O\left(\sum_{j=0}^{n-1} \theta(1)\right) \right) \)
 - big-O indicates we have not considered the 'if' statement but are setting an upper bound

- \(T(n) = \sum_{i=1}^{n} \theta(1) + \sum_{i} \sum_{j=0}^{n-1} \theta(1) \) but we need to user our own analysis skills to find the actual values of \(i \) that will cause the 'if' to be true?
 - Use some actual values of \(n \) (e.g. \(n=9 \) or 16). Write out a table to find the pattern.
 - If \(n=9 \), the 'if' will trigger ___ times for \(i = \) ______________
 - If \(n=16 \), the 'if' will trigger ___ times for \(i = \) ______________
 - The dummy variable of a summation must increment ____ at a time
 - Thus, make a table with some dummy variable (k) that increments 1 at a time and find a relationship to the actual variable, \(i \), for when the if statement will trigger.
 - Solve for upper bound of \(k \)
 - Stop when \(i = \), but \(i = \) ____ so we stop when __________thus solve for \(k \) to find that the upper-bound for \(k = \) ________

- \(T(n) =

```c++
for (int i = 1; i <= n; i++)
{
    int m = sqrt(n);
    if( i % m == 0){
        for (int j=0; j < n; j++)
            cout << j << " ";
    }
    cout << endl;
}
```
Key Skill

• The dummy variable (say k) of a summation runs from 1 to an **UPPER_BOUND** incrementing 1 at a time

• Often our code does work at some other interval such as \(i = \{1\sqrt{n}, 2\sqrt{n}, 3\sqrt{n} \ldots\} \) (or actual values that are not incrementing by 1 at a time)

• You must use your own analytical abilities to find a relationship that converts the dummy variable (\(k=1,2,3,\ldots \)) to the actual values [eg. \(i = f(k) = k\sqrt{n} \)], usually by making a table of the dummy variable (\(k \)) and the actual code values/variables (\(i \))

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>Arbitrary k</th>
<th>Stop when k =??</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i = _______</td>
<td>Stop when i =______</td>
</tr>
</tbody>
</table>

• Then use that relationship to find the **UPPER_BOUND** of the dummy variable
 – In the previous example, we stopped when \(i = n \), thus we would stop when our dummy variable is \(\sqrt{n} \). This then is the upper bound.

• The key skill is to relate the dummy variable to the actual variable values and then find the **UPPER BOUND** of the dummy variable
Motivation

• You are given a large data set with $n = 500,000$ genetic markers for 5000 patients and you want to examine that data for genetic markers that maybe correlated to a disease that the patients have.
• You are given two algorithms, Algorithm A and Algorithm B, to solve this problem. You are given the implementation, code, and description of each algorithm.
• You need a solution as soon as possible to give medical professionals more data to advise patients and apply for grants for more funding.
• How would you determine which algorithm runs faster?
Runtime

• It is hard to compare the run time of an algorithm on actual hardware
 – Time may vary based on speed of the HW, etc.
 • The same program may take 1 sec. on your laptop but 0.5 second on a high performance server
• If we want to compare 2 algorithms that perform the same task we could try to count operations (regardless of how fast the operation can execute on given hardware)...
 – But what is an operation?
 – How many operations is: i++?
 – i++ actually requires grabbing the value of i from memory and bringing it to the processor, then adding 1, then putting it back in memory. Should that be 3 operations or 1?
 – Its painful to count 'exact' numbers operations
• Big-O, Big-Ω, and Θ notation allows us to be more general (or "sloppy" as you may prefer)
Complexity Analysis

• To find upper or lower bounds on the complexity, we must consider the set of all possible inputs, I, of size, n
• Derive an expression, \(T(n) \), in terms of the input size, \(n \), for the number of operations/steps that are required to solve the problem of a given input, \(i \)
 – Some algorithms depend on \(i \) and \(n \)
 • Find(3) in the list shown vs. Find(2)
 – Others just depend on \(n \)
 • Push_back / Append

• Which inputs though?
 – Best, worst, or "typical/average" case?
• We will always apply it to the "worst case"
 – That's usually what people care about

Note: Running time of an algorithm is not just based on input size (n), BUT input size (n) and its value (i)
Time Complexity Analysis

- Case Analysis is when you determine which input must be used to define the runtime function, $T(n)$, for inputs of size n.

- **Best-case analysis**: Find the input of size n that takes the minimum amount of time.

- **Average-case analysis**: Find the runtime for all inputs of size n and take the average of all of the runtimes. (This assumes a distribution over the inputs, but uniform is a reasonable choice.)

- **Worst-case analysis**: Find the input, i, of size n that takes the maximum amount of time.

- Our focus will be on worst-case analysis, but for many examples, the runtime is the same on any input of size n. Please consider this as we study them.
Steps for Performing Runtime Analysis of Algorithms

• We perform **worst-case analysis** in determining the runtime function on inputs of size n, $T(n)$.

• To do so, we need to find at least one input of size n that will require the **maximum** runtime of the algorithm.
 – In many of the examples we will examine, the algorithm will take the same amount of running time on any input (i.e. only depend on n)

• Using that input, **express the runtime of the algorithm** (on that input case) as a function of n, $T(n)$.
 – This is done by **stepping through the code and counting the steps** that will be done.

• Once we have a function for the runtime, $T(n)$, we **apply asymptotic notation to that function** in order to find the order of growth of the runtime function, $T(n)$.
Asymptotic Notation

- **T(n) is said to be $O(f(n))$ if...**
 - $T(n) < a \cdot f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially an upper-bound
 - We'll focus on big-O for the worst case

- **T(n) is said to be $\Omega(f(n))$ if...**
 - $T(n) > a \cdot f(n)$ for $n > n_0$ (where a and n_0 are constants)
 - Essentially a lower-bound

- **T(n) is said to be $\Theta(f(n))$ if...**
 - $T(n)$ is both $O(f(n))$ AND $\Omega(f(n))$
Worst Case and Big-Ω

• What's the lower bound on List::find(val)
 – Is it \(\Omega(1) \) since we might find the given value on the first element?
 – Well it could be if we are finding a lower bound on the 'best case'

• Big-Ω does **NOT** have to be **synonymous** with 'best case'
 – Though many times it mistakenly is

• You can have:
 – Big-O for the best, average, worst cases
 – Big-Ω for the best, average, worst cases
 – Big-Θ for the best, average, worst cases

• Note:
 – Big-O and Big-Ω analysis are **ONLY** necessary when the runtime of the algorithm is **data-dependent** (i.e. function of inputs / \(T(n,i) \)).
 – If the code is **NOT data-dependent** then your analysis is valid for any input and thus is already a tight bound (big- Θ)
Worst Case and Big-$$\Omega$$

- The key idea is an algorithm may perform differently for different input cases
 - Imagine an algorithm that processes an array of size n but depends on what data is in the array
- Big-$$O$$ for the worst-case says for REGARDLESS of possible inputs the runtime is bound (at-most) by $$O(f(n))$$
- Big-$$\Omega$$ for the worst-case is attempting to establish a lower bound (at-least) for the worst case (the worst case is just one of the possible input scenarios)
 - If we look at the first data combination in the array and it takes $$n$$ steps then we can say the algorithm is $$\Omega(n)$$.
 - Now we look at the next data combination in the array and the algorithm takes $$n^{1.5}$$. We can now say worst case is $$\Omega(n^{1.5})$$.
- To arrive at $$\Omega(f(n))$$ for the worst-case requires you simply to find AN input case (i.e. the worst case) that requires at least $$f(n)$$ steps
- Cost analogy...

```c
int i; j;
for(i=0; i < n; i++){
    if(a[i][0] == 0){
        for(j=0; j<n; j++)
            a[i][j] = i*j;
    }
}
```

Consider the effect of the 'if' statement. Can it be true for each value of $$i$$? If we don't want to (or can't) determine this we can assume it will be true and say that the upper bound for the runtime is $$O(n^2)$$. To prove it is $$\Theta(n^2)$$ we'd need to prove there is a set of inputs for the a matrix that makes the 'if' true on each iteration (i.e. $$\Omega(n^2))$$.
Steps for Deriving $T(n)$

- Considering an input of size n that requires the maximum runtime, go through each line of the algorithm or code.
- Assume elementary operations such as incrementing a variable occur in constant time.
- If sequential blocks of code have runtime $T_1(n)$ and $T_2(n)$ respectively, then their total runtime will be their sum $T_1(n)+T_2(n)$.
- When we encounter loops, sum the runtime for each iteration of the loop, $T_i(n)$, to get the total runtime for the loop.
 - Nested loops often lead to summations of summations, etc.
Helpful Common Summations

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2)$
 - This is called the arithmetic series

- $\sum_{i=1}^{n} \theta(i^p) = \theta(n^{p+1})$
 - This is a general form of the arithmetic series

- $\sum_{i=0}^{n} c^i = \frac{c^{n+1}-1}{c-1} = \theta(c^n)$
 - This is called the geometric series

- $\sum_{i=1}^{n} \frac{1}{i} = \theta(\log n)$
 - This is called the harmonic series
Deriving T(n)

- Derive an expression, T(n), in terms of the input size for the number of operations/steps that are required to solve a problem
- If is true => 4 "steps"
- Else if is true => 5 "steps"
- Worst case => T(n) = $\theta(1)$

```cpp
#include <iostream>

using namespace std;

int main(int argc, char* argv[])
{
    int i = argc;  // 1
    int x = 5;    // 1

    if(i < x){    // 1
        x--;    // 1
    }
    else if(i > x){  // 1
        x += 2;    // 1
    }
    return 0;
}
```
Deriving $T(n)$

- Since loops repeat you have to take the sum of the steps that get executed over all iterations

- $T(n) = \sum_{i=0}^{n-1} 4 = 4 + 4 + \cdots + 4 = 4 \cdot n$

- $= \theta(n)$

```cpp
#include <iostream>
using namespace std;

int main()
{
    int x;
    for(int i=0; i < N; i++){
        cin >> x;
        if(i < x){
            x--;
        }
        else if(i > x){
            x += 2;
        }
    }
    return 0;
}
```

This code does nothing useful and is just illustrative.
Skills To Gain

- To solve these runtime problems try to break the problem into 3 parts:
 - FIRST, setup the expression (or recurrence relationship) for the number of operations, $T(n)$
 - SECOND, solve to get a closed form for $T(n)$
 - Unwind the recurrence relationship
 - Develop a series summation
 - Solve the series summation
 - THIRD, determine the asymptotic bound for $T(n)$
Loops 1

- Derive an expression, \(T(n) \), in terms of the input size for the number of operations/steps that are required to solve a problem

\[
T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \theta(1) = \sum_{i=0}^{n-1} \theta(n) = \Theta(n^2)
\]
Matrix Multiply

- Derive an expression, $T(n)$, in terms of the input size for the number of operations/steps that are required to solve a problem
- $T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \theta(1) = \theta(n^3)$

```cpp
#include <iostream>
using namespace std;

const int n = 256;
int a[n][n], b[n][n], c[n][n];
int main()
{
    for(int i=0; i < n; i++)
        for(int j=0; j < n; j++)
            c[i][j] = 0;
    for(int k=0; k < n; k++)
        c[i][j] += a[i][k]*b[k][j];
    return 0;
}
```
Sequential Loops

- Is this also n^3?
- _____________
 - 3 for loops, ______________

```cpp
#include <iostream>
using namespace std;

const int n = /* large constant */;

unsigned char image[n][n]

int main()
{
    for(int i=0; i < n; i++){
        image[0][i] = 5;
    }
    for(int j=0; j < n; j++){
        image[1][j] = 5;
    }
    for(int k=0; k < n; k++){
        image[2][k] = 5;
    }
    return 0;
}
```
Runtime Practice #1

• Count steps here...
 – Think about how many times if statement will evaluate true

  ```java
  for(int i=0; i < n; i++){
      if (a[i][0] == 0){
          for (int j = 0; j < i; j++){
              a[i][j] = i*j;
          }
      }
  }
  ```

 Hint: Arithmetic series

• \(T(n) = \) ____________________________ May start with big-O and not worry about input values affecting how many times if statement executes

• \(T(n) = \sum_{i=0}^{n-1} (\theta(1)) + \sum_{i} (\theta(i)) \) Distribute to deal with 'if' separately. Not sure which values of i will trigger the for loop that incurs i steps
 – In the worst case, how many times can the 'if' statement be true? _________________

• \(T(n) = \)
Runtime Practice #2

- $T(n) =$

- $T(n) = \sum_{i=0}^{n-1} \left(\theta(1) + O(\sum_{j=1}^{n} \theta(1)) \right)$ Use big-O since unsure of how many times if statement executes
 - Important: How many times will the 'if' statement be true?

- $T(n) = \sum_{i=0}^{n-1} \theta(1) + \sum_{i} \sum_{j=1}^{n} \theta(1)$
 - The 'if' statement only triggers once! So the inner loop executes only once

- $T(n) =$

```java
for(int i=0; i < n; i++){
    if (i == 0){
        for (int j = 0; j < n; j++){
            a[i][j] = i*j;
        }
    }
}
```
Runtime Practice #3

- $T(n) = \sum_{i=1}^{n} \left(\theta(1) + O(\sum_{j=0}^{n-1} \theta(1)) \right)$
 - big-O indicates we have not considered the 'if' statement but are setting an upper bound

- $T(n) = \sum_{i=1}^{n} \theta(1) + \sum_i \sum_{j=0}^{n-1} \theta(1)$ but we need to use our own analysis skills to find the actual values of i that will cause the 'if' to be true?
 - Use some actual values of n (e.g. $n=9$ or 16). Write out a table to find the pattern.
 - If $n=9$, the 'if' will trigger ___ times for $i = ______________$
 - If $n=16$, the 'if' will trigger ___ times for $i = ______________$
 - The dummy variable of a summation must increment ____ at a time
 - Thus, make a table with some dummy variable (k) that increments 1 at a time and find a relationship to the actual variable, i, for when the if statement will trigger.
 - Solve for upper bound of k
 - Stop when $i = __$, but $i = ___$ so we stop when __________thus solve for k to find that the upper-bound for $k = ______$

- $T(n) =$

```cpp
for (int i = 1; i <= n; i++)
{
    int m = sqrt(n);
    if( i % m == 0){
        for (int j=0; j < n; j++)
            cout << j << " ";
    }
    cout << endl;
}
```

k	1	2	3	...	Arbitrary k	Stop when $k =??$
i					... $i = ______$	Stop when $i = ______$
Key Skill

• The dummy variable (say k) of a summation runs from 1 to an \textbf{UPPER_BOUND} incrementing 1 at a time

• Often our code does work at some other interval such as \(i = \{1\sqrt{n}, 2\sqrt{n}, 3\sqrt{n} \ldots\} \) (or actual values that are not incrementing by 1 at a time)

• You must use your own analytical abilities to find a relationship that converts the dummy variable (k=1,2,3,...) to the actual values [eg. \(i = f(k) = k\sqrt{n}\)], usually by making a table of the dummy variable (k) and the actual code values/variables (i)

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>Arbitrary k</th>
<th>Stop when k =??</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i = _______</td>
<td>Stop when i = _______</td>
</tr>
</tbody>
</table>

• Then use that relationship to find the \textbf{UPPER_BOUND} of the dummy variable

 – In the previous example, we stopped when \(i = n\), thus we would stop when our dummy variable is \(\sqrt{n}\). This then is the upper bound.

• The key skill is to relate the dummy variable to the actual variable values and then find the \textbf{UPPER BOUND} of the dummy variable
It may seem like you can just look for nested loops and then raise n to that power

- 2 nested for loops => $O(n^2)$

But be careful!!

Find $T(n)$ for this example

$\sigma_i = \sum_{j=0}^{n-1} \theta(1)$

$= \sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}$

So our answer is...

```cpp
for (int i = 0; i <= log2(n); i++)
    for (int j=0; j < (int) pow(2,i); j++)
        cout << j << endl;
```

Hint: Geometric series
Runtime Practice #5

• \(T(n) = \)

\[
T(n) = \sum_{i=1}^{n} (\theta(1) + \sum_{j} \theta(1)) = \theta(n) + \sum_{i=1}^{n} \sum_{j} \theta(1)
\]

• Manually, determine how many times the j-loop iterates:
 – When \(i=1 \), j takes on values: __________________________ [Total = _____ iters]
 – When \(i=2 \), j takes on values: __________________________ [Total = _____ iters]
 – When \(i=3 \), j takes on values: __________________________ [Total = _____ iters]

• \(T(n) = \theta(n) + \)

```java
for(int i=1; i <= n; i++){
    for (int j = 0; j < n; j += i){
        a[i][j] = i*j;
    }
}
```

Hint: Harmonic series
Runtime Practice #6

• You have to count steps
 – Look at the update statement
 – Outer loop increments by 1 each time so it will iterate N times
 – Inner loop updates by dividing x in half each iteration?
 – After 1st iteration => x=____
 – After 2nd iteration => x=____
 – After 3rd iteration => x=____
 – Say kth iteration is last => x = ______ = 1
 – Solve for k
 – k = __________ iterations
 – \(\theta(__________) \)

#include <iostream>
using namespace std;
const int n = /* Some constant */;

int main()
{
 for(int i=0; i < n; i++){
 int y=0;
 for(int x=n; x != 1; x=x/2){
 y++;
 }
 cout << y << endl;
 }
 return 0;
}
Importance of Complexity

<table>
<thead>
<tr>
<th>N</th>
<th>O(1)</th>
<th>O(log₂n)</th>
<th>O(n)</th>
<th>O(n*log₂n)</th>
<th>O(n²)</th>
<th>O(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4.3</td>
<td>20</td>
<td>86.4</td>
<td>400</td>
<td>1,048,576</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>7.6</td>
<td>200</td>
<td>1,528.8</td>
<td>40,000</td>
<td>1.60694E+60</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>11.0</td>
<td>2000</td>
<td>21,931.6</td>
<td>4,000,000</td>
<td>#NUM!</td>
</tr>
</tbody>
</table>
EXTRAS
Runtime Practice #7

- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) + O\left(\sum_{j=1}^{i} \theta(1)\right) \right) \)

- Important: How many times will the 'if' statement be true?
- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) \right) + \sum_{i} \sum_{j=1}^{n} \theta(1) \)
 - Find a relationship between a dummy variable, \(k \), that increments by 1 and the values of \(i \) that cause the if statement to trigger

\[
\begin{array}{cccccc}
\begin{array}{c|c|c|c|c|c|c|}
 k & 1 & 2 & 3 & \ldots & \text{Arbitrary } k & \text{Stop when } k = (n/2)+1 \\
 i & 0 & 2 & 4 & \ldots & i = _____ & \text{Stop when } i = _____ \\
\end{array}
\end{array}
\]

- \(T(n) = \)

Recall: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2) \)
Runtime Practice #8

• \(T(n) = \)

• \(T(n) = \sum_i \left(\sum_{j=0}^{i-1} \theta(1) \right) = \sum_i \left(\theta(i) \right) \)

• The number of iterations of the outer loop requires derivation:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Iter}, k & 1 & 2 & 3 & 4 & \ldots & k & \text{Stop at: (log_2 n)} \\
\hline
\text{i after iteration} & 2 & 4 & 8 & 16 & \ldots & 2^k & \text{Stop at: n} \\
\hline
\end{array}
\]

• \(T(n) = \sum_{k=1}^{\log_2(n)} \theta(2^k) \)

• \(T(n) = \theta \left(\frac{2^{\log_2(n)+1}-1}{2-1} \right) = \theta \left(\frac{2^{\log_2(n)2^1}-1}{1} \right) = \theta(2n - 1) = \theta(n) \)

for(int i=1; i <= n; i*=2){
 for (int j = 0; j < i; j++){
 a[i][j] = i*j;
 }
}

Hint: Geometric series
Iterative Binary Search

- Assume n is total array size and let $L = (\text{end-start})$
 - $L = \#$ of items to be searched
- $T(n) = \sum_k \theta(1)$
 - k is the $\#$ of iterations required
- After 1$^{\text{st}}$ iteration $L = n/2$
- After 2$^{\text{nd}}$ iteration $L = n/4$
- After 3$^{\text{rd}}$ iteration $L = n/8$
- ...
- After kth iteration $L = n/2^k$
- We stop when we reach size 0 or 1...when $k = \log_2(n)$
- $T(n) = \sum_{k=1}^{\log_2(n)} \theta(1) = \theta(\log_2(n))$

```c
int main()
{
    int data[4] = {1, 6, 7, 9};
    it_bsearch(3, data, 4);
}

int it_bsearch(int target, int data[], int len)
{
    int start = 0, end = len, mid;

    while (start < end) {
        mid = (start+end)/2;
        if (data[mid] == target){
            return mid;
        } else if (target < data[mid]){
            end = mid-1;
        } else {
            start = mid+1;
        }
    }
    return -1;
}
```
SOLUTIONS
Sequential Loops

• Is this also n^3?
• No!
 – 3 for loops, but not nested
 – $O(n) + O(n) + O(n) = 3*O(n) = O(n)$

```cpp
#include <iostream>
using namespace std;

const int n = /* large constant */;

unsigned char image[n][n]

int main()
{
    for(int i=0; i < n; i++){
        image[0][i] = 5;
    }
    for(int j=0; j < n; j++){
        image[1][j] = 5;
    }
    for(int k=0; k < n; k++){
        image[2][k] = 5;
    }
    return 0;
}
```
Runtime Practice #1

• Count steps here...
 – Think about how many times if statement will evaluate true

\[T(n) = \sum_{i=0}^{n-1} \left(\theta(1) + O(\sum_{j=1}^{i} \theta(1)) \right) \]

May start with big-O and not worry about input values affecting how many times if statement executes

• \[T(n) = \sum_{i=0}^{n-1} (\theta(1)) + \sum_{i=0}^{n-1} (\theta(i)) \]
 Distribute to deal with 'if' separately. Not sure which values of i will trigger the for loop that incurs i steps
 – In the worst case, how many times can the 'if' statement be true? Each iteration (i.e. all n values of i)

• \[T(n) = \sum_{i=0}^{n-1} (\theta(1)) + \sum_{i=0}^{n-1} (\theta(i)) \]

• \[T(n) = \theta(n) + \sum_{i=0}^{n-1} (\theta(i)) = \theta(n) + \theta \left(\frac{n(n-1)}{2} \right) = \theta(n^2) \]

for(int i=0; i < n; i++){
 if (a[i][0] == 0){
 for (int j = 0; j < i; j++){
 a[i][j] = i*j;
 }
 }
}

Hint: Arithmetic series
Runtime Practice #2

- $T(n) = \sum_{i=0}^{n-1} \left(\theta(1) + O\left(\sum_{j=0}^{n-1} \theta(1)\right) \right)$ Use big-O since unsure of how many times if statement executes
 - Important: How many times will the 'if' statement be true?
- $T(n) = \sum_{i=0}^{n-1} \theta(1) + \sum_i \sum_{j=0}^{n-1} \theta(1)$
 - The 'if' statement only triggers once! So the inner loop executes only once
- $T(n) = \theta(n) + 1 \cdot \sum_{j=0}^{n-1} \theta(1) = \theta(n) + \theta(n) = \theta(n)$
Runtime Practice #3

- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) + O \left(\sum_{j=0}^{n-1} \theta(1) \right) \right) \)
 - big-O indicates we have not considered the 'if' statement but are setting an upper bound

- \(T(n) = \sum_{i=1}^{n} \theta(1) + \sum_{i} \sum_{j=0}^{n-1} \theta(1) \) but we need to use our own analysis skills to find the actual values of \(i \) that will cause the 'if' to be true?
 - Use some actual values of \(n \) (e.g. \(n=9 \) or \(16 \)). Write out a table to find the pattern.
 - If \(n=9 \), the 'if' will trigger 3 times for \(i = 3, 6, 9 \)
 - If \(n=16 \), the 'if' will trigger 4 times for \(i = 4, 8, 12, 16 \)
 - The dummy variable of a summation must increment 1 at a time
 - Thus, make a table with some dummy variable (\(k \)) that increments 1 at a time and find a relationship to the actual variable, \(i \), for when the if statement will trigger.
 - Solve for upper bound of \(k \)
 - Stop when \(i = n \), but \(i = k\sqrt{n} \) so we stop when \(k\sqrt{n} = n \) thus solve for \(k \) to find that the upper-bound for \(k = \sqrt{n} \)

- \(T(n) = \theta(n) + \sum_{k=1}^{\sqrt{n}} \sum_{j=0}^{n-1} \theta(1) = \theta(n) + \sum_{k=1}^{\sqrt{n}} \theta(n) = \theta(n) + \theta(n \cdot \sqrt{n}) = \theta(n^{3/2}) \)

```cpp
for (int i = 1; i <= n; i++)
{
  int m = sqrt(n);
  if (i % m == 0){
    for (int j=0; j < n; j++)
      cout << j << " ";
  }
  cout << endl;
}
```
Runtime Practice #4

• It may seem like you can just look for nested loops and then raise n to that power
 — 2 nested for loops => $O(n^2)$
• But be careful!!
• Find $T(n)$ for this example

$$\sum_{i=0}^{\log(n)} \sum_{j=0}^{2^i-1} \theta(1)$$

$$= \sum_{i=0}^{\log(n)} \theta(2^i)$$

• Use the geometric sum eqn.
 $$= \sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}$$
• So our answer is...
 $$= \frac{1-2^{\log(n)+1}}{1-2} = \frac{1-2*2^n}{-1} = \theta(n)$$

```
for (int i = 0; i <= log2(n); i++)
  for (int j=0; j < (int) pow(2,i); j++)
    cout << j << endl;
```

Hint: Geometric series
Runtime Practice #5

- \(T(n) = \)

- \(T(n) = \sum_{i=1}^{n}(\theta(1) + \sum_{j} \theta(1)) = \theta(n) + \sum_{i=1}^{n} \sum_{j} \theta(1) \)

- Manually, determine how many times the j-loop iterates:
 - When \(i=1 \), j takes on values: 0, 1, 2, 3, … , n-1 [Total = n iters]
 - When \(i=2 \), j takes on values: 0, 2, 4, 6, … , n-2 or n-1 [Total = n/2 iters]
 - When \(i=3 \), j takes on values: 0, 3, 6, 9, … [Total = n/3 iters]

- \(T(n) = \theta(n) + \left[\frac{n}{1} + \frac{n}{2} + \frac{n}{3} + \cdots + \frac{n}{n} \right] \theta(1) \)
 \[= \theta(n) + \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right] \theta(n) \]
 \[= \theta(n) + \left(\sum_{i=1}^{n} \frac{1}{i} \right) \cdot \theta(n) = \theta(n) + \log n \cdot \theta(n) = \theta(n \cdot \log n) \]

for(int i=1; i <= n; i++){
 for (int j = 0; j < n; j += i){
 a[i][j] = i*j;
 }
}
Hint: Harmonic series
Runtime Practice #6

- You have to count steps
 - Look at the update statement
 - Outer loop increments by 1 each time so it will iterate N times
 - Inner loop updates by dividing x in half each iteration?
 - After 1st iteration => x=n/2
 - After 2nd iteration => x=n/4
 - After 3rd iteration => x=n/8
 - Say kth iteration is last => x = n/2^k = 1
 - Solve for k
 - k = \log_2(n) iterations
 - \(\theta(n \log(n)) \)

```cpp
#include <iostream>
using namespace std;
const int n = /* Some constant */;
int main()
{
    for(int i=0; i < n; i++){
        int y=0;
        for(int x=n; x != 1; x=x/2){
            y++;
        }
        cout << y << endl;
    }
    return 0;
}
```
Runtime Practice #7

- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) + O\left(\sum_{j=1}^{i} \theta(1) \right) \right) \)

- Important: How many times will the 'if' statement be true?

- \(T(n) = \sum_{i=1}^{n} \left(\theta(1) \right) + \sum_{i} \sum_{j=1}^{n} \theta(1) \)

 - Find a relationship between a dummy variable, \(k \), that increments by 1 and the values of \(i \) that cause the if statement to trigger

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>Arbitrary (k)</th>
<th>Stop when (k = (n/2)+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>...</td>
<td>(i = 2(k-1))</td>
<td>Stop when (i = n)</td>
</tr>
</tbody>
</table>

- \(T(n) = \theta(n) + \sum_{k=1}^{n+1} \sum_{j=1}^{2(k-1)} \theta(1) = \theta(n) + \sum_{k=1}^{n+1} \theta(2k - 1) = \theta(n)+2 \cdot \sum_{k=1}^{n+1} \theta(k) = \theta(n) + 2 \cdot \theta \left(\left[\frac{n}{2} + 1 \right]^2 \right) = \theta(n^2) \)

Recall: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2) \)
Runtime Practice #8

- \(T(n) = \)

- \(T(n) = \sum_i (\sum_{j=0}^{i-1} \theta(1)) = \sum_i (\theta(i)) \)

- The number of iterations of the outer loop requires derivation:

<table>
<thead>
<tr>
<th>Iter, k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>k</th>
<th>(log₂n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i after iteration</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>...</td>
<td>(2^k)</td>
<td>n</td>
</tr>
</tbody>
</table>

- \(T(n) = \sum_{k=1}^{\log_2(n)} \theta(2^k) \)

- \(T(n) = \theta \left(\frac{2^{\log_2(n)+1} - 1}{2-1} \right) = \theta \left(\frac{2^{\log_2(n)}2^1 - 1}{1} \right) = \theta(2n - 1) = \theta(n) \)

for(int i=1; i <= n; i*=2){
 for (int j = 0; j < i; j++){
 a[i][j] = i*j;
 }
}