
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Runtime Complexity

Mark Redekopp

David Kempe

Sandra Batista

Revised: 01/2022

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

REVIEW FROM CS 170

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Steps for Deriving T(n)

• Considering an input of size n that requires the maximum
runtime, go through each line of the algorithm or code

• Assume elementary operations such as incrementing a
variable occur in constant time

• If sequential blocks of code have runtime T1(n) and T2(n)
respectively, then their total runtime will be their sum
T1(n)+T2(n)

• When we encounter loops, sum the runtime for each
iteration, i, of the loop, Ti(n), to get the total runtime for the
loop.
– Nested loops often lead to summations of summations, etc.

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Asymptotic Notation
• T(n) is said to be O(f(n)) if…

– T(n) < a*f(n) for n > n0 (where a and n0

are constants)

– Essentially an upper-bound

– We'll focus on big-O for the worst case

• T(n) is said to be Ω(f(n)) if…
– T(n) > a*f(n) for n > n0 (where a and n0

are constants)

– Essentially a lower-bound

• T(n) is said to be Θ(f(n)) if…
– T(n) is both O(f(n)) AND Ω(f(n))

n0

a*f(n)

T(n)

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data Dependent or Not [T(n) or T(n,i)]

• One of the first questions you should ask yourself when starting your
analysis is, "Is this code's runtime data-dependent or not (depending on
the particular values of the data as opposed to just how many values exist
(i.e. n))

• Example 1: Finding the size of a linked list (does / does not) depend on
the data in the linked list?

– Does NOT: We must walk all n items regardless of their value. Thus, the
runtime is just a function of n, T(n).

• Example 2: Finding if an element exists in the linked lists (does / does not)
depend on the data in the linked list

– Does: How many items we walk depends on the data values in the list and the
data value we are finding. Thus, the runtime is a function of n and the input
values, i => T(n,i)

NULL

val next

3 0x1c0

val next

9
0x0

NULL

0x148

head

0x148 0x1c0

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Worst Case and Big-
• What's the lower bound on List::find(val)

– Is it Ω(1) since we might find the given value on the first element?

– Well, it could be if we are finding a lower bound on the 'best case'

• Big-Ω is NOT synonymous with 'best case'
– Though many times it mistakenly is assumed as such

• You can have:

– Big-O for the best, average, worst cases

– Big-Ω for the best, average, worst cases

– Big-Θ for the best, average, worst cases

• Note:

– Big-O and Big-Ω analyses are ONLY necessary when the runtime of the algorithm is
data-dependent (i.e. function of input size (n) AND values (i) => T(n,i)).

– If the code is NOT data-dependent then your analysis is valid for any input and thus
is already a tight bound (big- Θ)

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Worst Case and Big-
• The key idea is an algorithm may perform differently for

different input cases

– Imagine an algorithm that processes an array of size n but depends
on what data is in the array

• Big-O for the worst-case means REGARDLESS of possible inputs
the runtime is bound (at-most) by O(f(n))

• Big-Ω for the worst-case is attempting to establish a lower
bound (at-least) for the worst case (the worst case is just one of
the possible input scenarios)

– If we look at the first data combination in the array and it takes n
steps then we can say the algorithm is Ω(n).

– Now we look at the next data combination in the array and the
algorithm takes n1.5. We can now say worst case is Ω(n1.5).

• To arrive at Ω(f(n)) for the worst-case requires you simply try to
find AN input case (i.e. the worst case) that requires at least f(n)
steps

• Cost analogy…

int i; j;
for(i=0; i < n; i++){
if(a[i][0] == 0){
for(j=0; j<n; j++)
{
a[i][j] = i*j;
}

}
}

Consider the effect of the 'if'

statement. Can it be true

for each value of i? If we

don't want to (or can't)

determine this, we can

assume it will be true and

say that the upper bound for

the runtime is O(n2). To

prove it is Θ(n2) we'd need

to prove there is a possible

input matrix that makes the

'if' true on each iteration

(i.e. Ω(n2)).

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Helpful Common Summations

• σ𝑖=1
𝑛 𝑖 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2

– This is called the arithmetic series

• σ𝑖=1
𝑛 𝜃(𝑖𝑝) = 𝜃 𝑛𝑝+1

– This is a general form of the arithmetic series

• σ𝑖=0
𝑛 𝑐𝑖 =

𝑐𝑛+1−1

𝑐−1
= 𝜃 𝑐𝑛

– This is called the geometric series

• σ𝑖=1
𝑛 1

𝑖
= 𝜃 log 𝑛

– This is called the harmonic series

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #1
• It may seem like you can just look

for nested loops and then raise n to
that power
– 2 nested for loops => O(n2)

• But be careful!!

• Find T(n) for this example

• σ𝑖=0
________σ𝑗=0

________𝜃(1)

• =

• =σ𝑖=0
𝑛−1𝑎𝑖 =

𝑎𝑛−1

𝑎−1

• So our answer is…

for (int i = 0; i <= log2(n); i ++)
for (int j=0; j < (int) pow(2,i); j++)

cout << j << endl;

Hint: Geometric series

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #2

• Count steps here…

– Think about how many times
if statement will evaluate true

• 𝑇 𝑛 = __ May start with big-O if we
aren't sure how many times the if statement will execute just to get a handle
on the upper bound of the worst case. But to get a tight bound, we will need
to think carefully and determine how many times it really executes

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 +σ𝑖 𝜃 𝑖 Distribute to deal with 'if' separately. Not

sure which values of i will trigger the for loop that incurs i steps
– In the worst case, how many times can the 'if' statement be true? __________________

• 𝑇 𝑛 =

for(int i=0; i < n; i++){
if (a[i] == 0){
for (int j = 0; j < i; j++){

a[i] = i*j;
}

}
} Hint: Arithmetic series

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #3

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + 𝑂 σ𝑗=0

𝑛−1𝜃 1 Use big-O to start if we

are unsure of how many times if statement executes
– Important: How many times will the ′if′ statement be true?

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + σ𝑖σ𝑗=0

𝑛−1𝜃 1

– The 'if' statement only triggers once! So the inner loop executes only once

• 𝑇 𝑛 =

for(int i=0; i < n; i++){
if (i == 0){

for (int j = 0; j < n; j++){
a[i][j] = i*j;

}
}

}

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #4

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + 𝑂 σ𝑗=0

𝑛−1𝜃 1

– big-O indicates we have not considered
the 'if' statement but are setting an upper bound

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑖σ𝑗=0

𝑛−1𝜃 1 but we need to

user our own analysis skills to find the actual values of i
that will cause the 'if' to be true?

– Use some actual values of n (e.g. n=9 or 16). Write out a table to find the pattern.

– If n=9, the 'if' will trigger ___ times for i = ________________

– If n=16, the 'if' will trigger ___ times for i = _______________

– The dummy variable of a summation must increment ____ at a time

– Thus, make a table with some dummy variable (k) that increments 1 at a time and find
a relationship to the actual variable, i, for when the if statement will trigger.

– Solve for upper bound of k
• Stop when i = __, but i = _____ so we

stop when ________________thus solve for k to find that the upper-bound for k = _________

• 𝑇 𝑛 =

for (int i = 1; i <= n; i++)
{ int m = sqrt(n);

if(i % m == 0){
for (int j=0; j < n; j++)

cout << j << " ";
}
cout << endl;

}

k 1 2 3 … Arbitrary k Stop when k =??

i … i = __________ Stop when i = _______

You must use your analytical skills to determine how many times the

'if' will trigger and then sum the inner operations that many times.

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Key Skill
• The dummy variable (say k) of a summation runs from 1 to an

UPPER_BOUND incrementing 1 at a time

• Often our code performs work at some other interval such as i =
{1 𝑛, 2 𝑛, 3 𝑛 …} (or actual values that are not incrementing by 1 at a time)

• You must use your own analytical abilities to find a relationship that
converts the dummy variable (k=1,2,3,…) to the actual values [eg. i =
f(k) = k 𝑛], usually by making a table of the dummy variable (k) and
the actual code values/variables (i)

• Then use that relationship to find the UPPER_BOUND of the dummy
variable

– In the previous example, we stopped when i = n, thus we would stop when
our dummy variable is 𝑛. This then is the upper bound.

• The key skill is to relate the dummy variable to the actual variable
values and then find the UPPER BOUND of the dummy variable

k 1 2 3 … Arbitrary k Stop when k =??

i=f(k) … i = __________ Stop when i = _______

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #6
• You have to count steps

– Look at the update statement

– Outer loop increments by 1 each time so it
will iterate N times

– Inner loop updates by dividing x in half
each iteration?

– After 1st iteration => x=____

– After 2nd iteration => x=____

– After 3rd iteration => x=____

– Say kth iteration is last => x = ______ = 1

– Solve for k

– k = __________ iterations

– 𝜃(_____________)

#include <iostream>
using namespace std;
const int n = /* Some constant */;

int main()
{
for(int i=0; i < n; i++){
int y=0;
for(int x=n; x != 1; x=x/2){

y++;
}
cout << y << endl;

}
return 0;

}

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRE-SUMMER 2021 SLIDES

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

2

Motivation

• You are given a large data set with n = 500,000 genetic
markers for 5000 patients and you want to examine that data
for genetic markers that maybe correlated to a disease that
the patients have.

• You are given two algorithms, Algorithm A and Algorithm B, to
solve this problem. You are given the implementation, code,
and description of each algorithm.

• You need a solution as soon as possible to give medical
professionals more data to advise patients and apply for
grants for more funding.

• How would you determine which algorithm runs faster?

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime

• It is hard to compare the run time of an algorithm on actual hardware

– Time may vary based on speed of the HW, etc.

• The same program may take 1 sec. on your laptop but 0.5 second on a high
performance server

• If we want to compare 2 algorithms that perform the same task we could
try to count operations (regardless of how fast the operation can execute
on given hardware)…

– But what is an operation?

– How many operations is: i++ ?

– i++ actually requires grabbing the value of i from memory and bringing it to
the processor, then adding 1, then putting it back in memory. Should that be
3 operations or 1?

– Its painful to count 'exact' numbers operations

• Big-O, Big-Ω, and Θ notation allows us to be more general (or "sloppy" as
you may prefer)

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Complexity Analysis
• To find upper or lower bounds on the

complexity, we must consider the set of all
possible inputs, I, of size, n

• Derive an expression, T(n), in terms of the
input size, n, for the number of
operations/steps that are required to solve
the problem of a given input, i
– Some algorithms depend on i and n

• Find(3) in the list shown vs. Find(2)

– Others just depend on n

• Push_back / Append

• Which inputs though?
– Best, worst, or "typical/average" case?

• We will always apply it to the "worst case"
– That's usually what people care about

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

Note: Running time of an algorithm
is not just based on input size (n),
BUT input size (n) and its value (i)

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Time Complexity Analysis

• Case Analysis is when you determine which input must be used to define
the runtime function, T(n), for inputs of size n

• Best-case analysis: Find the input of size n that takes the minimum
amount of time.

• Average-case analysis: Find the runtime for all inputs of size n and take
the average of all of the runtimes. (This assumes a distribution over the
inputs, but uniform is a reasonable choice.)

• Worst-case analysis: Find the input, i, of size n that takes the maximum
amount of time.

• Our focus will be on worst-case analysis, but for many examples, the
runtime is the same on any input of size n. Please consider this as we
study them.

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Steps for Performing Runtime Analysis of
Algorithms

• We perform worst-case analysis in determining the runtime
function on inputs of size n, T(n).

• To do so, we need to find at least one input of size n that will
require the maximum runtime of the algorithm.
– In many of the examples we will examine, the algorithm will take the

same amount of running time on any input (i.e. only depend on n)

• Using that input, express the runtime of the algorithm (on
that input case) as a function of n, T(n).
– This is done by stepping through the code and counting the steps that

will be done.

• Once we have a function for the runtime, T(n), we apply
asymptotic notation to that function in order to find the order
of growth of the runtime function, T(n).

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Asymptotic Notation
• T(n) is said to be O(f(n)) if…

– T(n) < a*f(n) for n > n0 (where a and n0

are constants)

– Essentially an upper-bound

– We'll focus on big-O for the worst case

• T(n) is said to be Ω(f(n)) if…
– T(n) > a*f(n) for n > n0 (where a and n0

are constants)

– Essentially a lower-bound

• T(n) is said to be Θ(f(n)) if…
– T(n) is both O(f(n)) AND Ω(f(n))

n0

a*f(n)

T(n)

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Worst Case and Big-
• What's the lower bound on List::find(val)

– Is it Ω(1) since we might find the given value on the first element?

– Well it could be if we are finding a lower bound on the 'best case'

• Big-Ω does NOT have to be synonymous with 'best case'
– Though many times it mistakenly is

• You can have:

– Big-O for the best, average, worst cases

– Big-Ω for the best, average, worst cases

– Big-Θ for the best, average, worst cases

• Note:

– Big-O and Big-Ω analysis are ONLY necessary when the runtime of the algorithm is
data-dependent (i.e. function of inputs / T(n,i)).

– If the code is NOT data-dependent then your analysis is valid for any input and thus
is already a tight bound (big- Θ)

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Worst Case and Big-
• The key idea is an algorithm may perform differently for

different input cases

– Imagine an algorithm that processes an array of size n but depends
on what data is in the array

• Big-O for the worst-case says for REGARDLESS of possible inputs
the runtime is bound (at-most) by O(f(n))

• Big-Ω for the worst-case is attempting to establish a lower
bound (at-least) for the worst case (the worst case is just one of
the possible input scenarios)

– If we look at the first data combination in the array and it takes n
steps then we can say the algorithm is Ω(n).

– Now we look at the next data combination in the array and the
algorithm takes n1.5. We can now say worst case is Ω(n1.5).

• To arrive at Ω(f(n)) for the worst-case requires you simply to find
AN input case (i.e. the worst case) that requires at least f(n)
steps

• Cost analogy…

int i; j;
for(i=0; i < n; i++){
if(a[i][0] == 0){
for(j=0; j<n; j++)
{
a[i][j] = i*j;
}

}
}

Consider the effect of the 'if'

statement. Can it be true

for each value of i? If we

don't want to (or can't)

determine this we can

assume it will be true and

say that the upper bound for

the runtime is O(n2). To

prove it is Θ(n2) we'd need

to prove there is a set of

inputs for the a matrix that

makes the 'if' true on each

iteration

(i.e. Ω(n2)).

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Steps for Deriving T(n)

• Considering an input of size n that requires the maximum
runtime, go through each line of the algorithm or code

• Assume elementary operations such as incrementing a
variable occur in constant time

• If sequential blocks of code have runtime T1(n) and T2(n)
respectively, then their total runtime will be their sum
T1(n)+T2(n)

• When we encounter loops, sum the runtime for each iteration
of the loop, Ti(n), to get the total runtime for the loop.
– Nested loops often lead to summations of summations, etc.

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Helpful Common Summations

• σ𝑖=1
𝑛 𝑖 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2

– This is called the arithmetic series

• σ𝑖=1
𝑛 𝜃(𝑖𝑝) = 𝜃 𝑛𝑝+1

– This is a general form of the arithmetic series

• σ𝑖=0
𝑛 𝑐𝑖 =

𝑐𝑛+1−1

𝑐−1
= 𝜃 𝑐𝑛

– This is called the geometric series

• σ𝑖=1
𝑛 1

𝑖
= 𝜃 log 𝑛

– This is called the harmonic series

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Deriving T(n)
• Derive an expression, T(n), in terms of

the input size for the number of
operations/steps that are required to
solve a problem

• If is true => 4 "steps"

• Else if is true => 5 "steps"

• Worst case => T(n) = 𝜃(1)

#include <iostream>

using namespace std;

int main(int argc, char* argv[])
{

int i = argc;

int x = 5;

if(i < x){
x--;

}
else if(i > x){

x += 2;
}
return 0;

}

1

1

1
1

1
1

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Deriving T(n)
• Since loops repeat you have to take the

sum of the steps that get executed over
all iterations

• 𝑇 𝑛 =

• = σ𝑖=0
𝑛−14 = 4 + 4 +⋯4 = 4 ∗ 𝑛

= 𝜃(𝑛)

#include <iostream>
using namespace std;

int main()
{

int x;
for(int i=0; i < N; i++){

cin >> x;
if(i < x){

x--;
}
else if(i > x){

x += 2;
}

}
return 0;

}

This code does nothing

useful and is just illustrative

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Skills To Gain

• To solve these runtime problems try to break the
problem into 3 parts:

• FIRST, setup the expression (or recurrence
relationship) for the number of operations, T(n)

• SECOND, solve to get a closed form for T(n)

– Unwind the recurrence relationship

– Develop a series summation

– Solve the series summation

• THIRD, determine the asymptotic bound for T(n)

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops 1
• Derive an expression, T(n), in terms of

the input size for the number of
operations/steps that are required to
solve a problem

• 𝑇 𝑛 =

• = σ𝑖=0
𝑛−1σ𝑗=0

𝑛−1𝜃(1) = σ𝑖=0
𝑛−1𝜃 𝑛 = Θ(n2)

#include <iostream>

using namespace std;
const int n = 256;
unsigned char image[n][n]
int main()
{
for(int i=0; i < n; i++){
for(int j=0; j < n; j++){

image[i][j] = 0;
}

}
return 0;

}

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Matrix Multiply
• Derive an expression, T(n), in terms

of the input size for the number of
operations/steps that are required
to solve a problem

• 𝑇 𝑛 =

• = σ𝑖=0
𝑛−1σ𝑗=0

𝑛−1σ𝑘=0
𝑛−1𝜃(1) = 𝜃(𝑛3)

#include <iostream>
using namespace std;
const int n = 256;
int a[n][n], b[n][n], c[n][n];
int main()
{
for(int i=0; i < n; i++){
for(int j=0; j < n; j++){
c[i][j] = 0;
for(int k=0; k < n; k++){
c[i][j] += a[i][k]*b[k][j];

}
}

}
return 0;

}

C A B

*=

Traditional Multiply

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequential Loops

• Is this also n3?

• __________
– 3 for loops, ______________

#include <iostream>
using namespace std;

const int n = /* large constant */;

unsigned char image[n][n]
int main()
{
for(int i=0; i < n; i++){
image[0][i] = 5;

}
for(int j=0; j < n; j++){
image[1][j] = 5;

}
for(int k=0; k < n; k++){
image[2][k] = 5;

}
return 0;
}

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #1
• It may seem like you can just look

for nested loops and then raise n to
that power
– 2 nested for loops => O(n2)

• But be careful!!

• Find T(n) for this example

• σ𝑖=0
________σ𝑗=0

________𝜃(1)

• =

• Use the geometric sum eqn.

• =σ𝑖=0
𝑛−1𝑎𝑖 =

1−𝑎𝑛

1−𝑎

• So our answer is…

for (int i = 0; i <= log2(n); i ++)
for (int j=0; j < (int) pow(2,i); j++)

cout << j << endl;

Hint: Geometric series

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #2

• Count steps here…

– Think about how many times
if statement will evaluate true

• 𝑇 𝑛 = __ May start with big-O and
not worry about input values affecting how many times if statement
executes

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 +σ𝑖 𝜃 𝑖 Distribute to deal with 'if' separately. Not

sure which values of i will trigger the for loop that incurs i steps
– In the worst case, how many times can the 'if' statement be true? __________________

• 𝑇 𝑛 =

for(int i=0; i < n; i++){
if (a[i][0] == 0){
for (int j = 0; j < i; j++){

a[i][j] = i*j;
}

}
} Hint: Arithmetic series

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #3

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + 𝑂 σ𝑗=1

𝑛 𝜃 1 Use big-O since unsure of

how many times if statement executes
– Important: How many times will the ′if′ statement be true?

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + σ𝑖σ𝑗=1

𝑛 𝜃 1

– The 'if' statement only triggers once! So the inner loop executes only once

• 𝑇 𝑛 =

for(int i=0; i < n; i++){
if (i == 0){

for (int j = 0; j < n; j++){
a[i][j] = i*j;

}
}

} You must use your analytical skills to determine

how many times the 'if' will trigger and then sum

the inner operations that many times.

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #4

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + 𝑂 σ𝑗=0

𝑛−1𝜃 1

– big-O indicates we have not considered
the 'if' statement but are setting an upper bound

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑖σ𝑗=0

𝑛−1𝜃 1 but we need to

user our own analysis skills to find the actual values of i that will cause the 'if' to be true?

– Use some actual values of n (e.g. n=9 or 16). Write out a table to find the pattern.

– If n=9, the 'if' will trigger ___ times for i = ________________

– If n=16, the 'if' will trigger ___ times for i = _______________

– The dummy variable of a summation must increment ____ at a time

– Thus, make a table with some dummy variable (k) that increments 1 at a time and find
a relationship to the actual variable, i, for when the if statement will trigger.

– Solve for upper bound of k
• Stop when i = __, but i = _____ so we

stop when ________________thus solve for k to find that the upper-bound for k = _________

• 𝑇 𝑛 =

for (int i = 1; i <= n; i++)
{ int m = sqrt(n);

if(i % m == 0){
for (int j=0; j < n; j++)

cout << j << " ";
}
cout << endl;

}

k 1 2 3 … Arbitrary k Stop when k =??

i … i = __________ Stop when i = _______

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Key Skill
• The dummy variable (say k) of a summation runs from 1 to an

UPPER_BOUND incrementing 1 at a time

• Often our code does work at some other interval such as i =
{1 𝑛, 2 𝑛, 3 𝑛 …} (or actual values that are not incrementing by 1 at a time)

• You must use your own analytical abilities to find a relationship that
converts the dummy variable (k=1,2,3,…) to the actual values [eg. i =
f(k) = k 𝑛], usually by making a table of the dummy variable (k) and
the actual code values/variables (i)

• Then use that relationship to find the UPPER_BOUND of the dummy
variable

– In the previous example, we stopped when i = n, thus we would stop when
our dummy variable is 𝑛. This then is the upper bound.

• The key skill is to relate the dummy variable to the actual variable
values and then find the UPPER BOUND of the dummy variable

k 1 2 3 … Arbitrary k Stop when k =??

i … i = __________ Stop when i = _______

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #5

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑗 𝜃 1 = 𝜃 𝑛 + σ𝑖=1

𝑛 σ𝑗 𝜃 1

• Manually, determine how many times the j-loop iterates:

– When i=1, j takes on values: __________________________ [Total = _____ iters]

– When i=2, j takes on values: __________________________ [Total = _____ iters]

– When i=3, j takes on values: __________________________ [Total = _____ iters]

• 𝑇 𝑛 = 𝜃 𝑛 +

for(int i=1; i <= n; i++){
for (int j = 0; j < n; j += i){

a[i][j] = i*j;
}

} Hint: Harmonic series

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #6
• You have to count steps

– Look at the update statement

– Outer loop increments by 1 each time so it
will iterate N times

– Inner loop updates by dividing x in half
each iteration?

– After 1st iteration => x=____

– After 2nd iteration => x=____

– After 3rd iteration => x=____

– Say kth iteration is last => x = ______ = 1

– Solve for k

– k = __________ iterations

– 𝜃(_____________)

#include <iostream>
using namespace std;
const int n = /* Some constant */;

int main()
{
for(int i=0; i < n; i++){
int y=0;
for(int x=n; x != 1; x=x/2){

y++;
}
cout << y << endl;

}
return 0;

}

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Importance of Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4 400 1,048,576

200 1 7.6 200 1,528.8 40,000 1.60694E+60

2000 1 11.0 2000 21,931.6 4,000,000 #NUM!

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

N

R
u
n
-t

im
e

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

R
u
n
-t

im
e

N

N2

N*log2(N)

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

EXTRAS

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #7

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + 𝑂 σ𝑗=1

𝑖 𝜃 1

• Important: How many times will the ′if′ statement be true?

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑖σ𝑗=1

𝑖 𝜃 1

– Find a relationship between a dummy variable, k, that increments by 1
and the values of i that cause the if statement to trigger

• 𝑇 𝑛 =

for(int i=0; i < n; i++){
if ((i% 2) == 0){
for (int j = 0; j < i; j++)

a[i][j] = i*j;
}
else { a[i][0] = i; }

}

k 1 2 3 … Arbitrary k Stop when k = (n/2)+1

i 0 2 4 … i = __________ Stop when i = ______

Recall: σ𝑖=1
𝑛 𝑖 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #8

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖 σ𝑗=0
𝑖−1 𝜃 1 =

= σ𝑖 𝜃 𝑖

• The number of iterations of the outer loop requires
derivation:

• 𝑇 𝑛 = σ𝑘=1
𝑙𝑜𝑔2 𝑛

𝜃 2𝑘

• 𝑇 𝑛 = 𝜃
2𝑙𝑜𝑔2 𝑛 +1−1

2−1
= 𝜃

2𝑙𝑜𝑔2 𝑛 21−1

1
=

𝜃 2𝑛 − 1 = 𝜃 𝑛

for(int i=1; i <= n; i*=2){
for (int j = 0; j < i; j++){

a[i][j] = i*j;
}

}

Iter, k 1 2 3 4 … k Stop at: (log2n)

i after iteration 2 4 8 16 … 2k Stop at: n

Hint: Geometric series

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterative Binary Search

• Assume n is total array size and let
L = (end-start)

– L = # of items to be searched

• 𝑇 𝑛 = σ𝑘 𝜃 1

– k is the # of iterations required

• After 1st iteration L = n/2

• After 2nd iteration L = n/4

• After 3rd iteration L = n/8

• …

• After kth iteration L = n/2k

• We stop when we reach size 0 or
1…when k = log2(n)

• 𝑇 𝑛 =

σ𝑘=1
𝑙𝑜𝑔

2
(𝑛)

𝜃 1 = 𝜃 𝑙𝑜𝑔2(𝑛)

int main()
{ int data[4] = {1, 6, 7, 9};

it_bsearch(3,data, 4);
}

int it_bsearch(int target,
int data[],int len)

{
int start = 0, end = len, mid;

while (start < end) {
mid = (start+end)/2;
if (data[mid] == target){

return mid;
} else if (target < data[mid]){

end = mid-1;
} else {

start = mid+1;
}

}
return -1;

}

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequential Loops

• Is this also n3?

• No!
– 3 for loops, but not nested

– O(n) + O(n) + O(n) = 3*O(n) = O(n)

#include <iostream>
using namespace std;

const int n = /* large constant */;

unsigned char image[n][n]
int main()
{
for(int i=0; i < n; i++){
image[0][i] = 5;

}
for(int j=0; j < n; j++){
image[1][j] = 5;

}
for(int k=0; k < n; k++){
image[2][k] = 5;

}
return 0;
}

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #1
• It may seem like you can just look

for nested loops and then raise n to
that power
– 2 nested for loops => O(n2)

• But be careful!!

• Find T(n) for this example

• σ𝑖=0
lg(𝑛)σ𝑗=0

2𝑖−1𝜃(1)

• =σ𝑖=0
lg(𝑛)

𝜃(2𝑖)

• Use the geometric sum eqn.

• =σ𝑖=0
𝑛−1𝑎𝑖 =

𝑎𝑛−1

𝑎−1

• So our answer is…

•
2lg 𝑛 +1−1

2−1
=

2∗𝑛−1

1
= 𝜃(𝑛)

for (int i = 0; i <= log2(n); i ++)
for (int j=0; j < (int) pow(2,i); j++)

cout << j << endl;

Hint: Geometric series

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #2

• Count steps here…

– Think about how many times
if statement will evaluate true

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + 𝑂 σ𝑗=0

𝑖−1 𝜃 1 May start with big-O and not worry

about input values affecting how many times if statement executes

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 +σ𝑖 𝜃 𝑖 Distribute to deal with 'if' separately. Not

sure which values of i will trigger the for loop that incurs i steps
– In the worst case, how many times can the 'if' statement be true? Each iteration (i.e. all n

values of i)

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 +σ𝑖=0

𝑛−1 𝜃 𝑖

• 𝑇 𝑛 = 𝜃 𝑛 + σ𝑖=0
𝑛−1 𝜃 𝑖 = 𝜃 𝑛 + 𝜃

𝑛(𝑛−1)

2
= 𝜃 𝑛2

for(int i=0; i < n; i++){
if (a[i][0] == 0){
for (int j = 0; j < i; j++){

a[i][j] = i*j;
}

}
} Hint: Arithmetic series

48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #3

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + 𝑂 σ𝑗=0

𝑛−1𝜃 1 Use big-O since unsure of

how many times if statement executes
– Important: How many times will the ′if′ statement be true?

• 𝑇 𝑛 = σ𝑖=0
𝑛−1 𝜃 1 + σ𝑖σ𝑗=0

𝑛−1𝜃 1

– The 'if' statement only triggers once! So the inner loop executes only once

• 𝑇 𝑛 = 𝜃 𝑛 + 1 ∙ σ𝑗=0
𝑛−1𝜃 1 = 𝜃 𝑛 + 𝜃 𝑛 = 𝜃 𝑛

for(int i=0; i < n; i++){
if (i == 0){

for (int j = 0; j < n; j++){
a[i][j] = i*j;

}
}

} You must use your analytical skills to determine

how many times the 'if' will trigger and then sum

the inner operations that many times.

49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #4

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + 𝑂 σ𝑗=0

𝑛−1𝜃 1

– big-O indicates we have not considered
the 'if' statement but are setting an upper bound

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑖σ𝑗=0

𝑛−1𝜃 1 but we need to

user our own analysis skills to find the actual values of i that will cause the 'if' to be true?

– Use some actual values of n (e.g. n=9 or 16). Write out a table to find the pattern.

– If n=9, the 'if' will trigger 3 times for i = 3, 6, 9

– If n=16, the 'if' will trigger 4 times for i = 4, 8, 12, 16

– The dummy variable of a summation must increment 1 at a time

– Thus, make a table with some dummy variable (k) that increments 1 at a time and find
a relationship to the actual variable, i, for when the if statement will trigger.

– Solve for upper bound of k
• Stop when i = n, but i = k 𝑛 so we

stop when k 𝑛 = 𝑛 thus solve for k to find that the upper-bound for k = 𝑛

• 𝑇 𝑛 = 𝜃 𝑛 + σ𝑘=1
𝑛 σ𝑗=0

𝑛−1𝜃 1 = 𝜃 𝑛 + σ𝑘=1
𝑛 𝜃 𝑛 = 𝜃 𝑛 + 𝜃 𝑛 ∙ 𝑛 = 𝜃 𝑛 Τ3 2

for (int i = 1; i <= n; i++)
{ int m = sqrt(n);

if(i % m == 0){
for (int j=0; j < n; j++)

cout << j << " ";
}
cout << endl;

}

k 1 2 3 … Arbitrary k Stop when k =??

i 1 𝑛 2 𝑛 3 𝑛 … i = k 𝑛 Stop when i = n

50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #5

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑗 𝜃 1 = 𝜃 𝑛 + σ𝑖=1

𝑛 σ𝑗 𝜃 1

• Manually, determine how many times the j-loop iterates:

– When i=1, j takes on values: 0, 1, 2, 3, … , n-1 [Total = n iters]

– When i=2, j takes on values: 0, 2, 4, 6, … , n-2 or n-1 [Total = n/2 iters]

– When i=3, j takes on values: 0, 3, 6, 9, … [Total = n/3 iters]

• 𝑇 𝑛 = 𝜃 𝑛 +
𝑛

1
+

𝑛

2
+

𝑛

3
+⋯+

𝑛

𝑛
𝜃 1

= 𝜃 𝑛 +
1

1
+

1

2
+

1

3
+⋯+

1

𝑛
𝜃 𝑛

= 𝜃 𝑛 + σ𝑖=1
𝑛 1

𝑖
∙ 𝜃 𝑛 = 𝜃 𝑛 + log 𝑛 ∙ 𝜃 𝑛 = 𝜃 𝑛 ∙ log 𝑛

for(int i=1; i <= n; i++){
for (int j = 0; j < n; j += i){

a[i][j] = i*j;
}

} Hint: Harmonic series

51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #6
• You have to count steps

– Look at the update statement

– Outer loop increments by 1 each time so it
will iterate N times

– Inner loop updates by dividing x in half
each iteration?

– After 1st iteration => x=n/2

– After 2nd iteration => x=n/4

– After 3rd iteration => x=n/8

– Say kth iteration is last => x = n/2k = 1

– Solve for k

– k = log2(n) iterations

– 𝜃(n*log(n))

#include <iostream>
using namespace std;
const int n = /* Some constant */;

int main()
{
for(int i=0; i < n; i++){
int y=0;
for(int x=n; x != 1; x=x/2){

y++;
}
cout << y << endl;

}
return 0;

}

52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #7
• 𝑇 𝑛 = σ𝑖=1

𝑛 𝜃 1 + 𝑂 σ𝑗=1
𝑖 𝜃 1

• Important: How many times will the ′if′ statement be true?

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝜃 1 + σ𝑖σ𝑗=1

𝑖 𝜃 1

– Find a relationship between a dummy variable, k, that increments by 1
and the values of i that cause the if statement to trigger

• 𝑇 𝑛 = 𝜃 𝑛 + σ
𝑘=1

𝑛

2
+1

σ
𝑗=1
2(𝑘−1)

𝜃 1 = 𝜃 𝑛 + σ
𝑘=1

𝑛

2
+1

𝜃 2𝑘 − 2 =

𝜃 𝑛 +2 ∙ ෍

𝑘=1

𝑛
2+1

𝜃 𝑘 = 𝜃 𝑛 + 2 ∙ 𝜃
𝑛

2
+ 1

2

= 𝜃 𝑛2

for(int i=0; i < n; i++){
if ((i% 2) == 0){
for (int j = 0; j < i; j++)

a[i][j] = i*j;
}
else { a[i][0] = i; }

}

k 1 2 3 … Arbitrary k Stop when k = (n/2)+1

i 0 2 4 … i = 2(𝑘 − 1) Stop when i = n

Recall: σ𝑖=1
𝑛 𝑖 =

𝑛(𝑛+1)

2
= 𝜃 𝑛2

53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime Practice #8

• 𝑇 𝑛 =

• 𝑇 𝑛 = σ𝑖 σ𝑗=0
𝑖−1 𝜃 1 =

= σ𝑖 𝜃 𝑖

• The number of iterations of the outer loop requires
derivation:

• 𝑇 𝑛 = σ𝑘=1
𝑙𝑜𝑔2 𝑛

𝜃 2𝑘

• 𝑇 𝑛 = 𝜃
2𝑙𝑜𝑔2 𝑛 +1−1

2−1
= 𝜃

2𝑙𝑜𝑔2 𝑛 21−1

1
=

𝜃 2𝑛 − 1 = 𝜃 𝑛

for(int i=1; i <= n; i*=2){
for (int j = 0; j < i; j++){

a[i][j] = i*j;
}

}

Iter, k 1 2 3 4 … k (log2n)

i after iteration 2 4 8 16 … 2k n

Hint: Geometric series

	Slide 1: CSCI 104 Runtime Complexity
	Slide 2: Review from CS 170
	Slide 3: Steps for Deriving T(n)
	Slide 4: Asymptotic Notation
	Slide 5: Data Dependent or Not [T(n) or T(n,i)]
	Slide 6: Worst Case and Big-
	Slide 7: Worst Case and Big-
	Slide 8: Helpful Common Summations
	Slide 9: Runtime Practice #1
	Slide 10: Runtime Practice #2
	Slide 11: Runtime Practice #3
	Slide 12: Runtime Practice #4
	Slide 13: Key Skill
	Slide 14: Runtime Practice #6
	Slide 15: PRE-Summer 2021 slides
	Slide 16: Motivation
	Slide 17: Runtime
	Slide 18: Complexity Analysis
	Slide 19: Time Complexity Analysis
	Slide 20: Steps for Performing Runtime Analysis of Algorithms
	Slide 21: Asymptotic Notation
	Slide 22: Worst Case and Big-
	Slide 23: Worst Case and Big-
	Slide 24: Steps for Deriving T(n)
	Slide 25: Helpful Common Summations
	Slide 26: Deriving T(n)
	Slide 27: Deriving T(n)
	Slide 28: Skills To Gain
	Slide 29: Loops 1
	Slide 30: Matrix Multiply
	Slide 31: Sequential Loops
	Slide 32: Runtime Practice #1
	Slide 33: Runtime Practice #2
	Slide 34: Runtime Practice #3
	Slide 35: Runtime Practice #4
	Slide 36: Key Skill
	Slide 37: Runtime Practice #5
	Slide 38: Runtime Practice #6
	Slide 39: Importance of Complexity
	Slide 40: Extras
	Slide 41: Runtime Practice #7
	Slide 42: Runtime Practice #8
	Slide 43: Iterative Binary Search
	Slide 44: Solutions
	Slide 45: Sequential Loops
	Slide 46: Runtime Practice #1
	Slide 47: Runtime Practice #2
	Slide 48: Runtime Practice #3
	Slide 49: Runtime Practice #4
	Slide 50: Runtime Practice #5
	Slide 51: Runtime Practice #6
	Slide 52: Runtime Practice #7
	Slide 53: Runtime Practice #8

