
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Memory Allocation

Mark Redekopp

Revised: 01/13/2020

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

POINTERS, REFERENCES, AND
SCOPING REVIEW

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Program View of RAM/Memory
• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variables and Static Allocation
• Every variable/object in a computer has a:

– Name (by which programmer references it)

– Address (by which computer references it)

– Value

• Let's draw these as boxes

• Every variable/object has scope (its
lifetime and visibility to other code)

• Automatic/Local Scope

– {…} of a function, loop, or if

– Lives on the stack

– Dies/Deallocated when the '}' is reached

• Logically, let's draw these as nested
container boxes

int x;

string s1("abc"); -154729832

x

0x1a0

3

s1

0x1a4 "abc"

Code Computer

int main()
{

int x; cin >> x;
if(x){

string s1("abc");
}

}

-154729832

x

0x1a0

3

s1

0x1a4 "abc"

main

if

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Automatic/Local Variables
• Physcially, local variables (i.e. those declared

inside {…}) are allocated on the stack

• Each function has an area of memory on the
stack

// Computes rectangle area,
// prints it, & returns it
int area(int, int);
void print(int);
int main()
{

int wid = 8, len = 5, a;
a = area(wid,len);

}

int area(int w, int l)
{

int ans = w * l;
print(ans);
return ans;

}

void print(int area)
{

cout << “Area is “ << area;
cout << endl;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 area0xbd8

004001844
Return

link
0xbdc

40 ans0xbe0

print

cout

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Kinds of References

Pointers

• A variable (like any other) which
occupies memory and stores an
address of another variable and
can be updated (like any other
variable) to store a new address
to some other variable

• Declared with the type* syntax
(e.g. int*, char*, Item*)

C++ Reference Variable

• A special variable that simply
gives a second (or third, or
fourth) name to an already-
declared variable

• Declared with the type& syntax
(e.g. int&, string&, Item&)

• Does not occupy any memory
(just tells the compiler to allow
another name to reference some
other variable)

Important Note: When we use the general term "reference" as in "pass-by-reference" we
can use EITHER pointers OR C++ Reference Variables.

Lets' take a look at each…

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of Pointers in C/C++
• Pointer (type *)

– Really just the memory address of a variable

– Pointer to a data-type is specified as type * (e.g. int *)

– Operators: & and *

• &object => address-of object (Create a link to an object)

• *ptr => object located at address given by ptr (Follow a link to an object)

• *(&object) => object [i.e. * and & are inverse operators of each other]

• Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i = 5; j = 10;
p = &i;
cout << p << endl;
cout << *p << endl;
*p = j;
*q = *p;
q = p;

q0xbe4

5 i0xbe8

10 j0xbec

p0xbe0

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pointer Notes

• NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything

– NULL is effectively the value 0 so you can write:

int* p = nullptr;

if(p)
{ /* will never get to this code */ }

– To use nullptr compile with the C++11 version:

$ g++ -std=c++11 –g –o test test.cpp

• An uninitialized pointer is a pointer waiting to cause a SEGFAULT

• Beware of SEGFAULTS! What are they and what causes them?

• What tool can help find what is causing SEGFAULTS?

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check Yourself
• Consider these declarations:

– int k, x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

&x[0]

x

myptr

*myptr

(*ourptr) + 1

myptr + 2

&ourptr

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type.
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

k = int &k int*

&myptr int**

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using C++ References
• Reference type (type &) creates an alias (another

name) the programmer/compiler can use for some
other variable

– Is NOT another variable; does NOT require memory

• "Syntactic sugar" (i.e. make programmer's life
easy) to avoid using pointers

• A variable declared with an ‘int &’ doesn’t store an
int, but is an alias for an actual variable

• MUST assign to the reference variable when you
declare it.

int main()
{
int y = 3, *ptr;
ptr = &y; // address-of

// operator

int &x = y; // reference
// declaration

// We’ve not copied y into x.
// Rather, we’ve created an alias.
// What we do to x happens to y.
// Now x can never reference
// any other int…only y!

x++; // y just got incr.

cout << y << endl;

int &z; // NO! must assign

int w = 5;
x = w; // doesn't make x

// reference w...copies
// w into y;

return 0;
}

y

3

x

3

y

0x1a0

ptr

0x1a0

With Pointers With References

- Logically

0x1a0

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

POINTERS, REFERENCES, AND
SCOPING ASSESSMENT

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs

– We'll use a simple 'multiply' function for now even
though we can easily compute this without a function

– We could use the return value from the function but
let's practice with pointers

• Can use a pointer to have a function modify the
variable of another

// Computes the product of in1 & in2
int mul1(int in1, int in2);
void mul2(int in1, int in2, int* out);

int main()
{

int wid = 8, len = 5, a;
mul2(wid,len,&a);
cout << "Ans. is " << a << endl;
return 0;

}

int mul1(int in1, int in2)
{

return in1 * in2;
}

void mul2(int in1, int in2, int* out)
{

*out = in1 * in2;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

mul 5 in20xbe4

0xbf8 out0xbe8

004000ca0
Return

link
0xbec

8 in10xbe0

40

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Now with C++ References
• We can pass using C++ reference

• The reference 'out' is just an alias for
'a' back in main
– In memory, it might actually be a pointer, but you

don't have to dereference (the kind of stuff you have
to do with pointers)

// Computes the product of in1 & in2
void mul(int in1, int in2, int& out);

int main()
{

int wid = 8, len = 5, a;
mul(wid,len,a);
cout << "Ans. is " << a << endl;
return 0;

}

void mul(int in1, int in2, int& out)
{

out = in1 * in2;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

mul 5 in20xbe4

?0xbf8? out0xbe8

004000ca0
Return

link
0xbec

8 in10xbe0

40
=out

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Misuse of Pointers/References
• Make sure you don't return a pointer or

reference to a dead variable

• You might get lucky and find that old value
still there, but likely you won't

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int& badmul2(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = badmul1(wid,len);
cout << "Ans. is " << *a << endl;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Bad! Returns a reference to a var.
// that will go out of scope
int& badmul1(int in1, int in2)
{

int out = in1 * in2;
return out;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

badmul1 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

40 out0xbe0

0xbe0

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw the operation of goodmul1()

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

goodmul1 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

0x93c out0xbe0

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;
delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• When goodmul1() exits, the out pointer goes

out of scope

• Thus we need to return the pointer or save it
somewhere so that there is a record of our
allocation, otherwise we will have a leak

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;
delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – Q1
• What happens if we comment

the 'delete a' line?

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

0x93c out0xbe0

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

// delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{
int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – A1
• What happens if we comment

the 'delete a' line?
– Memory LEAK!!

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

MEMORY LEAK

No one saved a pointer
to this data

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

// delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{
int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• The LinkedList object is allocated as a

static/local variable
– But each element is allocated on the heap

• When y goes out of scope only the data
members are deallocated
– You may have a memory leak

struct Item {
int val; Item* next;

};
class LinkedList {

public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

};

int main()
{

doTask();
}

void doTask()
{

LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

doTask

0x93c y0xbe8

004000ca0
Return

link
0xbec

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• The LinkedList object is allocated as a static/local

variable

– But each element is allocated on the heap

• When y goes out of scope only the data members
are deallocated

– You may have a memory leak

struct Item {
int val; Item* next;

};
class LinkedList {

public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

};

int main()
{

doTask();
}

void doTask()
{

LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

An Appropriate Destructor Will Help Solve This

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRACTICE ACTIVITY 1

If time allows

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Object Assignment
• Assigning one struct or class object to another will

cause an element by element copy of the source data
destination struct or class

Memory

0x01

…

0x4F

0x50

0x54

0x00 ‘B’

‘i’

…

00

5

1

…

…

s1

…

#include<iostream>
using namespace std;

enum {CS, CECS };

struct student {
char name[80];
int id;
int major;

};

int main(int argc, char *argv[])
{

student s1;
strncpy(s1.name,”Bill”,80);
s1.id = 5; s1.major = CS;

student s2 = s1;

return 0;
}

name

id

major

‘B’

‘i’

…

00

5

1

name

id

major

s2

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory Allocation Tips

• Take care when returning a pointer or reference that
the object being referenced will persist beyond the
end of a function

• Take care when assigning a returned referenced
object to another variable…you are making a copy

• Try the examples yourself

– $ wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item* x = new Item(4,“hi”);

return x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex1 ex2 ex3

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

i

main

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

0x93c0xbe8

004000ca0
Return

link
0xbec

i

x

Item

on

Heap

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item x(4, “hi”);

return &x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex4 ex5

main …

i

0xbf4

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
… x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation
class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item &i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item *i = &(buildItem());

// access i’s data.

}ex6 ex7 ex8

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

Item

on

Heap

Item

on

Heap

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRE-SUMMER 2021 BACKGROUND

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VARIABLES & SCOPE

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Program View of RAM/Memory
• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variables and Static Allocation
• Every variable/object in a computer has

a:

– Name (by which programmer references it)

– Address (by which computer references it)

– Value

• Let's draw these as boxes

• Every variable/object has scope (its
lifetime and visibility to other code)

• Automatic/Local Scope

– {…} of a function, loop, or if

– Lives on the stack

– Dies/Deallocated when the '}' is
reached

• Let's draw these as nested
container boxes

int x;

string s1("abc"); -154729832

x

0x1a0

3

s1

0x1a4 "abc"

Code Computer

int main()
{

int x; cin >> x;
if(x){

string s1("abc");
}

}

-154729832

x

0x1a0

3

s1

0x1a4 "abc"

main

if

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Automatic/Local Variables
• Variables declared inside {…} are allocated on

the stack

• This includes functions

// Computes rectangle area,
// prints it, & returns it
int area(int, int);
void print(int);
int main()
{

int wid = 8, len = 5, a;
a = area(wid,len);

}

int area(int w, int l)
{

int ans = w * l;
print(ans);
return ans;

}

void print(int area)
{

cout << “Area is “ << area;
cout << endl;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 area0xbd8

004001844
Return

link
0xbdc

40 ans0xbe0

print

cout

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

POINTERS & REFERENCES

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Kinds of References

Pointers

• A variable (like any other) which
occupies memory and stores an
address of another variable and
can be updated (like any other
variable) to store a new address
to some other variable

• Declared with the type* syntax
(e.g. int*, char*, Item*)

C++ Reference Variable

• A special variable that simply
gives a second (or third, or
fourth) name to an already-
declared variable

• Declared with the type& syntax
(e.g. int&, string&, Item&)

• Does not occupy any memory
(just tells the compiler to allow
another name to reference some
other variable)

Important Note: When we use the general term "reference" as in "pass-by-reference" we
can use EITHER pointers OR C++ Reference Variables.

Lets' take a look at each…

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of Pointers in C/C++
• Pointer (type *)

– Really just the memory address of a variable

– Pointer to a data-type is specified as type * (e.g. int *)

– Operators: & and *

• &object => address-of object (Create a link to an object)

• *ptr => object located at address given by ptr (Follow a link to an object)

• *(&object) => object [i.e. * and & are inverse operators of each other]

• Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i = 5; j = 10;
p = &i;
cout << p << endl;
cout << *p << endl;
*p = j;
*q = *p;
q = p;

q0xbe4

5 i0xbe8

10 j0xbec

p0xbe0

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pointer Notes

• NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything

– NULL is effectively the value 0 so you can write:

int* p = NULL;

if(p)
{ /* will never get to this code */ }

– To use nullptr compile with the C++11 version:

$ g++ -std=c++11 –g –o test test.cpp

• An uninitialized pointer is a pointer waiting to cause a SEGFAULT

• Beware of SEGFAULTS! What are they and what causes them?

• What tool can help find what is causing SEGFAULTS?

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check Yourself
• Consider these declarations:

– int k, x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

&x[0]

x

myptr

*myptr

(*ourptr) + 1

myptr + 2

&ourptr

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type.
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

k = int &k int*

&myptr int**

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using C++ References
• Reference type (type &) creates an alias (another

name) the programmer/compiler can use for some
other variable

– Is NOT another variable; does NOT require memory

• "Syntactic sugar" (i.e. make programmer's life
easy) to avoid using pointers

• A variable declared with an ‘int &’ doesn’t store an
int, but is an alias for an actual variable

• MUST assign to the reference variable when you
declare it.

int main()
{
int y = 3, *ptr;
ptr = &y; // address-of

// operator

int &x = y; // reference
// declaration

// We’ve not copied y into x.
// Rather, we’ve created an alias.
// What we do to x happens to y.
// Now x can never reference
// any other int…only y!

x++; // y just got incr.

cout << y << endl;

int &z; // NO! must assign

int w = 5;
x = w; // doesn't make x

// reference w...copies
// w into y;

return 0;
}

y

3

x

3

y

0x1a0

ptr

0x1a0

With Pointers With References

- Logically

0x1a0

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

References in C/C++

• Declare a reference to an object as type& (e.g. int&)

• Must be initialized at declaration time (i.e. can’t declare a
reference variable if without indicating what object you want to
reference)
– Logically, C++ reference types DON'T consume memory…they are just an

alias (another name) for the variable they reference

– Physically, it may be implemented as a pointer to the referenced object
but that is NOT your concern

• Cannot change what the reference variable refers to once
initialized

• Most common usage is for parameter passing (see next slide)

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Argument Passing Examples
• Pass-by-value => Passes a copy

• Pass-by-reference =>
– Pass-by-pointer/address => Passes address of actual variable

– Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main()
{
int x=5,y=7;
swapit(x,y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

int main()
{

int x=5,y=7;
swapit(&x,&y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}

program output: x=5,y=7 program output: x=7,y=5

int main()
{

int x=5,y=7;
swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

program output: x=7,y=5

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs

– We'll use a simple 'multiply' function for now even
though we can easily compute this without a function

– We could use the return value from the function but
let's practice with pointers

• Can use a pointer to have a function modify the
variable of another

// Computes the product of in1 & in2
int mul1(int in1, int in2);
void mul2(int in1, int in2, int* out);

int main()
{

int wid = 8, len = 5, a;
mul2(wid,len,&a);
cout << "Ans. is " << a << endl;
return 0;

}

int mul1(int in1, int in2)
{

return in1 * in2;
}

void mul2(int in1, int in2, int* out)
{

*out = in1 * in2;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

mul 5 in20xbe4

0xbf8 out0xbe8

004000ca0
Return

link
0xbec

8 in10xbe0

40

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Now with C++ References
• We can pass using C++ reference

• The reference 'out' is just an alias for
'a' back in main
– In memory, it might actually be a pointer, but you

don't have to dereference (the kind of stuff you have
to do with pointers)

// Computes the product of in1 & in2
void mul(int in1, int in2, int& out);

int main()
{

int wid = 8, len = 5, a;
mul(wid,len,a);
cout << "Ans. is " << a << endl;
return 0;

}

void mul(int in1, int in2, int& out)
{

out = in1 * in2;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

mul 5 in20xbe4

?0xbf8? out0xbe8

004000ca0
Return

link
0xbec

8 in10xbe0

40
=out

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Misuse of Pointers/References
• Make sure you don't return a pointer or

reference to a dead variable

• You might get lucky and find that old value
still there, but likely you won't

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int& badmul2(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = badmul1(wid,len);
cout << "Ans. is " << *a << endl;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Bad! Returns a reference to a var.
// that will go out of scope
int& badmul1(int in1, int in2)
{

int out = in1 * in2;
return out;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

badmul1 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

40 out0xbe0

0xbe0

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pass-by-Value vs. -Reference

• Arguments are said to be:

– Passed-by-value: A copy is made from one function and
given to the other

– Passed-by-reference (i.e. pointer or C++ reference): A
reference (really the address) to the variable is passed to
the other function

• Care needs to be taken when choosing between the
options

Pass-by-Value Benefits Pass-by-Reference Benefits

+ Protects the variable in the caller
since a copy is made (any
modification doesn’t affect the
original)

+ Allows another function to modify
the value of variable in the caller
+ Saves time vs. copying

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pass by Reference
• Notice no copy of x need be made since

we pass it to sum() by reference
– Notice that likely the computer passes the address to

sum() but you should just think of dat as an alias for x

– The const keyword tells the compiler to double check
that we don't modify the vector (giving the safety of
pass-by-value but the performance of pass-by reference)

// Computes the sum of a vector
int sum(const vector<int>&);

int main()
{
int result;
vector<int> x = {1,2,3,4};
result = sum(x);

}

int sum(const vector<int>& dat)
{
int s = 0;
for(int i=0; i < dat.size(); i++)
{

s += dat[i];
}
return s;

}

Stack Area of RAM

1 x0xbf0

main 20xbf4

…0xbf8

00400120
Return

link
0xb??

sum 0 s0xbe0

?0xbf0? dat0xbe4

004000ca0
Return

link
0xbe8

0 sum0xbec

= dat

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pointers vs. References Summary

• How to tell references and pointers apart

– Check if you see the '&' or '*' in a type declaration
or expression

With a Type In an Expression

& Indicates a C++ Reference Var
(int &val, vector<int> &vec)

Address-of yields a pointer to the
object
Adds a * to the type of variable

* Declares a pointer type variable
(int *valptr = &val, vector<int>
*vecptr = &vec)

De-Reference (Value @ address)
Cancels a * from the type of variable

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DYNAMIC ALLOCATION

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Memory & the Heap

• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation

Automatic/Local Variables

• Deallocated (die) when they
go out of scope

• As a general rule of thumb,
they must be statically sized
(size is a constant known at
compile time)
– int data[100];

Dynamic Allocation

• Persist until explicitly
deallocated by the program
(via ‘delete’)
– Data lives indefinitely

• Can be sized at run-time
– int size;

cin >> size;
int *data = new int[size];

(These are the 2 primary reasons to
use dynamic allocation.)

49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C Dynamic Memory Allocation
• void* malloc(int num_bytes) function in stdlib.h

– Allocates the number of bytes requested and returns a pointer to the block of
memory

– Use sizeof(type) macro rather than hardcoding 4 since the size of an int may
change in the future or on another system

• free(void * ptr) function
– Given the pointer to the (starting location of the) block of memory, free returns it to the

system for re-use by subsequent malloc calls

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = (int*) malloc(num*sizeof(int));
// can now access scores[0] .. scores[num-1];

free(scores);
return 0;

}

50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ new & delete operators
• new allocates memory from heap

– followed with the type of the variable you want or an array type declaration

• double *dptr = new double;

• int *myarray = new int[100];

– can obviously use a variable to indicate array size

– returns a pointer of the appropriate type
• if you ask for a new int, you get an int * in return

• if you ask for an new array (new int[10]), you get an int * in return

• delete returns memory to heap

– followed by the pointer to the data you want to de-allocate

• delete dptr;

– use delete [] for pointers to arrays

• delete [] myarray;

51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Memory Allocation
int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
return 0;

}

Memory

20bc4

20bc8

20bcc

20bd0

20bc0 00

00

00

00

00

…

…

…

Code

local vars

Globals

0

…

Heap

fffffffc

scores[0]

new

allocates:

scores[4]

scores[1]

scores[2]

scores[3]

int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
delete [] scores
return 0;

}

52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Fill in the Blanks

• ________ data = new int;

• ________ data = new char;

• ________ data = new char[100];

• ________ data = new char*[20];

• ________ data = new vector<string>;

• ________ data = new Student;

53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Fill in the Blanks

• ________ data = new int;
– int*

• ________ data = new char;
– char*

• ________ data = new char[100];
– char*

• ________ data = new char*[20];
– char**

• ________ data = new vector<string>;
– vector<string>*

• ________ data = new Student;
– Student*

54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw the operation of goodmul1()

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

goodmul1 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

0x93c out0xbe0

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;
delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• When goodmul1() exits, the out pointer goes

out of scope

• Thus we need to return the pointer or save it
somewhere so that there is a record of our
allocation, otherwise we will have a leak

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;
delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – Q1
• What happens if we comment

the 'delete a' line?

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

0x93c out0xbe0

Heap Area of RAM

400x93c

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

// delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{
int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – A1
• What happens if we comment

the 'delete a' line?
– Memory LEAK!!

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

MEMORY LEAK

No one saved a pointer
to this data

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

// delete a;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{
int out = in1 * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{
int* out = new int;
*out = in1 * in2;
return out;

}

58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – Q2
• What happens if we overwrite the only pointer

to a dynamically allocated variable/object?

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

0x93c out0xbe0

Heap Area of RAM

???0x93c

// Computes the product of in1 & in2
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

delete a;

return 0;
}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{

int* out = new int;
out = new int; // another int
*out = in1 * in2;
return out;

}

59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation – A2
• What happens if we overwrite the only pointer to

a dynamically allocated variable/object?

– A memory leak

• Be sure you keep a pointer around somewhere
otherwise you'll have a memory leak!

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0xbe4 ans0xbe0

Heap Area of RAM

???0x93c

MEMORY LEAK

Lost pointer to this data

400x93c

// Computes the product of in1 & in2
int* goodmul1(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = goodmul1(wid,len);
cout << "Ans. is " << *a << endl;

delete a;

return 0;
}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmul1(int in1, int in2)
{

int* out = new int;
out = new int; // another int
*out = in1 * in2;
return out;

}

60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• The LinkedList object is allocated as a

static/local variable
– But each element is allocated on the heap

• When y goes out of scope only the data
members are deallocated
– You may have a memory leak

// Computes rectangle area,
// prints it, & returns it
struct Item {

int val; Item* next;
};
class LinkedList {

public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

};

int main()
{

doTask();
}

void doTask()
{

LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

doTask

0x93c y0xbe8

004000ca0
Return

link
0xbec

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dynamic Allocation
• The LinkedList object is allocated as a static/local

variable

– But each element is allocated on the heap

• When y goes out of scope only the data members
are deallocated

– You may have a memory leak

// Computes rectangle area,
// prints it, & returns it
struct Item {

int val; Item* next;
};
class LinkedList {

public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

};

int main()
{

doTask();
}

void doTask()
{

LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

An Appropriate Destructor Will Help Solve This

62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRACTICE ACTIVITY

If time allows

63

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Object Assignment
• Assigning one struct or class object to another will

cause an element by element copy of the source data
destination struct or class

Memory

0x01

…

0x4F

0x50

0x54

0x00 ‘B’

‘i’

…

00

5

1

…

…

s1

…

#include<iostream>
using namespace std;

enum {CS, CECS };

struct student {
char name[80];
int id;
int major;

};

int main(int argc, char *argv[])
{

student s1;
strncpy(s1.name,”Bill”,80);
s1.id = 5; s1.major = CS;

student s2 = s1;

return 0;
}

name

id

major

‘B’

‘i’

…

00

5

1

name

id

major

s2

64

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory Allocation Tips

• Take care when returning a pointer or reference that
the object being referenced will persist beyond the
end of a function

• Take care when assigning a returned referenced
object to another variable…you are making a copy

• Try the examples yourself

– $ wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

65

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item* x = new Item(4,“hi”);

return x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex1 ex2 ex3

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

i

main

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

0x93c0xbe8

004000ca0
Return

link
0xbec

i

x

Item

on

Heap

66

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item x(4, “hi”);

return &x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex4 ex5

main …

i

0xbf4

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
… x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

67

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation
class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item &i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item *i = &(buildItem());

// access i’s data.

}ex6 ex7 ex8

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

Item

on

Heap

Item

on

Heap

68

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

69

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of Pointers in C/C++
• Pointer (type *)

– Really just the memory address of a variable

– Pointer to a data-type is specified as type * (e.g. int *)

– Operators: & and *

• &object => address-of object (Create a link to an object)

• *ptr => object located at address given by ptr (Follow a link to an object)

• *(&object) => object [i.e. * and & are inverse operators of each other]

• Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i = 5; j = 10;
p = &i;
cout << p << endl;
cout << *p << endl;
*p = j;
*q = *p;
q = p;

q0xbe4

5 i0xbe8

10 j0xbec

p0xbe0 0xbe8 p0xbe0

0xbe8

5

10 i0xbe8

Undefined

0xbe8 q0xbe4

70

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check Yourself
• Consider these declarations:

– int k, x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

&x[0] int*

x int*

myptr int*

*myptr int

(*ourptr) + 1 int*

myptr + 2 int*

&ourptr int***

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type.
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

k = int &k int*

&myptr int**

71

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Argument Passing Examples
• Pass-by-value => Passes a copy

• Pass-by-reference =>
– Pass-by-pointer/address => Passes address of actual variable

– Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main()
{
int x=5,y=7;
swapit(x,y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

int main()
{

int x=5,y=7;
swapit(&x,&y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}

program output: x=5,y=7 program output: x=7,y=5

int main()
{

int x=5,y=7;
swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

program output: x=7,y=5

72

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item* x = new Item(4,“hi”);

return x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex1 ex2 ex3

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

i

main

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

0x93c0xbe8

004000ca0
Return

link
0xbec

i

x

Item

on

Heap

73

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item x(4, “hi”);

return &x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex4 ex5

main …

i

0xbf4

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
… x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

74

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding Memory Allocation
class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item &i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item *i = &(buildItem());

// access i’s data.

}ex6 ex7 ex8

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

Item

on

Heap

Item

on

Heap

