CSCl 104
Memory Allocation

Mark Redekopp

Revised: 01/13/2020

POINTERS, REFERENCES, AND
SCOPING REVIEW

USC Viterbi

School of Engineering

A Program View of RAM/Memory

* Code usually sits at low addresses

* Global variables somewhere after code

* System stack (memory for each function instance
that is alive)

— Local variables
— Return link (where to return)
— etc.

* Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

* Heap grows downward, stack grows upward...

— In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

fifffffc

Code

Globals

Heap

v
1

Stack
(area for
data local to
a function)

Memory

i, TS(“Viterbi

School of Engineering

Variables and Static Allocation

* Every variable/object in a computer has a:

— Name (by which programmer references it)

Code

— Address (by which computer references it)

— Value

int x;

string s1("abc");

e Let's draw these as boxes

* Every variable/object has scope (its
lifetime and visibility to other code)

e Automatic/Local Scope
— {...} of a function, loop, or if
— Lives on the stack
— Dies/Deallocated when the '} is reached

e Logically, let's draw these as nested

int main()
{
int x; cin >> Xx;
if(x){
string sl1("abc");
}
}

Ox1a0

Ox1la4

main

Computer

X

-154729832

sl

3 | "abc"

Ox1a0

X

-154729832

Ox1la4

sl

3 | "abc"

container boxes

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

s UISCWYiterbi
Automatic/Local Variables

* Physcially, local variables (i.e. those declared

inside {...}) are allocated on the stack

e Each function has an area of memory on the

School of Engineering

stack Stack Area of RAM

cout

orint Oxbd8 40 area
Oxbdc | oos001844 | "e'u
OxbeO 40 ans

area | Oxbed 8 w
Oxbe8 5 I
Oxbec | 004000ca0 | Fe"
Oxbf0 8 wid

main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | oo4o0120 | Rew™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes rectangle area,
// prints it, & returns it
int area(int, int);
void print(int);
int main()
{
int wid = 8, len =5, a;
a = area(wid,len);

}

int area(int w, int 1)
{
int ans = w * 1;
print(ans);
return ans;

}

void print(int area)

{

cout << “Area is “ << area;
cout << endl;

}

USC Viterbi

School of Engineer

Kinds of References

Pointers

A variable (like any other) which
occupies memory and stores an
address of another variable and
can be updated (like any other
variable) to store a new address
to some other variable

Declared with the type* syntax
(e.g. int*, char*, Item¥*)

C++ Reference Variable

A special variable that simply
gives a second (or third, or
fourth) name to an already-
declared variable

Declared with the type& syntax
(e.g. int&, stringg&, Item&)

Does not occupy any memory
(just tells the compiler to allow
another name to reference some
other variable)

Important Note: When we use the general term "reference" as in "pass-by-reference" we
can use EITHER pointers OR C++ Reference Variables.
Lets' take a look at each...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i%

i, TS(“Viterbi

Review of Pointers in C/C++

* Pointer (type *)

— Really just the memory address of a variable
— Pointer to a data-type is specified as type * (e.g. int *)

— Operators: & and *

 &object
° *ptr\

» *(&object) => object [i.e. * and & are inverse operators of each other]

=> address-of object (Create a link to an object)

School of Engineering

=> object located at address given by ptr (Follow a link to an object)

 Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i=25;3j=160;

p = &i;

cout << p << endl;
cout << *p << endl;

*p o= 3J;
*q = *p;
q=p;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OxbeO
Oxbe4
Oxbe8

Oxbec

10

i, TS(“Viterbi

School of Engineering

Pointer Notes

 NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything

— NULL is effectively the value 0 so you can write:
int* p = nullptr;

if(p)
{ /* will never get to this code */ }

— To use nullptr compile with the C++11 version:
$ g++ -std=c++11 -g -0 test test.cpp

* An uninitialized pointer is a pointer waiting to cause a SEGFAULT

* Beware of SEGFAULTS! What are they and what causes them?

 What tool can help find what is causing SEGFAULTS?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbl
Check Yourself

To figure out the type of data a pointer expression will yield...
* Each * in the expression cancels a * from the variable type.

e Consider these declarations:

_ int k, x[3] = {5, 7, 9}; - Each & in the expression adds a * to the variable type.
— int *myptr = Xx; Orig. Type Expr Yields
— 1int *Fourptr = &myptr; myptr = int* *myptr int
* Indicate the formal type that ourptr = int** | **ourptr int
each expression evaluates to *ourptr int*
(i.e.int, int *, int **) K - int 2k P,
&myptr int**
 Bxpresson | Type
&x[9]
X
myptr
*myptr
(*ourptr) + 1
myptr + 2
&ourptr

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (&
School of Engineering *

Using C++ References

With Pointers

Ox1a0

Reference type (type &) creates an alias (another
name) the programmer/compiler can use for some
other variable

— |Is NOT another variable; does NOT require memory

"Syntactic sugar" (i.e. make programmer's life
easy) to avoid using pointers

A variable declared with an ‘int & doesn’t store an
int, but is an alias for an actual variable

MUST assign to the reference variable when you
declare it.

With References
- Logically

y y X
3 Ox1a0 3

ptr

0x1a0

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

= 3, *ptr;

&y; // address-of
// operator

int y
ptr =

int & = y; // reference
// declaration
// We’ve not copied y into x.
// Rather, we’ve created an alias.
// What we do to x happens to vy.
// Now X can never reference
// any other int..only y!

X++; // y just got incr.

cout << y << endl;

int &z; // NO! must assign
int w = 5;
X = w; // doesn't make x
// reference w...copies
// w into y;
return 0;

POINTERS, REFERENCES, AND
SCOPING ASSESSMENT

I Uscviterbi
Correct Usage of Pointers

« Commonly functions will take some inputs and
produce some outputs
— We'll use a simple 'multiply’ function for now even
though we can easily compute this without a function
— We could use the return value from the function but
let's practice with pointers
e Can use a pointer to have a function modify the

variable of another
Stack Area of RAM

OxbeO 8 inl
mul | Oxbe4 5 in2
Oxbe8 0xbf8 out

Oxbec | oo4000ca0 | "5"

Oxbf0 8 wid
main | Oxbf4 5 len
Oxbfg | - 40 a

Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

// Computes the product of inl & in2
int mull(int inl, int in2);
void mul2(int inl, int in2, int* out);

int main()

{
int wid = 8, len = 5, a;
mul2(wid, len,&a);
cout << "Ans. is " << a << endl;
return 9;

}
int mull(int inl, int in2)
{
return inl * in2;
}
void mul2(int inl, int in2, int* out)
{
*out = inl * in2;
}

s UISCWYiterbi
Now with C++ References

* We can pass using C++ reference

* The reference 'out' is just an alias for
'a' back in main
— In memory, it might actually be a pointer, but you
don't have to dereference (the kind of stuff you have

to do with pointers)
Stack Area of RAM

OxbeO 8 inl
mul | Oxbe4 5 in2
Oxbe8 20xbf8? out =~

Oxbec | oo4000ca0 | "5"

Oxbf0 8 wid
main | Oxbf4 g len
40
Oxbf8 - a =out

Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

// Computes the product of inl & in2
void mul(int inl, int in2, int& out);

int main()

{
int wid = 8, len = 5, a;
mul(wid, len,a);
cout << "Ans. is " << a << endl;
return 9;

}

void mul(int inl, int in2, int& out)
{
out = inl * in2;

}

USC Viterbi (4
School of Engineering *

Misuse of Pointers/References

* Make sure you don't return a pointer or
reference to a dead variable

* You might get lucky and find that old value
still there, but likely you won't

Stack Area of RAM

Oxbe0 40 out

badmul1 | Oxbe4 8 inl
Oxbe8 5 in?2

Oxbec | oo4000ca0 | "5"

OxbfO 8 wid

main | Oxbf4 5 len
Oxbf8) OxbeO a

Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int& badmul2(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = badmull(wid,len);
cout << "Ans. is " << *a << endl;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Bad! Returns a reference to a var.
// that will go out of scope
int& badmull(int inil, int in2)
{
int out = inl * in2;
return out;

}

USC Viterbi

School of Engineering

Dynamic Allocation

Dynamic Allocation

— Lives on the heap

— Lives until you 'delete’ it

Let's draw the operation of goodmull()

Doesn't have a name, only pointer/address to it

Doesn't die at end of function

(though pointer to it may)

Stack Area of RAM

Heap Area of RAM

main

Oxbe0 0x93c ottt
oodmull [Oxbe4 8 i
2 ni 0x93c

Oxbe8 5 in2
Oxbec | oo4000ca0 | "ou"
Oxbf0 8 wid
Oxbf4 5 len
Oxbf8 | -73249515 a

Oxbfc | oo400120 | "54"

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);
cout << "Ans. is " << *a << endl;
delete a;

return 9;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)
{
int* out = new int;
*out = inl * in2;
return out;

}

USC Viterbi (&
School of Engineering *

Dynamic Allocation

 When goodmull() exits, the out pointer goes
out of scope

 Thus we need to return the pointer or save it
somewhere so that there is a record of our
allocation, otherwise we will have a leak

Stack Area of RAM Heap Area of RAM
0x93c 40
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 0x93c &
Oxbfc | 00400120 | R¢4"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);
cout << "Ans. is " << *a << endl;
delete a;
return 9;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)
{
int* out = new int;
*out = inl * in2;
return out;

}

e — ()5 Viterbi
Dynamic Allocation — Q1

// Computes the product of inl & in2

¢ What happenS |f we Comment int* badmull(int inl, int in2);
. int* goodmull(int inl, int in2);
the 'delete a' line?

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);

cout << "Ans. is << *a << endl;

// delete a;

return 9;
Stack Area of RAM Heap Area of RAM)
// Bad! Returns a pointer to a var.
OxbeO 0x93c ottt // that will go out of scope
int* badmull(int inl, int in2)
area | Oxbe4 8 inl {
Oxbes . 0x93c 40 int out = inl * in2;
S In2 return &out;
Oxbec | 004000ca0 | R }
_ // Good! Returns a pointer to a var.
Oxbf0 8 wid // that will continue to live
main Oxbf4 5 len int* goodmull(int inl, int in2)
{
Oxbf8 | -73249515 a int* out = new int;
Return *out = inl * in2;
Oxbfc | 00400120 o return out;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (S C Viterbi (2
Dynamic Allocation — Al

 What happens if we comment

the 'delete a' line?

— Memory LEAK!!

Stack Area of RAM

Heap Area of RAM

School of Engineering

Oxbf0

main

Oxbf4

Oxbf8
Oxbfc

8

5

-73249515

00400120

wid
len

a

Return
link

0x93c 40

MEMORY LEAK

No one saved a pointer
to this data

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);

cout << "Ans. is << *a << endl;

// delete a;

return 9;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)
{
int* out = new int;
*out = inl * in2;
return out;

}

USC Viterbi 2
School of Engineering *

Dynamic Allocation

* The LinkedList object is allocated as a

static/local variable

— But each element is allocated on the heap

* Wheny goes out of scope only the data

members are deallocated

— You may have a memory leak

Stack Area of RAM

Heap Area of RAM

0x93c
> 3
doTask
0x748
Oxbec | 0o4000ca0 | R 0x748 5
0
main MEMORY LEAK
When y is deallocated we have

Return no pointer to the data

Oxbfc | 00400120 eLur

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

struct Item {

int val; Item* next;
}s
class LinkedList {
public:

// create a new item
// in the list

void push_back(int v);
private:

Item* head;

}s
int main()
{
doTask();
}
void doTask()
{

LinkedList y;

y.push_back(3);

y.push _back(5);

/* other stuff */
}

USC Viterbi (22
School of Engineering *

Dynamic Allocation

The LinkedList object is allocated as a static/local
variable

— But each element is allocated on the heap

When y goes out of scope only the data members
are deallocated

— You may have a memory leak

An Appropriate Destructor Will Help Solve This

Stack Area of RAM Heap Area of RAM
0x93c
> s
0x748
v
0x748 5
0

main

MEMORY LEAK

When y is deallocated we have
no pointer to the data

Return

Oxbfc | 00400120 o

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

struct Item {
int val; Item* next;
}s
class LinkedList {
public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

}s
int main()
{
doTask();
}
void doTask()
{

LinkedList y;

y.push_back(3);

y.push_back(5);

/* other stuff */
}

i, TS(“Viterbi -«

School of Engineering

If time allows

PRACTICE ACTIVITY 1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi‘%
Object Assignment
* Assigning one struct or class object to another will

cause an element by element copy of the source data
destination struct or class

#include<iostream>
using namespace std;
enum {CS, CECS }; —
0x00 ‘B’
struct student { Ox01 D
char name[80]; name
int id; - <1
int major; OxaF %0
}; 0x50 5 id
0x54 1 major
int main(int argc, char *argv[]) B =
{ i
student s1; name
strncpy(sl.name,”Bill”,80); 66 . — s2
sl.id = 5; sl.major = CS; :
5 id
student s2 = s1; 1 major _|
return 0; Memory
Y

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory Allocation Tips

* Take care when returning a pointer or reference that

the object being referenced will persist beyond the
end of a function

e Take care when assigning a returned referenced
object to another variable...you are making a copy

* Try the examples yourself
— S wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Uscviterbi_
Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item class Item class Item
{ public: { public: { public:
Item(int w, string y); Item(int w, string y); Item(int w, string y);
I 1
. . ¥
Item buildItem/() Itemé& buildItem() .
{ Item x(4, “hi”); { Item x(4, “hi”); frem” Eulldltem() Wi i
return x: return x: { Item* x = new Item(4,%“hi”);
} ! } ! return x;
}
int main () int main () At in()
{ Ttem i = buildItem(); { Ttems i = buildItem(); ?nltgilfi C bwildTtem();
// access i’s data. // access i’s data B .u !
} // access i’s data
} exl ex2) ex3
Iltem
on
BUlld | oxpea 4 X BUlld | oxpes Build Heap
lte lte X lte
Oxbe8 "hi" Oxbe8 Oxbe8 0x93c X
oxbec | 004000ca0 R|eit#|£n Oxbec | 004000ca0 Rfit#li” Oxbec 004000ca0 RTitr:Jlin
main | Oxbf4 4 i main main
Oxbf8 "hi" Oxbf8 oxbed i Oxbf8 0x93c i
Oxbfc | oo400120 | Feu™ Oxbfc | oo400120 | "S" Oxbfc | oo400120 | "7N"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -«

e Schoolof Engineering

Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item class Item

{ public: { public: i&
Item(int w, string y); Item(int w, string y);

}:

Item* buildItem()

{ Item x (4, “hi”);
return &x;

}

int main ()
{ Item *i = buildItem();
// access i’s data

}:

Item& buildItem()

{ Item* x = new Item(4,%“hi”);
return *x;

}

int main ()
{ Item& 1 = buildItem();
// access i’s data

) ex4 } exb
Item
on
?und Oxbe4 X Build Heap
fe lte
Oxbe8 Oxbe8 0x93c X
Ret
Oxbec . Oxbec | 004000ca0 | Fev"
main 0be4 main Obe4
Oxbf8 Oxbe4 i Oxbf8 | 2 o0x93c ? i
Oxbfc | oo400120 | Fe Oxbfc | oo400120 | R

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (/S C Viterbi (22

Understanding Memory Allocati

class Item

{ public:
Item(int w,

}:

Itemé& buildItem/()

string y);

return *x;

}

int main ()
{ Item i

buildItem() ;

{ Item* x = new Item(4,“hi”);

W

class Item

{ public:
Item(int w,

};

Item& buildItem()

{ ITtem* x
return *x;

}

int main ()

string y);

new Item(4,“hi”);

{ Item *i = & (buildItem());

School of Engineering

on

class Item
{ public:
Item(int w,

b

Item& buildItem()

{ Item* x new Item(4,“hi”);
return *x;

}

int main ()

string vy);

., -, { Item &i = buildItem()
// access 1i’s data. // access 1i’s data. 1] cceess Ala deka
/ ex6 : ex7) ex8
ltem Item ltem
on on on
Heap Heap Heap
Build uild Build
lte lte lte
Oxbe8 0x93c X Oxbe8 0x93c X Oxbe8 0x93c X
Oxbec | 004000ca0 | "54" Oxbec | 004000ca0 | °54" Oxbec | 004000ca0 | "™
main Oxbf4 4 i main Oxbf4 main Oxbf4
Oxbf8 "hi" Oxbf8 0x93c i Oxbf8 | 2 0x93c ? i
Oxbfc | 00400120 Rﬁﬁ?‘ Oxbfc | 00400120 Rﬁ#g‘ oxbfc | 00400120 RﬁmT

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRE-SUMMER 2021 BACKGROUND

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

VARIABLES & SCOPE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi (22

School of Engineering *

A Program View of RAM/Memory

* Code usually sits at low addresses

* Global variables somewhere after code

* System stack (memory for each function instance
that is alive)

— Local variables
— Return link (where to return)
— etc.

* Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

* Heap grows downward, stack grows upward...

— In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

fifffffc

Code

Globals

Heap

¥
|

Stack
(areafor
data local to
a function)

Memory

USC Viterbi (2

School of Engineering *
* Every variable/object in a computer has Code Computer
a.
— Name (by which programmer references it) int x; X
— Address (by which computer references it) string s1("abc"); Ox1a0 | -154729832
— Value <1
°]
Let's draw these as boxes 0x1ad |3 | "ape"
* Every variable/object has scope (its
. . . . o] - ma'n
lifetime and visibility to other code) it main() il
* Automatic/Local Scope L G cin 3> x; 0x1a0 | -154729832
3 : : if(x) -
{...} of a function, loop, or if ctring s1("abe")s if o
— Lives on the stack }
i n } Oxla4 | 3 | "abc"
— Dies/Deallocated when the '} is

reached

e Let's draw these as nested
container boxes

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RS iterb,
Automatic/Local Variables

* Variables declared inside {...} are allocated on T —
the stack // prints it, & returns it
o . int area(int, int);
* This includes functions void print(int);
it mai
Stack Area of RAM ?n main()
out int wid = 8, len = 5, a;
a = area(wid,len);
}
orint Oxbd8 40 area
R int area(int w, int 1
Oxbdc | oo4001844 | "™ ? (int w, 1)
Oxbe0 int ans = w * 1;
40 ans print(ans);
area | Oxbe4 8 W return ans;
Oxbe8 5 | }
Oxbec | 004000ca0 | "¢4" void print(int area)
{
Oxbf0 8 wid cout << “Area is “ << area;
main | Oxbf4 5 len } cout << endl;
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi 2

School of Engineering

POINTERS & REFERENCES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineer

Kinds of References

Pointers

A variable (like any other) which
occupies memory and stores an
address of another variable and
can be updated (like any other
variable) to store a new address
to some other variable

Declared with the type* syntax
(e.g. int*, char*, Item¥*)

C++ Reference Variable

A special variable that simply
gives a second (or third, or
fourth) name to an already-
declared variable

Declared with the type& syntax
(e.g. int&, stringg&, Item&)

Does not occupy any memory
(just tells the compiler to allow
another name to reference some
other variable)

Important Note: When we use the general term "reference" as in "pass-by-reference" we
can use EITHER pointers OR C++ Reference Variables.
Lets' take a look at each...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i%

USC Viterbi (%
School of Engineering *

Review of Pointers in C/C++

* Pointer (type *)

— Really just the memory address of a variable
— Pointer to a data-type is specified as type * (e.g. int *)

— Operators: & and *

 &object
° *ptr\

=> address-of object (Create a link to an object)

=> object located at address given by ptr (Follow a link to an object)

» *(&object) => object [i.e. * and & are inverse operators of each other]

 Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i=25;3j=160;

p = &i;

cout << p << endl;
cout << *p << endl;

*p o= 3J;
*q = *p;
q=p;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OxbeO
Oxbe4
Oxbe8

Oxbec

10

B ()5 Vierbi
Pointer Notes

 NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything

— NULL is effectively the value 0 so you can write:
int* p = NULL;

if(p)
{ /* will never get to this code */ }

— To use nullptr compile with the C++11 version:
$ g++ -std=c++11 -g -0 test test.cpp

* An uninitialized pointer is a pointer waiting to cause a SEGFAULT

* Beware of SEGFAULTS! What are they and what causes them?

 What tool can help find what is causing SEGFAULTS?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check Yourself

e Consider these declarations:

USC Viterbi

School of Engineering *

To figure out the type of data a pointer expression will yield...
* Each * in the expression cancels a * from the variable type.

— int k, X[3] _ {5) 7, 9}; * Each & in the expression adds a * to the variable type.
— int *myptr = Xx; Orig. Type Expr Yields
— 1int **ourptr = &myptr; myptr = int* *myptr int
* Indicate the formal type that ourptr = int** | **ourptr int
each expression evaluates to *ourptr int*
(i.e.int, int *, int **) K - int 2k P,
&myptr int**

___ Boreson | _______Twe

&x[9]
X
myptr
*myptr
(*ourptr) + 1
myptr + 2
&ourptr

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

S UsCviterbi
Using C++ References

With Pointers

Ox1a0

Reference type (type &) creates an alias (another
name) the programmer/compiler can use for some
other variable

— |Is NOT another variable; does NOT require memory

"Syntactic sugar" (i.e. make programmer's life
easy) to avoid using pointers

A variable declared with an ‘int & doesn’t store an
int, but is an alias for an actual variable

MUST assign to the reference variable when you
declare it.

With References
- Logically

y y X
3 Ox1a0 3

ptr

0x1a0

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

int main()

{

= 3, *ptr;

&y; // address-of
// operator

int y
ptr =

int & = y; // reference
// declaration
// We’ve not copied y into x.
// Rather, we’ve created an alias.
// What we do to x happens to vy.
// Now X can never reference
// any other int..only y!

X++; // y just got incr.
cout << y << endl;
int &z; // NO! must assign

int w = 5;

X = wW; // doesn't make x
// reference w...copies
// w into y;

return 0;

i, TS(“Viterbi

School of Engineering

References in C/C++

* Declare a reference to an object as type& (e.g. int&)

 Must be initialized at declaration time (i.e. can’t declare a
reference variable if without indicating what object you want to
reference)

— Logically, C++ reference types DON'T consume memory...they are just an
alias (another name) for the variable they reference

— Physically, it may be implemented as a pointer to the referenced object
but that is NOT your concern

 Cannot change what the reference variable refers to once
initialized
 Most common usage is for parameter passing (see next slide)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (2
School of Engineering *

Argument Passing Examples

* Pass-by-value => Passes a copy

e Pass-by-reference =>

— Pass-by-pointer/address => Passes address of actual variable

— Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main()

{

{
int x=5,y=7;
swapit(x,y);
cout <<UX,y="“<< Xx<<“,”<< vy;
cout << endl;

} }
void swapit(int x, int y)
{ {
int temp;
temp = Xx;
X =Y,
y = temp;
} }

int main()

int x=5,y=7;

swapit(&x,8&y);

cout <<UX,y="“<< x<<“,”<< y;
cout << endl;

void swapit(int *x, int *y)

int temp;

temp = *x;
= *y;

*y = temp;

int main()

{
int x=5,y=7;
swapit(x,y);

cout <<UX,y="“<< x<<“,”<< y;
cout << endl;

}
void swapit(int &x, int &y)
{

int temp;

temp = Xx;

X =Y

y = temp;

program output: x=5,y=7

program output: x=7,y=5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

program output: x=7,y=5

USCViterbi
Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and int muil(int inl? it i)

produce some outputs void mul2(int inl, int in2, int* out);

— We'll use a simple 'multiply’ function for now even
though we can easily compute this without a function int main()

. {
— We could use the return value from the function but int wid = 8, len = 5, a;
let's practice with pointers mul2(wid,len,&a);
. . . cout << "Ans. is " << a << endl;
* (Can use a pointer to have a function modify the return 0;
variable of another }

Stack Area of RAM

int mull(int inl, int in2)

. {
Oxbe0 8 Inl return inl * in2;
mul | Oxbe4 5 in2 }
Oxbe8 oxbf8 out void mul2(int inl, int in2, int* out)
{
Oxbec | oo4000ca0 | "5" *xout = inl * in2;
¥
Oxbf0 8 wid
main | Oxbf4 5 len
40
Oxbf8 | - a
Oxbfc | oo400120 | Ro™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi (2
Now with C++ References

// Computes the product of inl & in2

* We can pass using C++ reference void mul(int inl, int in2, int& out);
* The reference 'out' is just an alias for RS
'a' back in main int wid = 8, len = 5, a;
mul(wid, len,a);
— In memory, it might actually be a pointer, but you cout << "Ans. is " << a << endl;
don't have to dereference (the kind of stuff you have) return 0;
to do with pointers)
Stack Area of RAM void mul(int inl, int in2, int& out)
{
out = inl * in2;
0xbe0 . N1 ;
mul | Oxbe4 5 in2
Oxbe8 | 20xbfg? out =

Oxbec | oo4000ca0 | "5"

Oxbf0 8 wid
main | Oxbf4 g len
40
Oxbf8 - a =out

Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (2
School of Engineering *

Misuse of Pointers/References

* Make sure you don't return a pointer or
reference to a dead variable

* You might get lucky and find that old value
still there, but likely you won't

Stack Area of RAM

Oxbe0 40 out

badmul1 | Oxbe4 8 inl
Oxbe8 5 in?2

Oxbec | oo4000ca0 | "5"

OxbfO 8 wid

main | Oxbf4 5 len
Oxbf8) OxbeO a

Oxbfc | oo400120 | "™

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int& badmul2(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = badmull(wid,len);
cout << "Ans. is " << *a << endl;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Bad! Returns a reference to a var.
// that will go out of scope
int& badmull(int inil, int in2)
{
int out = inl * in2;
return out;

}

i, TS(“Viterbi

School of Engineering

Pass-by-Value vs. -Reference

* Arguments are said to be:

— Passed-by-value: A copy is made from one function and
given to the other

— Passed-by-reference (i.e. pointer or C++ reference): A
reference (really the address) to the variable is passed to
the other function

Pass-by-Value Benefits Pass-by-Reference Benefits

+ Protects the variable in the caller ~ + Allows another function to modify

since a copy is made (any the value of variable in the caller
modification doesn’t affect the + Saves time vs. copying
original)

e Care needs to be taken when choosing between the
options

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

* Notice no copy of x need be made since

School of Engineering

Pass by Reference

we pass it to sum() by reference

— Notice that likely the computer passes the address to
sum() but you should just think of dat as an alias for x

— The const keyword tells the compiler to double check
that we don't modify the vector (giving the safety of
pass-by-value but the performance of pass-by reference)

Stack Area of RAM

dat

sum | OxbeO 0 S
Oxbe4 | 20xbfo? dat
Oxbe8 | 004000ca0 | Fe™
Oxbec 0 sum
Oxbf0 1 X =

main | O0xbf4 2
Oxbf8
0xb?? | oo400120 | Reum

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the sum of a vector
int sum(const vector<int>&);

int main()

{
int result;
vector<int> x = {1,2,3,4};
result = sum(x);

}
int sum(const vector<int>& dat)
{

int s = 0;

for(int i=0; i < dat.size(); i++)

{
}

return s;

s += dat[i];

School of Engine

Pointers vs. References Summary

How to tell references and pointers apart

— Check if you see the '&' or '*'in a type declaration
or expression

__ Witha Type

& Indicates a C++ Reference Var Address-of yields a pointer to the
(int &val, vector<int> &vec) object
Adds a * to the type of variable

% Declares a pointer type variable De-Reference (Value @ address)
(int *valptr = &val, vector<int> Cancels a * from the type of variable
*vecptr = &vec)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi ¢

i, TS(“Viterbi

School of Engineering

DYNAMIC ALLOCATION

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Dynamic Memory & the Heap

* Code usually sits at low addresses
* Global variables somewhere after code
e System stack (memory for each function instance
that is alive)
— Local variables
— Return link (where to return)
— etc.
 Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program
 Heap grows downward, stack grows upward...

— In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

fifffffc

Code

Globals

Heap

v
|

Stack
(areafor
data local to
a function)

Memory

Motivation

Automatic/Local Variables Dynamic Allocation
* Deallocated (die) when they < Persist until explicitly

go out of scope deallocated by the program
 As ageneral rule of thumb, (via ‘delete’)

they must be statically sized — Data lives indefinitely

(size is a constant known at * Can be sized at run-time

compile time) — int size;

. cin >> size;
— int data[100]; int *data = new int[size];

(These are the 2 primary reasons to
use dynamic allocation.)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

C Dynamic Memory Allocation

 void* malloc(int num bytes) function in stdlib.h

— Allocates the number of bytes requested and returns a pointer to the block of
memory

— Use sizeof(type) macro rather than hardcoding 4 since the size of an int may
change in the future or on another system

« free(void * ptr) function

— Given the pointer to the (starting location of the) block of memory, free returns it to the
system for re-use by subsequent malloc calls

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = (int*) malloc(num*sizeof(int));
// can now access scores[@] .. scores[num-1];

free(scores);
return 0;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (2
School of Engineering *

C++ new & delete operators

* new allocates memory from heap

— followed with the type of the variable you want or an array type declaration
 double *dptr = new double;
 int *myarray = new int[100];

— can obviously use a variable to indicate array size

— returns a pointer of the appropriate type

* if you ask for a new int, you get an int * in return
* if you ask for an new array (new int[10]), you get an int * in return

* delete returns memory to heap

— followed by the pointer to the data you want to de-allocate
 delete dptr;

— use delete [] for pointers to arrays
 delete [] myarray;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -«

School of Engineering

Dynamic Memory Allocation

int main(int argc, char *argv[]) 0 conle
{ int num;
cout << “How many students?” << endl; Globals
cin >> num;
int *scores = new int[num]; new
// can now access scores[@] .. scores[num-1]; Heap allocates:
return 6; 20bc0 00 scores|[0]
) 20bc4 00 scores[1]
20bc8 00 scores[2]
20bcc 00 scores[3]
20bd0 00 scores[4]
int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];

// can now access scores[@] .. scores[num-1];
delete [] scores FFFFFFFC local vars
return 0;

} Memory

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi %
School of Engineering

Fill in the Blanks

. data = new int;

. data = new char;

. data = new char[100];

. data = new char*[20];
. data = new vector<string>;
. data = new Student;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

B (S C Vierbi
Fill in the Blanks

. data = new int;
— int*

. data = new char;
— char*

. data = new char[100];
— char*

. data = new char*[20];
— char**

. data = new vector<string>;
— vector<string>*

. data = new Student;
— Student*

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi %
School of Engineering *

Dynamic Allocation

Dynamic Allocation

— Lives on the heap

— Lives until you 'delete’ it

Let's draw the operation of goodmull()

Doesn't have a name, only pointer/address to it

Doesn't die at end of function

(though pointer to it may)

Stack Area of RAM

Heap Area of RAM

main

Oxbe0 0x93c ottt
oodmull [Oxbe4 8 i
2 ni 0x93c

Oxbe8 5 in2
Oxbec | oo4000ca0 | "ou"
Oxbf0 8 wid
Oxbf4 5 len
Oxbf8 | -73249515 a

Oxbfc | oo400120 | "54"

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);
cout << "Ans. is " << *a << endl;
delete a;

return 9;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)
{
int* out = new int;
*out = inl * in2;
return out;

}

USC Viterbi

School of Engineering

Dynamic Allocation

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

 When goodmull() exits, the out pointer goes
out of scope

 Thus we need to return the pointer or save it
somewhere so that there is a record of our
allocation, otherwise we will have a leak

Stack Area of RAM Heap Area of RAM
0x93c 40
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 0x93c &
Oxbfc | 00400120 | R¢4"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

}

int wid = 8, len = 5;

int *a = goodmull(wid,len);

cout << "Ans. is " << *a << endl;
delete a;

return 9;

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)

{

}

int out = inl * in2;
return &out;

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)

{

}

int* out = new int;
*out = inl * in2;
return out;

I (S C Viterbi (5®
Dynamic Allocation — Q1

 What happens if we comment

the 'delete a' line?

Stack Area of RAM

Heap Area of RAM

School of Engineering

Oxbe0 0x93c —
Oxbe4 8 i
area Inl 0x93c
Oxbe8 5 in2
Oxbec | oo4000ca0 | "ou"
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | 00400120 | "G

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes the product of inl & in2
int* badmull(int inl, int in2);
int* goodmull(int inl, int in2);

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);

cout << "Ans. is << *a << endl;

// delete a;

return 9;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
int out = inl * in2;
return &out;

}

// Good! Returns a pointer to a var.
// that will continue to live
int* goodmull(int inl, int in2)
{
int* out = new int;
*out = inl * in2;
return out;

}

e — ()5 Viterbi
Dynamic Allocation — Al

// Computes the product of inl & in2

 What happens if we comment int* badmull(int inl, int in2);
: - int* goodmull(int inl, int in2);

the 'delete a' line? it maing
— Memory LEAK!! {

int wid = 8, len = 5;
int *a = goodmull(wid,len);

cout << "Ans. is << *a << endl;

// delete a;

return 9;
Stack Area of RAM Heap Area of RAM)
// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)
{
0x93c 40 int out = inl * in2;
return &out;
MEMORY LEAK ¥
_ No one saved a pointer // Good! Returns a pointer to a var.
OxbfO 8 wid to this data // that will continue to live
main Oxbf4 5 len int* goodmull(int inl, int in2)
{
Oxbf8 | -73249515 a int* out = new int;
Return *out = inl * in2;
Oxbfc | 00400120 link return out;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi (2
Dynamic Allocation — Q2

// Computes the product of inl & in2
int* goodmull(int inl, int in2);

 What happens if we overwrite the only pointer
to a dynamically allocated variable/object?

int main()
{
int wid = 8, len = 5;
int *a = goodmull(wid,len);
cout << "Ans. is " << *a << endl;

delete a;
return 9;
}
Stack Area of RAM Heap Area of RAM
// Good! Returns a pointer to a var.
// that will continue to live
Oxbe0 0x93c ottt int* goodmull(int inl, int in2)
{
area | Oxbe4 8 inl int* out = new int;
Oxbes _ 0x93c E out = new int; // another int
o In2 *out = inl * in2;
Return return out;
Oxbec | oo4000ca0 | " g
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "54"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi (2
Dynamic Allocation — A2

. . . // Computes the product of inl & in2
* What happens if we overwrite the only pointer to int* gg’odmumini S, S)

a dynamically allocated variable/object?
int main()

— A memory leak {
. int wid = 8, len = 5;
* Be sure you keep a pointer around somewhere int *a = goodmull(wid,len);
otherwise you'll have a memory leak! cout << "Ans. is " << *a << endl;
delete a;
return 9;
¥
Stack Area of RAM Heap Area of RAM

// Good! Returns a pointer to a var.
// that will continue to live

OxbeO Oxbe4 rire int* goodmull(int inl, int in2)
{

area | Oxbe4 8 W int* out = new int;
Oxbe8 0x93c E out = new int; // another int
° | *out = inl * in2;
Oxbec | 004000ca0 Rleitr‘]ili” MEMORY LEAK } return out;
0xbf0 3 wid Lost pointer to this data
main | Oxbf4 5 len
L Ox Q30 40
Oxbf8 | -73249515 a

Oxbfc | oo400120 | "54"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (e
School of Engineering *

Dynamic Allocation

. . . . // Computes rectangle area,
* The LinkedList object is allocated as a 77 pRhs A, & remins A
static/local variable struct Item {
. int l; Item* t;
— But each element is allocated on the heap },m Ve ems nex
* Wheny goes out of scope only the data class LinkedList {
public:
members are deallocated /) create a new item
— You may have a memory leak // in the list
void push_back(int v);
private:
Stack Area of RAM Heap Area of RAM Item* head;
¥
0x93c))
> 3 int main()
doTask —— {
X
Oxbe8 0x93c v | y doTask();
Oxbec | oo4000ca0 | "ou" 0x748 5
0 void doTask()
{
i LinkedList y;
main MEMORY LEAK y.push_back(3);
Wheny is deallocat:dc\lme have y.push_back(5);
no pointer to the data * *
Oxbfc | 00400120 | R¢4" } /* other stuff */

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The LinkedList object is allocated as a static/local

variable

— But each element is allocated on the heap

When y goes out of scope only the data members
are deallocated

— You may have a memory leak

An Appropriate Destructor Will Help Solve This

Stack Area of RAM

Heap Area of RAM

USC Viterbi (e
School of Engineering *

Dynamic Allocation

main

Oxbfc

00400120

Return
link

0x93c
> 3
0x748
v
0x748 5
0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Computes rectangle area,
// prints it, & returns it
struct Item {
int val; Item* next;
}s5
class LinkedList {
public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

}s
int main()
{
doTask();
}
void doTask()
{

LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

i, TS(“Viterbi

School of Engineering

If time allows

PRACTICE ACTIVITY

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Object Assignment
* Assigning one struct or class object to another will
cause an element by element copy of the source data
destination struct or class

#include<iostream>
using namespace std;
enum {CS, CECS }; —
0x00 ‘B’
struct student { Ox01 D
char name[80]; name
int id; - <1
int major; OxaF %0
}; 0x50 5 id
0x54 1 major
int main(int argc, char *argv[]) B =
{ i
student s1; name
strncpy(sl.name,”Bill”,80); 66 . — s2
sl.id = 5; sl.major = CS; :
5 id
student s2 = s1; 1 major _|
return 0; Memory
Y

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory Allocation Tips

* Take care when returning a pointer or reference that

the object being referenced will persist beyond the
end of a function

e Take care when assigning a returned referenced
object to another variable...you are making a copy

* Try the examples yourself
— S wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Uscviterbi_
Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item class Item class Item
{ public: { public: { public:
Item(int w, string y); Item(int w, string y); Item(int w, string y);
I 1
. . ¥
Item buildItem/() Itemé& buildItem() .
{ Item x(4, “hi”); { Item x(4, “hi”); frem” Eulldltem() Wi i
return x: return x: { Item* x = new Item(4,%“hi”);
} ! } ! return x;
}
int main () int main () At in()
{ Ttem i = buildItem(); { Ttems i = buildItem(); ?nltgilfi C bwildTtem();
// access i’s data. // access i’s data B .u !
} // access i’s data
} exl ex2) ex3
Iltem
on
BUlld | oxpea 4 X BUlld | oxpes Build Heap
lte lte X lte
Oxbe8 "hi" Oxbe8 Oxbe8 0x93c X
oxbec | 004000ca0 R|eit#|£n Oxbec | 004000ca0 Rfit#li” Oxbec 004000ca0 RTitr:Jlin
main | Oxbf4 4 i main main
Oxbf8 "hi" Oxbf8 oxbed i Oxbf8 0x93c i
Oxbfc | oo400120 | Feu™ Oxbfc | oo400120 | "S" Oxbfc | oo400120 | "7N"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Understanding Memory Allocation

e Schoolof Engineering

There are no syntax errors. Which of these can correctly build an Item and then

class Item
{ public:
Item(int w, string y);

157

Item* buildItem()

{ Ttem x(4, “hi”);
return &x;

}

int main ()
{ Item *i = buildItem();
// access i’s data

} ex4

have main() safely access its data

class Item

{ public:
Item(int w, string y);

}:

Item& buildItem()

{ Item* x = new Item(4,%“hi”);
return *x;

}

int main ()
{ Item& 1 = buildItem();
// access i’s data

Build Oxbe4 X
Ite

Oxbe8

Oxbec Return

link

main Oxbf4

Oxbf8 Oxbed i

Oxbfc | oo400120 | "54"

/ ex5
Iltem
on
Build Heap
lte
Oxbe8 0x93c X

Oxbec | 004000ca0 | R

main Obe4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Oxbf8 | 2 ox93c ?

Oxbfc | oos400120 | "5"

N (/S C Viterbi (7

Understanding Memory Allocati

class Item

{ public:
Item(int w,

}:

Itemé& buildItem/()

string y);

return *x;

}

int main ()
{ Item i

buildItem() ;

{ Item* x = new Item(4,“hi”);

W

class Item

{ public:
Item(int w,

};

Item& buildItem()

{ ITtem* x
return *x;

}

int main ()

string y);

new Item(4,“hi”);

{ Item *i = & (buildItem());

School of Engineering

on

class Item
{ public:
Item(int w,

b

Item& buildItem()

{ Item* x new Item(4,“hi”);
return *x;

}

int main ()

string vy);

., -, { Item &i = buildItem()
// access 1i’s data. // access 1i’s data. 1] cceess Ala deka
/ ex6 : ex7) ex8
ltem Item ltem
on on on
Heap Heap Heap
Build uild Build
lte lte lte
Oxbe8 0x93c X Oxbe8 0x93c X Oxbe8 0x93c X
Oxbec | 004000ca0 | "54" Oxbec | 004000ca0 | °54" Oxbec | 004000ca0 | "™
main Oxbf4 4 i main Oxbf4 main Oxbf4
Oxbf8 "hi" Oxbf8 0x93c i Oxbf8 | 2 0x93c ? i
Oxbfc | 00400120 Rﬁﬁ?‘ Oxbfc | 00400120 Rﬁ#g‘ oxbfc | 00400120 RﬁmT

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (S C Viterbi (62
Review of Pointers in C/C++

* Pointer (type *)
— Really just the memory address of a variable

— Pointer to a data-type is specified as type * (e.g. int *)

— Operators: & and *

 &object
° *ptr\

=> address-of object (Create a link to an object)

School of Engineering

=> object located at address given by ptr (Follow a link to an object)

» *(&object) => object [i.e. * and & are inverse operators of each other]

 Example: Indicate what each line prints or what variable is modified. Use NA
for any invalid operation.

int* p, *q;
int i, j;

i=25;3j=160;

p = &i;

cout << p << endl;
cout << *p << endl;

*p o= 3J;
*q = *p;
q=p;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OxbeO
Oxbe4
Oxbe8

Oxbec

10

OxbeO

Oxbe8

Oxbe4

Oxbe8

Oxbe8

10

Undefined

Oxbe8

i, TS(“Viterbi

School of Engineering

Check Yourself

To figure out the type of data a pointer expression will yield...

* CO nSId er th ese d eCIa rat|0ns * Each * in the expression cancels a * from the variable type.

— int k, X[3] _ {5) 7, 9}; * Each & in the expression adds a * to the variable type.
— int *myptr = Xx; Orig. Type Expr Yields
— 1int *Fourptr = &myptr; myptr = int* *myptr int
* Indicate the formal type that ourptr = int** | **ourptr int
each expression evaluates to *ourptr int*
(i.e.int, int *, int **) K - int 2k P,
&myptr int**
| Beresion | Type
&x[0] int*
X int*
myptr int*
*myptr int
(*ourptr) + 1 int*
myptr + 2 int*
&ourptr int***

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (S C Viterbi (U
Argument Passing Examples

* Pass-by-value => Passes a copy

e Pass-by-reference =>

— Pass-by-pointer/address => Passes address of actual variable

School of Engineering

— Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main()
{
int x=5,y=7;
swapit(x,y);
cout <<UX,y="“<< Xx<<“,”<< vy;
cout << endl;

}
void swapit(int x, int y)
{

int temp;

temp = Xx;

X

Y5
temp;
}

y

int main()
{
int x=5,y=7;
swapit(&x,8&y);
cout <<UX,y="“<< x<<“,”<< y;
cout << endl;

¥
void swapit(int *x, int *y)
{
int temp;
temp = *x;
= *y;
*y = temp;

int main()

{
int x=5,y=7;
swapit(x,y);

cout <<UX,y="“<< x<<“,”<< y;
cout << endl;

}
void swapit(int &x, int &y)
{

int temp;

temp = Xx;

X =Y

y = temp;

program output: x=5,y=7

program output: x=7,y=5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

program output: x=7,y=5

USC Viterbi

School of Engineering

Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

class Item

{ public:
Item(int w,

}i

Item buildItem/()

{ Ttem x (4, “hi”);
return x;

}

int main ()
{ Item i = buildItem()
// access i’s data.

string vy);

class Item

{ public:
Item(int w,

}:

Item& buildItem()

{ ITtem x (4, “hi”);
return x;

}

int main ()
{ Item& i = buildItem();
// access i’s data

}

string y);

class Item
{ public:

Item(int w, string vy);

1%

Item* buildItem{()

{ Ttem* x = new Item(4,“hi”);
return x;

}

int main ()
{ Item *i = buildItem();
// access i’s data

exl ex2) ex3
ltem
on
Bulld' | oxpes 4 X Builld | gxpes Build Heap
lte lte X lte
Oxbe8 "hi" Oxbe8 Oxbe8 0x93c X
Oxbec | oo4000ca0 | "5" Oxbec | 004000ca0 | o™ Oxbec | o0o4000ca0 | "§"
main | Oxbf4 4 i main main
Oxbf8 "hi" Oxbf8 oxbed i Oxbf8 0x93c i
Oxbfc | oo400120 | Feu™ Oxbfc | oo400120 | "S" Oxbfc | oo400120 | "7N"

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi 2

e Schoolof Engineering

Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item
{ public:
Item(int w, string y);

}:

Item* buildItem()

{ Ttem x(4, “hi”);
return &x;

}

int main ()
{ Item *i = buildItem();
// access i’s data

class Item
{ public:
Item(int w, string vy):

}:

Item& buildItem()

{ Item* x = new Item(4,%“hi”);
return *x;

}

int main ()
{ Item& 1 = buildItem();
// access i’s data

) ex4 } exb
Item
on
?und Oxbe4 X Build Heap
fe lte
Oxbe8 Oxbe8 0x93c X
Ret
Oxbec . Oxbec | 004000ca0 | Fev"
main 0be4 main Obe4
Oxbf8 Oxbe4 i Oxbf8 | 2 o0x93c ? i
Oxbfc | oo400120 | Fe Oxbfc | oo400120 | R

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (/S C Viterbi (U

Understanding Memory Allocati

class Item

{ public:
Item(int w,

}:

Itemé& buildItem/()

string y);

return *x;

}

int main ()
{ Item i

buildItem() ;

{ Item* x = new Item(4,“hi”);

class Item

{ public:
Item(int w,

};

Item& buildItem()

{ ITtem* x
return *x;

}

int main ()

string y);

new Item(4,“hi”);

{ Item *i = & (buildItem())

School of Engineering

on

class Item
{ public:
Item(int w,

b

Item& buildItem()

{ Item* x new Item(4,“hi”);
return *x;

}

int main ()

string vy);

., -, { Item &i = buildItem()
// access 1i’s data. // access 1i’s data. 1] cceess Ala deka
/ ex6 ex7) ex8
ltem Item ltem
on on on
Heap Heap Heap
Build uild Build
lte lte lte
Oxbe8 0x93c X Oxbe8 0x93c X Oxbe8 0x93c X
Oxbec | 004000ca0 | "54" Oxbec | 004000ca0 | °54" Oxbec | 004000ca0 | "™
main Oxbf4 4 i main Oxbf4 main Oxbf4
Oxbf8 "hi" Oxbf8 0x93c i Oxbf8 | 2 0x93c ? i
Oxbfc | 00400120 Rﬁﬁ?‘ Oxbfc | 00400120 Rﬁ#g‘ oxbfc | 00400120 Rﬁmy

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

