
1

© 2015 by Mark Redekopp, All Rights Reserved

CSCI 104
Memory Allocation

Mark Redekopp

2

© 2015 by Mark Redekopp, All Rights Reserved

VARIABLES & SCOPE

3

© 2015 by Mark Redekopp, All Rights Reserved

A Program View of Memory
• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

4

© 2015 by Mark Redekopp, All Rights Reserved

Variables and Static Allocation
• Every variable/object in a computer has

a:

– Name (by which programmer references it)

– Address (by which computer references it)

– Value

• Let's draw these as boxes

• Every variable/object has scope (its
lifetime and visibility to other code)

• Automatic/Local Scope

– {…} of a function, loop, or if

– Lives on the stack

– Dies/Deallocated when the '}' is
reached

• Let's draw these as nested
container boxes

int x;

string s1("abc"); -154729832

x

0x1a0

3

s1

0x1a4 "abc"

Code Computer

int main()
{

int x;
if(x){

string s1("abc");
}

}

-154729832

x

0x1a0

3

s1

0x1a4 "abc"

main

if

5

© 2015 by Mark Redekopp, All Rights Reserved

Automatic/Local Variables
• Variables declared inside {…} are allocated on

the stack

• This includes functions

// Computes rectangle area,
// prints it, & returns it
int area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, a;
a = area(wid,len);

}

int area(int w, int l)
{

int ans = w * l;
print(ans);
return ans;

}

void print(int area)
{

cout << “Area is “ << area;

cout << endl;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 area0xbd8

004001844
Return

link
0xbdc

40 ans0xbe0

print

cout

6

© 2015 by Mark Redekopp, All Rights Reserved

Memory (RAM)

…

main:

(a, x=8,y=3)

Scope Example

• Globals live as long as
the program is running

• Variables declared in a
block { … } live as long as
the block has not
completed

– { … } of a function

– { … } of a loop, if statement,
etc.

• When variables share the
same name the closest
declaration will be used by
default

…

Code

Globals

x = 5

0

…

Heap

fffffffc

Address#include <iostream>
using namespace std;

int x = 5;

int main()
{

int a, x = 8, y = 3;
cout << “x = “ << x << endl;
for(int i=0; i < 10; i++){
int j = 1;
j = 2*i + 1;
a += j;

}
a = doit(y);
cout << “a=“ << a ;
cout << “y=“ << y << endl;
cout << “glob. x” << ::x << endl;

}

int doit(int x)
{

x--;
return x;

}

…

main:

(a=, x=8,y=3)

((i, j))

…

main:

(a=121, x=8,y=3)

doit:

(x= 3=>2)

…

main:

(a=2, x=8,y=3)

7

© 2015 by Mark Redekopp, All Rights Reserved

POINTERS & REFERENCES

8

© 2015 by Mark Redekopp, All Rights Reserved

Pointers in C/C++
• Generally speaking a "reference" can be a pointer or a C++ Reference

• Pointer (type *)

– Really just the memory address of a variable

– Pointer to a data-type is specified as type * (e.g. int *)

– Operators: & and *

• &object => address-of object

• *ptr => object located at address given by ptr

• *(&object) => object [i.e. * and & are inverse operators of each other]

• Example

int* p, *q;

int i, j;

i = 5; j = 10;

p = &i;

cout << p << endl;

cout << *p << endl;

*p = j;

*q = *p;

q = p;

q0xbe4

5 i0xbe8

10 j0xbec

p0xbe0 0xbe8 p0xbe0

0xbe8

5

10 i0xbe8

Undefined

0xbe8 q0xbe4

9

© 2015 by Mark Redekopp, All Rights Reserved

Pointer Notes

• An uninitialized pointer is a pointer just waiting to cause a SEGFAULT

• NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything

– NULL is effectively the value 0 so you can write:

int* p = NULL;

if(p)

{ /* will never get to this code */ }

– To use nullptr compile with the C++11 version:

$ g++ -std=c++11 –g –o test test.cpp

• An uninitialized pointer is a pointer waiting to cause a SEGFAULT

10

© 2015 by Mark Redekopp, All Rights Reserved

Check Yourself
• Consider these declarations:

– int k, x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

x[0]

x

myptr

*myptr

(*ourptr) + 1

myptr + 2

ourptr

To figure out the type of data a pointer expression will

yield…Take the type of pointer in the declaration and

let each * in the expression 'cancel' one of the *'s in

the declaration

Type Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

11

© 2015 by Mark Redekopp, All Rights Reserved

References in C/C++

• Reference type (type &)

• “Syntactic sugar” to make it so you don't have to use pointers

– Probably really using/passing pointers behind the scenes

• Declare a reference to an object as type& (e.g. int &)

• Must be initialized at declaration time (i.e. can’t declare a reference
variable if without indicating what object you want to reference)

– Logically, C++ reference types DON'T consume memory…they are just an alias
(another name) for the variable they reference

– Physically, it may be implemented as a pointer to the referenced object but
that is NOT your concern

• Cannot change what the reference variable refers to once initialized

12

© 2015 by Mark Redekopp, All Rights Reserved

Using C++ References
• Can use it within the same function

• A variable declared with an ‘int &’
doesn’t store an int, but is an alias for
an actual variable

• MUST assign to the reference variable
when you declare it.

int main()

{

int y = 3, *ptr;

ptr = &y; // address-of

// operator

int &z; // NO! must assign

int &x = y; // reference

// declaration

// we’ve not copied

// y into x

// we’ve created an alias

// Now x can never reference

// any other int…only y!

x++; // y just got incr.

cout << y << endl;

return 0;

}

y

3

x

3

y

0x1a0

ptr

0x1a0

With Pointers With References

- Logically

0x1a0

13

© 2015 by Mark Redekopp, All Rights Reserved

Swap Two Variables
• Pass-by-value => Passes a copy

• Pass-by-reference =>
– Pass-by-pointer/address => Passes address of actual variable

– Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main()

{

int x=5,y=7;

swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;

cout << endl;

}

void swapit(int x, int y)

{

int temp;

temp = x;

x = y;

y = temp;

}

int main()

{

int x=5,y=7;

swapit(&x,&y);

cout <<“x,y=“<< x<<“,”<< y;

cout << endl;

}

void swapit(int *x, int *y)

{

int temp;

temp = *x;

*x = *y;

*y = temp;

}

program output: x=5,y=7 program output: x=7,y=5

int main()

{

int x=5,y=7;

swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;

cout << endl;

}

void swapit(int &x, int &y)

{

int temp;

temp = x;

x = y;

y = temp;

}

program output: x=7,y=5

14

© 2015 by Mark Redekopp, All Rights Reserved

Correct Usage of Pointers
• Can use a pointer to have a function

modify the variable of another

// Computes rectangle area,

// prints it, & returns it

void area(int, int, int*);

int main()

{

int wid = 8, len = 5, a;

area(wid,len,&a);

}

void area(int w, int l, int* p)

{

*p = w * l;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 5 l0xbe4

0xbf8 p0xbe8

004000ca0
Return

link
0xbec

8 w0xbe0

40

15

© 2015 by Mark Redekopp, All Rights Reserved

Misuse of Pointers
• Make sure you don't return a pointer to a

dead variable

• You might get lucky and find that old value
still there, but likely you won't

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

int main()

{

int wid = 8, len = 5, *a;

a = area(wid,len);

cout << *a << endl;

}

int* area(int w, int l)

{

int ans = w * l;

return &ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 ans0xbe0

0xbe0

16

© 2015 by Mark Redekopp, All Rights Reserved

Use of C++ References
• We can pass using C++ reference

• The reference 'ans' is just an alias for 'a'
back in main

– In memory, it might actually be a pointer, but you don't
have to dereference (the kind of stuff you have to do
with pointers)

// Computes rectangle area,

// prints it, & returns it

void area(int, int, int&);

int main()

{

int wid = 8, len = 5, a;

area(wid,len,a);

}

void area(int w, int l, int& ans)

{

ans = w * l;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 5 l0xbe4

?0xbf8? ans0xbe8

004000ca0
Return

link
0xbec

8 w0xbe0

40
=ans

17

© 2015 by Mark Redekopp, All Rights Reserved

Pass-by-Value vs. -Reference

• Arguments are said to be:

– Passed-by-value: A copy is made from one function and
given to the other

– Passed-by-reference: A reference (really the address) to
the variable is passed to the other function

• Care needs to be taken when choosing between the
options

Pass-by-Value Benefits Pass-by-Reference Benefits

+ Protects the variable in the caller
since a copy is made (any
modification doesn’t affect the
original)

+ Allows another function to modify
the value of variable in the caller
+ Saves time vs. copying

18

© 2015 by Mark Redekopp, All Rights Reserved

Pass by Reference
• Notice no copy of x need be made

since we pass it to sum() by reference
– Notice that likely the computer passes the address

to sum() but you should just think of dat as an alias
for x

// Computes rectangle area,

// prints it, & returns it

int sum(const vector<int>&);

int main()

{

int result;

vector<int> x = {1,2,3,4};

result = sum(x);

}

int sum(const vector<int>& dat)

{

int s = 0;

for(int i=0; i < dat.size(); i++)

{

sum += dat[i];

}

return s;

}

Stack Area of RAM

1 x0xbf0

main 20xbf4

…0xbf8

00400120
Return

link
0xb??

sum 0 s0xbe0

?0xbf0? dat0xbe4

004000ca0
Return

link
0xbe8

0 sum0xbec

= dat

19

© 2015 by Mark Redekopp, All Rights Reserved

Pointers vs. References

• How to tell references and pointers apart

– Check if you see the '&' or '*' in a type declaration
or expression

Type Expression

& C++ Reference Var
(int &val, vector<int> &vec)

Address-of (yields a pointer)
&val => int *, &vec = vector<int>*

* Pointer
(int *valptr = &val, vector<int>
*vecptr = &vec)

De-Reference (Value @ address)
*valptr => val
*vecptr => vec

20

© 2015 by Mark Redekopp, All Rights Reserved

DYNAMIC ALLOCATION

21

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Memory & the Heap

• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

22

© 2015 by Mark Redekopp, All Rights Reserved

Motivation

Automatic/Local Variables

• Deallocated (die) when they
go out of scope

• As a general rule of thumb,
they must be statically sized
(size is a constant known at
compile time)
– int data[100];

Dynamic Allocation

• Persist until explicitly
deallocated by the program
(via ‘delete’)

• Can be sized at run-time
– int size;

cin >> size;
int *data = new int[size];

23

© 2015 by Mark Redekopp, All Rights Reserved

C Dynamic Memory Allocation
• void* malloc(int num_bytes) function in stdlib.h

– Allocates the number of bytes requested and returns a pointer to the block of
memory

– Use sizeof(type) macro rather than hardcoding 4 since the size of an int may
change in the future or on another system

• free(void * ptr) function
– Given the pointer to the (starting location of the) block of memory, free returns it to the

system for re-use by subsequent malloc calls

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])

{

int num;

cout << “How many students?” << endl;

cin >> num;

int *scores = (int*) malloc(num*sizeof(int));

// can now access scores[0] .. scores[num-1];

free(scores);

return 0;

}

24

© 2015 by Mark Redekopp, All Rights Reserved

C++ new & delete operators
• new allocates memory from heap

– followed with the type of the variable you want or an array type declaration
• double *dptr = new double;

• int *myarray = new int[100];

– can obviously use a variable to indicate array size

– returns a pointer of the appropriate type
• if you ask for a new int, you get an int * in return

• if you ask for an new array (new int[10]), you get an int * in return]

• delete returns memory to heap

– followed by the pointer to the data you want to de-allocate
• delete dptr;

– use delete [] for pointers to arrays
• delete [] myarray;

25

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Memory Allocation
int main(int argc, char *argv[])

{

int num;

cout << “How many students?” << endl;

cin >> num;

int *scores = new int[num];

// can now access scores[0] .. scores[num-1];

return 0;

}

Memory

20bc4

20bc8

20bcc

20bd0

20bc0 00

00

00

00

00

…

…

…

Code

local vars

Globals

0

…

Heap

fffffffc

scores[0]

new

allocates:

scores[4]

scores[1]

scores[2]

scores[3]

int main(int argc, char *argv[])

{

int num;

cout << “How many students?” << endl;

cin >> num;

int *scores = new int[num];

// can now access scores[0] .. scores[num-1];

delete [] scores

return 0;

}

26

© 2015 by Mark Redekopp, All Rights Reserved

Fill in the Blanks

• ________ data = new int;

• ________ data = new char;

• ________ data = new char[100];

• ________ data = new char*[20];

• ________ data = new vector<string>;

• ________ data = new Student;

27

© 2015 by Mark Redekopp, All Rights Reserved

Fill in the Blanks

• ________ data = new int;
– int*

• ________ data = new char;
– char*

• ________ data = new char[100];
– char*

• ________ data = new char*[20];
– char**

• ________ data = new vector<string>;
– vector<string>*

• ________ data = new Student;
– Student*

28

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw these as boxes in the heap area

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

int main()

{

int wid = 8, len = 5, *a;

a = area(wid,len);

cout << *a << endl;

delete a;

}

int* area(int w, int l)

{

int* ans = new int;

*ans = w * l;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

29

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw these as boxes in the heap area

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

int main()

{

int wid = 8, len = 5, *a;

a = area(wid,len);

cout << *a << endl;

delete a;

}

int* area(int w, int l)

{

int* ans = new int;

*ans = w * l;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

30

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw these as boxes in the heap area

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

void print(int);

int main()

{

int wid = 8, len = 5, a;

area(wid,len);

}

int* area(int w, int l)

{

int* ans = new int;

*ans = w * l;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

31

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw these as boxes in the heap area

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

void print(int);

int main()

{

int wid = 8, len = 5, a;

area(wid,len);

}

int* area(int w, int l)

{

int* ans = new int;

*ans = w * l;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

MEMORY LEAK

No one saved a pointer
to this data

32

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function
(though pointer to it may)

• Let's draw these as boxes in the heap area

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

void print(int);

int main()

{

int wid = 8, len = 5, a;

area(wid,len);

}

int* area(int w, int l)

{

int* ans = new int;

ans = &w;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

33

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• Be sure you keep a pointer around somewhere

otherwise you'll have a memory leak

// Computes rectangle area,

// prints it, & returns it

int* area(int, int);

void print(int);

int main()

{

int wid = 8, len = 5, a;

area(wid,len);

}

int* area(int w, int l)

{

int* ans = new int;

ans = &w;

return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0xbe4 ans0xbe0

Heap Area of RAM

400x93c

MEMORY LEAK

Lost pointer to this data

34

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• The LinkedList object is allocated as a

static/local variable
– But each element is allocated on the heap

• When y goes out of scope only the data
members are deallocated

– You may have a memory leak

// Computes rectangle area,

// prints it, & returns it

struct Item {

int val;

Item* next;

};

class LinkedList {

public:

void push_back(int v);

private:

Item* head;

};

int main()

{

addData();

}

void addData()

{

LinkedList y;

y.push_back(3);

y.push_back(5);

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

addData

0x93c y0xbe8

004000ca0
Return

link
0xbec

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

35

© 2015 by Mark Redekopp, All Rights Reserved

Dynamic Allocation
• The LinkedList object is allocated as a static/local

variable
– But each element is allocated on the heap

• When x goes out of scope only the data members
are deallocated

– You may have a memory leak

// Computes rectangle area,

// prints it, & returns it

struct Item {

int val;

Item* next;

};

class LinkedList {

public:

void push_back(int v);

private:

Item* head;

};

int main()

{

addData();

}

void addData()

{

LinkedList y;

y.push_back(3);

y.push_back(5);

}

Stack Area of RAM

main

00400120
Return

link
0xbfc

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

An Appropriate Destructor Will Help Solve This

36

© 2015 by Mark Redekopp, All Rights Reserved

PRACTICE ACTIVITIES

37

© 2015 by Mark Redekopp, All Rights Reserved

Object Assignment
• Assigning one struct or class object to another will

cause an element by element copy of the source data
destination struct or class

Memory

0x01

…

0x4F

0x50

0x54

0x00 ‘B’

‘i’

…

00

5

1

…

…

s1

…

#include<iostream>

using namespace std;

enum {CS, CECS };

struct student {

char name[80];

int id;

int major;

};

int main(int argc, char *argv[])

{

student s1;

strncpy(s1.name,”Bill”,80);

s1.id = 5; s1.major = CS;

student s2 = s1;

return 0;

}

name

id

major

‘B’

‘i’

…

00

5

1

name

id

major

s2

38

© 2015 by Mark Redekopp, All Rights Reserved

Memory Allocation Tips

• Take care when returning a pointer or reference that
the object being referenced will persist beyond the
end of a function

• Take care when assigning a returned referenced
object to another variable…you are making a copy

• Try the examples yourself

– $ wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

39

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item x(4, “hi”);

return x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item* x = new Item(4,“hi”);

return x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex1 ex2 ex3

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
4 x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

i

main

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

0x93c0xbe8

004000ca0
Return

link
0xbec

i

x

Item

on

Heap

40

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Memory Allocation

class Item

{ public:

Item(int w, string y);

};

Item* buildItem()

{ Item x(4, “hi”);

return &x;

}

int main()

{ Item *i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item& i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

ex4 ex5

main …

i

0xbf4

0xbe40xbf8

00400120
Return

link
0xbfc

Build

Item
… x0xbe4

"hi"0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

41

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Memory Allocation
class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item i = buildItem();

// access i’s data.

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item &i = buildItem();

// access i’s data

}

class Item

{ public:

Item(int w, string y);

};

Item& buildItem()

{ Item* x = new Item(4,“hi”);

return *x;

}

int main()

{ Item *i = &(buildItem());

// access i’s data.

}ex6 ex7 ex8

main 4 i0xbf4

"hi"0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

0x93c0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120
Return

link
0xbfc

Build

Item

x0x93c0xbe8

004000ca0
Return

link
0xbec

Item

on

Heap

Item

on

Heap

Item

on

Heap

42

© 2015 by Mark Redekopp, All Rights Reserved

STREAMS REVIEW

43

© 2015 by Mark Redekopp, All Rights Reserved

Kinds of Streams

• I/O streams

– Keyboard (cin) and monitor (cout)

• File streams – Contents of file are the stream of data

– #include <fstream> and #include <iostream>

– ifstream and ofstream objects

• String streams

– #include <sstream> and #include iostream

– sstream objects

• Streams support appropriate << or >> operators as
well as .fail(), .getline(), .get(), .eof() member
functions

44

© 2015 by Mark Redekopp, All Rights Reserved

C++ Stream Input
• cin, ifstreams, and stringstreams can be used to accept data from the user

– int x;

– cout << "Enter a number: ";

– cin >> x;

• What if the user does not enter a valid number?

– Check cin.fail() to see if the read worked

• What if the user enters multiple values?

– >> reads up until the first piece of whitespace

– cin.getline() can read a max number of chars until it hits a delimeter but only works
for C-strings (character arrays)

cin.getline(buf, 80) // reads everything through a '\n'

// stopping after 80 chars if no '\n'

cin.getline(buf, 80, ';') // reads everything through a ';'

// stopping after 80 chars if no ';'

– The <string> header defines a getline(...) method that will read an entire line
(including whitespace):

string x;

getline(cin,x,';'); // reads everything through a ';'

45

© 2015 by Mark Redekopp, All Rights Reserved

When Does It Fail
• For files & string streams the stream doesn't fail until you read PAST

the EOF

T h e e n d . \n

getp

EOFFile text

char buf[40];
ifstream inf(argv[1]);

inf >> buf;

inf >> buf;

inf >> buf;

T h e \0buf

T h e e n d . \n

getp

EOFFile text

e n d \0buf

T h e e n d . \n

getp

EOFFile text

.

e n d \0buf

T h e e n d . \n

getp

EOFFile text

.

0

EOF BAD FAIL

0 0

0

EOF BAD FAIL

0 0

1

EOF BAD FAIL

0 1

46

© 2015 by Mark Redekopp, All Rights Reserved

Which Option?
#include<iostream>

#include<fstream>

using namespace std;

int main()

{

vector<int> nums;

ifstream ifile("data.txt");

int x;

while(!ifile.fail()){

ifile >> x;

nums.push_back(x);

}

...

}

#include<iostream>

#include<fstream>

using namespace std;

int main()

{

vector<int> nums;

ifstream ifile("data.txt");

int x;

while(1){

ifile >> x;

if(ifile.fail()) break;

nums.push_back(x);

}

...

}

int x;

while(ifile >> x){

nums.push_back(x);

}

...

A stream returns itself after extraction

A stream can be used as a bool (returns true if it hasn't failed)

Need to check for failure after you

extract but before you store/use

7 8 EOF

data.txt

_

nums

_ _ _

47

© 2015 by Mark Redekopp, All Rights Reserved

Choices
Where is my

data?

Keyboard
(use _____)

File
(use _____)

String
(use ______)

Do I know how many
items to read?

Yes, n items
Use _____

No, arbitrary
Use _____

48

© 2015 by Mark Redekopp, All Rights Reserved

Choices

Text Integers/
Doubles

What type
of data?

Is it
delimited?

Yes YesNo

49

© 2015 by Mark Redekopp, All Rights Reserved

Choices
Where is my

data?

Keyboard
(use iostream [cin])

File
(use ifstream)

String
(use stringstream)

Do I know how many
items to read?

Yes, n items
Use for(i=0;i<n;i++)

No, arbitrary
Use while(cin >> temp) or
while(getline(cin,temp))

50

© 2015 by Mark Redekopp, All Rights Reserved

Choices

Text
(getline or >>)

getline ALWAYS returns text

Ints/Doubles
(Use >> b/c it converts
text to the given type)

What type
of data?

Is it
delimited?

Yes at newlines
Use getline()

No, stop on any
whitespace…use >>

Yes at special chars
(';' or ',')

Use getline with 3rd

input parameter
(delimeter parameter)

51

© 2015 by Mark Redekopp, All Rights Reserved

getline() and stringstreams

• Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

int num_lines = 0;

int total_words = 0;

ifstream myfile(argv[1]);

string myline;

while(getline(myfile, myline)){

stringstream ss(myline);

string word;

while(ss >> word)

{ total_words++; }

num_lines++;

}

double avg =

(double) total_words / num_lines;

cout << "Avg. words per line: ";

cout << avg << endl;

The fox jumped over the log.

The bear ate some honey.

The CS student solved a hard problem.

52

© 2015 by Mark Redekopp, All Rights Reserved

Using Delimeters

• Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

vector<string> mywords;

ifstream myfile(argv[1]);

string myline;

getline(myfile, myline, '(');

// gets "garbage stuff "

// and throws away '('

getline(myfile, myline, ')');

// gets "words I care about"

// and throws away ')'`

stringstream ss(myline);

string word;

while(ss >> word) {

mywords.push_back(word);

}

garbage stuff (words I care about) junk

"words" "I" "care" "about"mywords

0 1 2 3

Text file:

53

© 2015 by Mark Redekopp, All Rights Reserved

Choosing an I/O Strategy
• Is my data delimited by particular characters?

– Yes, stop on newlines: Use getline()

– Yes, stop on other character: User getline() with optional 3rd character

– No, Use >> to skip all whitespaces and convert to a different data type
(int, double, etc.)

• If "yes" above, do I need to break data into smaller pieces (vs.
just wanting one large string)
– Yes, create a stringstream and extract using >>

– No, just keep the string returned by getline()

• Is the number of items you need to read known as a constant
or a variable read in earlier?
– Yes, Use a loop and extract (>>) values placing them in array or vector

– No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
To convert to other types it is easiest to use >>

54

© 2015 by Mark Redekopp, All Rights Reserved

RECURSION

55

© 2015 by Mark Redekopp, All Rights Reserved

Recursion
• Problem in which the solution can be expressed in terms of

itself (usually a smaller instance/input of the same problem)
and a base/terminating case

• Input to the problem must be categorized as a:
– Base case: Solution known beforehand or easily computable (no

recursion needed)

– Recursive case: Solution can be described using solutions to smaller
problems of the same type

• Keeping putting in terms of something smaller until we reach the base case

• Factorial: n! = n * (n-1) * (n-2) * … * 2 * 1

– n! = n * (n-1)!

– Base case: n = 1

– Recursive case: n > 1 => n*(n-1)!

56

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Definitions

• n = Non-Negative Integers and is defined as:
– The number 0 [Base]

– n + 1 where n is some non-negative integer [Recursive]

• String
– Empty string, ε [Base]

– String concatenated with a character (e.g. 'a'-'z') [Recursive]

• Palindrome (string that reads the same forward as backwards)
– Example: dad, peep, level

– Defined as:

• Empty string [Base]

• Single character [Base]

• xPx where x is a character and P is a Palindrome [Recursive]

• Recursive definitions are often used in defining grammars for
languages and parsers (i.e. your compiler)

57

© 2015 by Mark Redekopp, All Rights Reserved

C++ Grammar

• Languages have rules governing their syntax and
meaning

• These rules are referred to as its grammar

• Programming languages also have grammars that code
must meet to be compiled

– Compilers use this grammar to check for syntax and other
compile-time errors

– Grammars often expressed as “productions/rules”

• ANSI C Grammar Reference:
– http://www.lysator.liu.se/c/ANSI-C-grammar-y.html#declaration

58

© 2015 by Mark Redekopp, All Rights Reserved

Simple Paragraph Grammar
Substitution Rule

subject "I" | "You" | "We"

verb "run" | "walk" | "exercise" | "eat" | "play" | "sleep"

sentence subject verb '.'

sentence_list sentence
| sentence_list sentence

paragraph [TAB = \t] sentence_list [Newline = \n]

I run. You walk. We exercise.

subject verb. subject verb.

subject verb.

sentence sentence sentence

sentence_list sentence sentence

sentence_list sentence

sentence_list

paragraph

Example: Example:

I eat You sleep

Subject verb subject verb

Error

59

© 2015 by Mark Redekopp, All Rights Reserved

C++ Grammar
Rule Expansion

expr constant
| variable_id
| function_call
| assign_statement
| ‘(‘ expr ‘)’
| expr binary_op expr
| unary_op expr

assign_statement variable_id ‘=‘ expr

expr_statement ‘;’
| expr ‘;’

5 * (9 + max);

expr * (expr + expr);

expr * (expr);

expr * expr;

expr;

expr_statement

Example: Example: x + 9 = 5;

expr + expr = expr;

expr = expr;

NO SUBSTITUTION

Compile Error!

60

© 2015 by Mark Redekopp, All Rights Reserved

C++ Grammar
Rule Substitution

statement expr_statement
| compound_statement
| if (expr) statement
| while (expr) statement
…

compound_statement ‘{‘ statement_list ‘}’

statement_list statement
| statement_list statement

while(x > 0) { doit(); x = x-2; }

while(expr) { expr; assign_statement; }
while(expr) { expr; expr; }
while(expr) { expr_statement expr_statement }

while(expr) { statement statement }

while(expr) { statement_list statement }

while(expr) { statement_list }

while(expr) compound_statement
while(expr) statement
statement

E
x
a
m

p
le

: while(x > 0)

x--;

x = x + 5;

while(expr)

statement

statement

statement

statement
E

x
a
m

p
le

:

61

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Functions

• Recall the system stack
essentially provides
separate areas of
memory for each
‘instance’ of a function

• Thus each local variable
and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

int fact(int n)

{

if(n == 1){

// base case

return 1;

}

else {

// recursive case

return n * fact(n-1);

}

}

C Code:

62

© 2015 by Mark Redekopp, All Rights Reserved

Recursion & the Stack
• Must return back through the each call int fact(int n)

{

if(n == 1){

// base case

return 1;

}

else {

// recursive case

return n * fact(n-1);

}

}

int main()

{

int val = 4;

cout << fact(val) << endl;

}

Stack Area of RAM

main
4 val0xbf8

00400120
Return

link
0xbfc

4 n0xbf0

004001844
Return

link
0xbf4

fact

3 n0xbe8

004001844
Return

link
0xbec

fact

2 n0xbe0

004001844
Return

link
0xbe4

fact

1 n0xbd8

004001844
Return

link
0xbdc

fact

1

2

6

24

63

© 2015 by Mark Redekopp, All Rights Reserved

Recursion

• Google is in on the joke too...

64

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Functions

• Many loop/iteration
based approaches can be
defined recursively as
well

int main()

{

int data[4] = {8, 6, 7, 9};

int size=4;

int sum1 = isum_it(data, size);

int sum2 = rsum_it(data, size);

}

int isum_it(int data[], int len)

{

int sum = data[0];

for(int i=1; i < len; i++){

sum += data[i];

}

}

int rsum_it(int data[], int len)

{

if(len == 1)

return data[0];

else

int sum = rsum_it(data, len-1);

return sum + data[len-1];

}

C Code:

65

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Call Timeline

Each instance of rsum_it has its own len argument and sum variable

Every instance of a function has its own copy of local variables

rsum_it(data,4)

int sum=

rsum_it(data,4-1)

Time

len = 4 len = 3

len = 2 len = 1rsum_it(data,3)

int sum=

rsum_it(data,3-1)
rsum_it(data,2)

int sum=

rsum_it(data,2-1) rsum_it(data,1)

return data[0];

int main(){

int data[4] = {8, 6, 7, 9};

int size=4;

int sum2 = rsum_it(data, size);

...

}

8

int rsum_it(int data[], int len)

{

if(len == 1)

return data[0];

else

int sum = rsum_it(data, len-1);

return sum + data[len-1];

}

int sum = 8

return 8+data[1];
int sum = 14

return 14+data[2];
int sum = 21

return 21+data[3];

14

21

30

66

© 2015 by Mark Redekopp, All Rights Reserved

Code for all functions

System Stack & Recursion

• The system stack makes recursion
possible by providing separate memory
storage for the local variables of each
running instance of the function

System stack area

System

Memory
(RAM)

Code for all functions

int main()

{

int data[4] = {8, 6, 7, 9};

int size=4;

int sum2 = rsum_it(data, size);

}

int rsum_it(int data[], int len)

{

if(len == 1)

return data[0];

else

int sum =

rsum_it(data, len-1);

return sum + data[len-1];

}

Data for rsum_it (data=800,

len=4, sum=??) and return link

Data for rsum_it (data=800,

len=3, sum=??) and return link

Data for rsum_it (data=800,

len=2, sum=??) and return link

Data for rsum_it (data=800,

len=1, sum=??) and return link

Data for rsum_it (data=800,

len=2, sum=8) and return link

Data for rsum_it (data=800,

len=3, sum=14) and return link

Data for rsum_it (data=800,

len=4, sum=21) and return link

Data for main (data=800, size=4,

sum1=??,sum2=??) and return link

8 6 7 9

0 1 2 3data[4]:

800

67

© 2015 by Mark Redekopp, All Rights Reserved

HELPER FUNCTIONS

68

© 2015 by Mark Redekopp, All Rights Reserved

Exercise

• Write a recursive routine to find the maximum element of an
array containing POSITIVE integers.

int data[4] = {8, 9, 7, 6};

• Primary signature:

int max(int* data, int len);

• For recursion we usually need some parameter to tell use
which item we are responsible for…thus the signature needs
to change. We can make a helper function.

• The client uses the original:

int max(int* data, int len);

• But it just calls:

int max(int* data, int len, int curr);

69

© 2015 by Mark Redekopp, All Rights Reserved

Exercise – Helper Function
• Head recursion • Tail recursion

// The client only wants this

int max(int* data, int len);

// But to do the job we need this

int max(int* data, int len, int curr);

int max(int* data, int len)

{ return max(data, len, 0);

}

int max(int* data, int len, int curr)

{

if(curr == len) return 0;

else {

int prevmax = max(data, len, curr+1);

if(data[curr] > prevmax)

return data[curr];

else

return prevmax;

}

int data[4] = {8, 9, 7, 6};

// The client only wants this

int max(int* data, int len);

// But to do the job we need this

void max(int* data, int len, int curr, int& mx);

int max(int* data, int len)

{ int mymax = 0;

max(data, len, 0, mymax);

return mymax;

}

void max(int* data, int len, int curr, int& mx)

{

if(curr == len) return;

else {

if(data[curr] > mx)

mx = data[curr];

max(data, len, curr+1, mx);

}

70

© 2015 by Mark Redekopp, All Rights Reserved

Exercise

• We can also formulate things w/o the helper function in this case…

int max(int* data, int len)

{

if(len == 1) return data[0];

else {

int prevmax = max(data, len-1);

if(data[len-1] > prevmax)

return data[len-1];

else

return prevmax;

}

}

int data[4] = {8, 6, 9, 7};

71

© 2015 by Mark Redekopp, All Rights Reserved

GENERATING ALL COMBINATIONS

72

© 2015 by Mark Redekopp, All Rights Reserved

Recursion's Power

• The power of recursion often comes when
each function instance makes multiple
recursive calls

• As you will see this often leads to exponential
number of "combinations" being
generated/explored in an easy fashion

73

© 2015 by Mark Redekopp, All Rights Reserved

Binary Combinations

• If you are given the value, n,
and a string with n
characters could you
generate all the
combinations of n-bit
binary?

• Do so recursively!

0

1

00

01

10

11

000

001

010

011

100

101

110

111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1-bit

Bin.
2-bit

Bin.

3-bit

Bin.

4-bit

Bin.

Exercise: bin_combo_str

74

© 2015 by Mark Redekopp, All Rights Reserved

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface

void binCombos(int len)

{

binCombos("", len);

}

// helper-function

void binCombos(string prefix,

int len)

{

if(prefix.length() == len)

cout << prefix << endl;

else {

// recurse

binCombos(prefix+"0", len);

// recurse

binCombos(prefix+"1", len);

}

}

__ __ __ __

0

1

Options

N = length

75

© 2015 by Mark Redekopp, All Rights Reserved

Recursion and DFS (w/ C-Strings)

• Recursion forms a kind of Depth-First Search

binCombos(2,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(3,3)

Base case

binCombos(1,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(0,3)

Set to 0; recurse;

Set to 1; recurse; 0

0

0

1

1 0 1

1 0 1 0 1 0 1

void binCombos(char* data,

int curr,

int len)

{

if(curr == len)

data[curr] = '\0';

else {

// set to 0

data[curr] = '0';

// recurse

binCombos(data, curr+1, len);

// set to 1

data[curr] = '1';

// recurse

binCombos(data, curr+1, len);

}

}

__ __ __ __

0

1

Options

N = length

76

© 2015 by Mark Redekopp, All Rights Reserved

Generating All Combinations
• Recursion offers a simple way to generate all combinations of N

items from a set of options, S
– Example: Generate all 2-digit decimal numbers (N=2, S={0,1,…,9})

void TwoDigCombos(string data)

{

if(data.size() == 2)

cout << data;

else {

for(int i=0; i < 10; i++){

// recurse

TwoDigCombos(data+(char)('0'+i));

}

}

}

T
D

C
(d

a
ta

)

0

…

__ __ __

0

Options
N = length

1
2
…
9

1

2

9

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

00

01

02

09

90

91

92

99

0
1
2
…
9

0
1
2
…
9

0
1
2
…
9

77

© 2015 by Mark Redekopp, All Rights Reserved

Recursion and Combinations

• Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
– Ex. Generate all length-n combinations of the letters in the set S={'U','S','C'}

(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)

• General approach:
– Need some kind of array/vector/string to store partial answer as it is being

built

– Each recursive call is only responsible for one of the n "places" (say location, i)

– The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

• Remember you are responsible for only one location

– Upon return, try another option value and recurse again

– Base case can stop when all n locations are set (i.e. recurse off the end)

– Recursive case returns after trying all options

78

© 2015 by Mark Redekopp, All Rights Reserved

Another Exercise

• Generate all string
combinations of
length n from a
given list (vector)
of characters

#include <iostream>

#include <string>

#include <vector>

using namespace std;

void all_combos(vector<char>& letters, int n) {

}

int main() {

vector<char> letters;

letters.push_back('U');

letters.push_back('S');

letters.push_back('C');

all_combos(letters, 2);

all_combos(letters, 4);

return 0;

}

__ __ __ __

U

S

C

Options

N = length

Use recursion to walk down the 'places'

At each 'place' iterate through & try all options

79

© 2015 by Mark Redekopp, All Rights Reserved

Exercises

• bin_combos_str

• Zero_sum

• Prime_products_print

• Prime_products

• basen_combos

• all_letter_combos

80

© 2015 by Mark Redekopp, All Rights Reserved

END LECTURE
Follow slides are for your own review

81

© 2015 by Mark Redekopp, All Rights Reserved

MORE EXAMPLES

82

© 2015 by Mark Redekopp, All Rights Reserved

Towers of Hanoi Problem
• Problem Statements: Move n discs from source pole to

destination pole (with help of a 3rd alternate pole)
– Cannot place a larger disc on top of a smaller disc

– Can only move one disc at a time

3
2
1

A

(src)

B

(dst)

C

(alt)

A

(src)

B

(dst)

C

(alt)

Start (n=3) Goal (n=3)

3
2
1

A B C

Not allowed

3
2
1

83

© 2015 by Mark Redekopp, All Rights Reserved

Observation 1
• Observation 1: Disc 1 (smallest) can always be moved

• Solve the n=2 case:
A (src) B (dst) C (alt)

1

A B C

2 1

A B C

2
1

A B C

2
1

2

Move 1 from src to alt Move 2 from src to dst

Move 1 from alt to dst

Start

84

© 2015 by Mark Redekopp, All Rights Reserved

Observation 2
• Observation 2: If there is only one disc on the src pole and the

dest pole can receive it the problem is trivial

3

3

A (src) B (dst) C (alt)

2
1

A B C

2
1

A B C

3

2
1

A B C

3

Move n-1 discs from src to alt Move disc n from src to dst

Move n-1 discs from alt to dst

2
1

85

© 2015 by Mark Redekopp, All Rights Reserved

Recursive solution
• But to move n-1 discs from src to alt is really a smaller version of

the same problem with
– n => n-1

– src=>src

– alt =>dst

– dst=>alt

• Towers(n,src,dst,alt)
– Base Case: n==1 // Observation 1: Disc 1 always movable

• Move disc 1 from src to dst

– Recursive Case: // Observation 2: Move of n-1 discs to alt & back

• Towers(n-1,src,alt,dst)

• Move disc n from src to dst

• Towers(n-1,alt,dst,src)

3

A (src) B (dst) C (alt)

2
1

86

© 2015 by Mark Redekopp, All Rights Reserved

Exercise

• Implement the Towers of Hanoi code

– $ wget http://ee.usc.edu/~redekopp/cs104/hanoi.cpp

– Just print out "move disc=x from y to z" rather than trying
to "move" data values

• Move disc 1 from a to b

• Move disc 2 from a to c

• Move disc 1 from b to c

• Move disc 3 from a to b

• Move disc 1 from c to a

• Move disc 2 from c to b

• Move disc 1 from a to b

http://ee.usc.edu/~redekopp/cs102/hanoi.cpp

87

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Box Diagram

Towers(3,a,b,c)

Towers(2,a,c,b)

Towers(1,a,b,c) Move D=1 a to b

Move D=2 a to c

Towers(1,b,c,a) Move D=1 b to c

Move D=3 a to b

Towers(2,c,b,a)

Towers(1,c,a,b) Move D=1 c to a

Move D=2 c to b

Towers(1,a,b,c) Move D=1 a to b

Towers(disc,src,dst,alt)

Towers Function Prototype

88

© 2015 by Mark Redekopp, All Rights Reserved

Combinatorics Examples

• Given n things, how can you choose k of them?
– Written as C(n,k)

• How do we solve the problem?
– Pick one person and single them out

• Groups that contain Joe => _______________

• Groups that don't contain Joe => _______________

– Total number of solutions: __________________

– What are base cases?

Joe

89

© 2015 by Mark Redekopp, All Rights Reserved

Combinatorics Examples

• Given n things, how can you choose k of them?
– Written as C(n,k)

• How do we solve the problem?
– Pick one person and single them out

• Groups that contain Joe => C(n-1, k-1)

• Groups that don't contain Joe => C(n-1, k)

– Total number of solutions: C(n-1,k-1) + C(n-1,k)

– What are base cases?

Joe

90

© 2015 by Mark Redekopp, All Rights Reserved

Combinatorics Examples

• You're going to Disneyland and you're trying to pick 4
people from your dorm to go with you

• Given n things, how can you choose k of them?

– Written as C(n,k)

– Analytical solution: C(n,k) = n! / [k! * (n-k)!]

• How do we solve the problem?

91

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Solution

• Sometimes recursion can yield an incredibly simple
solution to a very complex problem

• Need some base cases

– C(n,0) = 1

– C(n,n) = 1

int C(int n, int k)

{

if(k == 0 || k == n)

return 1;

else

return C(n-1,k-1) + C(n-1,k);

}

92

© 2015 by Mark Redekopp, All Rights Reserved

C++ LIBRARY REVIEW
You are responsible for this on your own since its covered in CS103

93

© 2015 by Mark Redekopp, All Rights Reserved

C++ Library

• String

• I/O Streams

• Vector

94

© 2015 by Mark Redekopp, All Rights Reserved

C Strings

• In C, strings are:

– Character arrays (char mystring[80])

– Terminated with a NULL character

– Passed by reference/pointer (char *) to functions

– Require care when making copies

• Shallow (only copying the pointer) vs.
Deep (copying the entire array of characters)

– Processed using C String library (<cstring>)

95

© 2015 by Mark Redekopp, All Rights Reserved

String Function/Library (cstring)

• int strlen(char *dest)

• int strcmp(char *str1, char *str2);
– Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically

larger, <0 otherwise

• char *strcpy(char *dest, char *src);
– strncpy(char *dest, char *src, int n);

– Maximum of n characters copied

• char *strcat(char *dest, char *src);
– strncat(char *dest, char *src, int n);

– Maximum of n characters concatenated plus a NULL

• char *strchr(char *str, char c);
– Finds first occurrence of character ‘c’ in str returning a pointer to that

character or NULL if the character is not found

#include <cstring>

using namespace std;

int main() {

char temp_buf[5];

char str[] = "Too much";

strcpy(temp_buf, str);

strncpy(temp_buf, str, 4);

temp_buf[4] = '\0'

return 0;

}

In C, we have to pass the C-String
as an argument for the function

to operate on it

96

© 2015 by Mark Redekopp, All Rights Reserved

C++ Strings

• So you don't like remembering all these details?

– You can do it! Don't give up.

• C++ provides a 'string' class that abstracts all
those worrisome details and encapsulates all the
code to actually handle:

– Memory allocation and sizing

– Deep copy

– etc.

97

© 2015 by Mark Redekopp, All Rights Reserved

String Examples

• Must:
– #include <string>

– using namespace std;

• Initializations / Assignment
– Use initialization constructor

– Use ‘=‘ operator

– Can reassign and all memory allocation
will be handled

• Redefines operators:
– + (concatenate / append)

– += (append)

– ==, !=, >, <, <=, >= (comparison)

– [] (access individual character)

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char *argv[]) {

int len;

string s1("CS is ");

string s2 = "fun";

s2 = "really fun";

cout << s1 << " is " << s2 << endl;

s2 = s2 + “!!!”;

cout << s2 << endl;

string s3 = s1;

if (s1 == s3){

cout << s1 << " same as " << s3;

cout << endl;

}

cout << “First letter is “ << s1[0];

cout << endl;

}

CS is really fun

really fun!!!

CS is same as CS is

First letter is C

Output:

http://www.cplusplus.com/reference/string/string/

http://www.cplusplus.com/reference/string/string/

98

© 2015 by Mark Redekopp, All Rights Reserved

More String Examples

• Size/Length of string

• Get C String (char *) equiv.

• Find a substring

– Searches for occurrence of a substring

– Returns either the index where the
substring starts or string::npos

– std::npos is a constant meaning ‘just
beyond the end of the string’…it’s a
way of saying ‘Not found’

• Get a substring

– Pass it the start character and the
number of characters to copy

– Returns a new string

• Others: replace, rfind, etc.

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char *argv[]) {

string s1(“abc def”);

cout << "Len of s1: " << s1.size() << endl;

char my_c_str[80];

strcpy(my_c_str, s1.c_str());

cout << my_c_str << endl;

if(s1.find(“bc d”) != string::npos)

cout << “Found bc_d starting at pos=”:

cout << s1.find(“bc_d”) << endl;

found = s1.find(“def”);

if(found != string::npos){

string s2 = s1.substr(found,3)

cout << s2 << endl;

}

}

Len of s1: 7

abc def

The string is: abc def

Found bc_d starting at pos=1

def

Output:

http://www.cplusplus.com/reference/string/string/

http://www.cplusplus.com/reference/string/string/

99

© 2015 by Mark Redekopp, All Rights Reserved

C++ Strings

• Why do we need the string class?

– C style strings are character arrays (char[])
• See previous discussion of why we don't like arrays

– C style strings need a null terminator ('\0')
“abcd” is actually a char[5] … Why?

– Stuff like this won't compile:
char my_string[7] = “abc” + “def”;

• How can strings help?

– Easier to use, less error prone

– Has overloaded operators like +, =, [], etc.

– Lots of built-in functionality (e.g. find, substr, etc.)

100

© 2015 by Mark Redekopp, All Rights Reserved

C++ Streams

• What is a “stream”?

– A sequence of characters or bytes (of potentially infinite length) used for input
and output.

• C++ has four major libraries we will use for streams:

– <iostream>

– <fstream>

– <sstream>

– <iomanip>

• Stream models some input and/or output device

– fstream => a file on the hard drive;

– cin => keyboard and cout => monitor

• C++ has two operators that are used with streams

– Insertion Operator “<<”

– Extraction Operator “>>”

101

© 2015 by Mark Redekopp, All Rights Reserved

C++ I/O Manipulators

• The <iomanip> header file has a number of “manipulators” to
modify how I/O behaves
– Alignment: internal, left, right, setw, setfill

– Numeric: setprecision, fixed, scientific, showpoint

– Other: endl, ends, flush, etc.

– http://www.cplusplus.com/reference/iostream/manipulators/

• Use these inline with your cout/cerr/cin statements
– double pi = 3.1415;

– cout << setprecision(2) << fixed << pi << endl;

102

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Extraction

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

cin.fail() is false

● User enters value “512” at 1st prompt, enters “123” at 2nd prompt

0

0

512

5 1 2 \n

\n

0

0

123

\n 1 2 3 \n

\n

\n

103

© 2015 by Mark Redekopp, All Rights Reserved

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

● User enters value “23 99” at 1st prompt, 2nd prompt skipped

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

cin.fail() is false

0

0

23

2 3 9

0

0

99

9 \n

9 9 \n

9 9 \n

9 9 \n

\n

Understanding Extraction

104

© 2015 by Mark Redekopp, All Rights Reserved

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

23

2 3 a b

0

0

xxx

c \n

a b c \n

a b c \n

a b c \n

a b c \n

cin.fail() is true

Understanding Extraction

105

© 2015 by Mark Redekopp, All Rights Reserved

string x;

cout << “Enter X: “;

getline(cin,x);

● User enters value “23 99” at 1st prompt, everything read as string

X =

cin =

X = cin =

X =

cin =

cin.fail() is
false

NOTE: \n character is
discarded!

23 99

2 3 9 9 \n EOF

Understanding Extraction

106

© 2015 by Mark Redekopp, All Rights Reserved

Understanding cin

• Things to remember
– When a read operation on cin goes wrong, the fail flag is set

– If the fail flag is set, all reads will automatically fail right away

– This flag stays set until you clear it using the cin.clear() function

– cin.good() returns true if ALL flags are false

• When you're done with a read operation on cin, you should
wipe the input stream
– Use the cin.ignore(...) method to wipe any remaining data off of cin

– Example: cin.ignore(1000,'\n'); cin.clear();

istream
(cin)

T/F

EOF BAD FAIL

T/F T/F

107

© 2015 by Mark Redekopp, All Rights Reserved

int y = 0;

cout << “Enter Y: “;

cin >> y;

cin.ignore(100, '\n');

// doing a cin >> here will

// still have the fail bit set

cin.clear();

// now safe to do cin >>

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

xxx

a b c \n

a b c \n

a b c \n

cin.fail() is true

EOF

EOF

EOF

0

EOF BAD FAIL

0 1

0

EOF BAD FAIL

0 0

cin = EOF

cin = EOF

Understanding Extraction

108

© 2015 by Mark Redekopp, All Rights Reserved

C++ File I/O

• Use <fstream> library for reading/writing files

– Use the open() method to get access to a file
ofstream out; //ofstream is for writing, ifstream is for reading

out.open(“my_filename.txt”) //must be a C style string!

• Write to a file exactly as you would the console!
– out << “This line gets written to the file” << endl;

• Make sure to close the file when you're done
– out.close();

• Use fail() to check if the file opened properly
– out.open(“my_filename.txt”)

– if(out.fail()) cerr << “Could not open the output file!”;

109

© 2015 by Mark Redekopp, All Rights Reserved

Validating User Input

• Reading user input is easy, validating it is hard

• What are some ways to track whether or not the user has
entered valid input?
– Use the fail() function on cin and re-prompt the user for input

– Use a stringstream for data conversions and check the fail() method
on the stringstream

– Read data in as a string and use the cctype header to validate each
character (http://www.cplusplus.com/reference/clibrary/cctype/)

– for(int i=0; i < str.size(); i++)

if(! isdigit(str[i]))
cerr << “str is not a number!” << endl

110

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

• If streams are just sequences of characters, aren't
strings themselves like a stream?

– The <sstream> library lets you treat C++ string objects like
they were streams

• Why would you want to treat a string as a stream?

– Buffer up output for later display

– Parse out the pieces of a string

– Data type conversions
• This is where you'll use stringstream the most!

• Very useful in conjunction with string's getline(...)

111

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

• Convert numbers into strings (i.e. 12345 => "12345")
#include<sstream>

using namespace std;

int main()

{

stringstream ss;

int number = 12345;

ss << number;

string strNumber;

ss >> strNumber;

return 0;

}

sstream_test1.cpp

112

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

• Convert string into numbers [same as atoi()]
#include<sstream>

using namespace std;

int main()

{

stringstream ss;

string numStr = “12345”;

ss << numStr;

int num;

ss >> num;

return 0;

}

sstream_test2.cpp

113

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

• Beware of re-using the same stringstream object for
multiple conversions. It can be weird.

– Make sure you clear it out between uses and re-init with
an empty string

• Or just make a new stringstream each time
stringstream ss;

//do something with ss

ss.clear();

ss.str("");

// now you can reuse ss

// or just declare another stream

stringstream ss2;

114

© 2015 by Mark Redekopp, All Rights Reserved

C++ Arrays

• What are arrays good for?

– Keeping collections of many pieces of the same data type
(e.g. I want to store 100 integers)

– int n[100];

• Each value is called out explicitly by its index

– Indexes start at 0:

• Read an array value:

– cout << “5th value = “ << n[4] << endl;

• Write an array value

– n[2] = 255;

115

© 2015 by Mark Redekopp, All Rights Reserved

C++ Arrays

• Unfortunately C++ arrays can be tricky...

– Arrays need a contiguous block of memory

– Arrays are difficult/costly to resize

– Arrays don't know their own size

– You must pass the size around with the array

– Arrays don't do bounds checking

– Potential for buffer overflow security holes
• e.g. Twilight Hack: http://wiibrew.org/wiki/Twilight_Hack

– Arrays are not automatically initialized

– Arrays can't be directly returned from a function

– You have to decay them to pointers

116

© 2015 by Mark Redekopp, All Rights Reserved

C++ Vectors

• Why do we need the vector class?

– Arrays are a fixed size. Resizing is a pain.

– Arrays don't know their size (no bounds checking)

– This compiles:
• int stuff[5];

• cout << stuff[-1] << “ and “ << stuff[100];

• How can vectors help?

– Automatic resizing to fit data

– Sanity checking on bounds

– They do everything arrays can do, but more safely
• Sometimes at the cost of performance

– See http://www.cplusplus.com/reference/stl/

117

© 2015 by Mark Redekopp, All Rights Reserved

Vector Class
• Container class (what it contains

is up to you via a template)

• Mimics an array where we have
an indexed set of homogenous
objects

• Resizes automatically

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> my_vec(5); // init. size of 5

for(unsigned int i=0; i < 5; i++){

my_vec[i] = i+50;

}

my_vec.push_back(10); my_vec.push_back(8);

my_vec[0] = 30;

unsigned int i;

for(i=0; i < my_vec.size(); i++){

cout << my_vec[i] << “ “;

}

cout << endl;

int x = my_vec.back(); // gets back val.

x += my_vec.front(); // gets front val.

// x is now 38;

cout << “x is “ << x << endl;

my_vec.pop_back();

my_vec.erase(my_vec.begin() + 2);

my_vec.insert(my_vec.begin() + 1, 43);

return 0;

}

my_vec
30

1

51 52 53 54 10 8

0 1 2 3 4

my_vec
50 51 52 53 54

0 1 2 3 4

5 6

my_vec
30 51 52 53 54

0 1 2 3 4 5

10

my_vec
43 51 53 54

0 1 2 3 4

10

2

3

4

1

2

3

4
5

30

118

© 2015 by Mark Redekopp, All Rights Reserved

Vector Class
• constructor

– Can pass an initial number of items or leave blank

• operator[]
– Allows array style indexed access (e.g. myvec[1] + myvec[2])

• push_back(T new_val)
– Adds a copy of new_val to the end of the array allocating

more memory if necessary

• size(), empty()
– Size returns the current number of items stored as an

unsigned int

– Empty returns True if no items in the vector

• pop_back()
– Removes the item at the back of the vector (does not return

it)

• front(), back()
– Return item at front or back

• erase(iterator)
– Removes item at specified index

(use begin() + index)

• insert(iterator, T new_val)
– Adds new_val at specified index (use begin() + index)

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> my_vec(5); // 5= init. size

for(unsigned int i=0; i < 5; i++){

my_vec[i] = i+50;

}

my_vec.push_back(10); my_vec.push_back(8);

my_vec[0] = 30;

for(int i=0; i < my_vec.size(); i++){

cout << my_vec[i] << “ “;

}

cout << endl;

int x = my_vec.back(); // gets back val.

x += my_vec.front(); // gets front val.

// x is now 38;

cout << “x is “ << x << endl;

my_vec.pop_back();

my_vec.erase(my_vec.begin() + 2);

my_vec.insert(my_vec.begin() + 1, 43);

return 0;

}

119

© 2015 by Mark Redekopp, All Rights Reserved

Vector Suggestions
• If you don’t provide an initial size to the

vector, you must add items using
push_back()

• When iterating over the items with a
for loop, used an ‘unsigned int’

• When adding an item, a copy will be
made to add to the vector

• [] or at() return a reference to an
element, not a copy of the element

• Usually pass-by-reference if an
argument to avoid the wasted time of
making a copy

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> my_vec;

for(int i=0; i < 5; i++){

// my_vec[i] = i+50; // doesn’t work

my_vec.push_back(i+50);

}

for(unsigned int i=0;

i < my_vec.size();

i++)

{ cout << my_vec[i] << " "; }

cout << endl;

my_vec[1] = 5; my_vec.at(2) = 6;

do_something(myvec);

return 0;

}

void do_something(vector<int> &v)

{

// process v;

}

