CSCl 104
Memory Allocation

Mark Redekopp

VARIABLES & SCOPE

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi -

School of Engineering

A Program View of Memory

* Code usually sits at low addresses

* Global variables somewhere after code 0
* System stack (memory for each function instance Code
that is alive)
— Local variables Crolle
— Return link (where to return)
— etc.
Heap

 Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e. l
dynamically at run-time) based on the needs of

the program
 Heap grows downward, stack grows upward... '
— In rare cases of large memory usage, they could (asricf‘;r
collide and cause your program to fail or generate data local to
a function)

an exception/error fifffffc

Memory

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi 9

School of Engineering

Variables and Static Allocation

* Every variable/object in a computer has Code Computer
a:
— Name (by which programmer references it) int x: X
— Address (by which computer references it) string s1("abc"); Ox1a0 | -154729832
— Value <1
* Let's draw these as boxes 0x1ad [3 | "ape"
* Every variable/object has scope (its
lifetime and visibility to other code) it main() Lmein
* Automatic/Local Scope ! int x; 0x1a0 | -154729832
3 : : if(x){ -
{...} of a function, loop, or if ctring s1("abc"); if
: sl
— Lives on the stack }
. - } Ox1la4 3 | "abc"
— Dies/Deallocated when the '} is

reached

e Let's draw these as nested
container boxes

© 2015 by Mark Redekopp, All Rights Reserved

S ()5 Viterbi
Automatic/Local Variables

* \Variables declared inside {...} are allocated on // Computes rectangle area,
the stack // prints it, & returns it
int area(int, int);
* This includes functions void print(int);
int main()
Stack Area of RAM {
int wid = 8, len = 5, a;
cout a = area(wid,len);
¥
Oxbd8
print =t area int area(int w, int 1)
Oxbdc | oo4001844 | Reum {
link .
int ans = w * 1;
print(ans);
OxbeO 40 ans return ans;
area | Oxbe4 8 W }
Oxbe8 5 |
void print(int area)
Oxbec | oo4000ca0 | "5" {
cout << “Area 1is “ << area;
Oxbf0 8 wid cout << endl;
main | Oxbf4 5 len)
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "™

© 2015 by Mark Redekopp, All Rights Reserved

- 00000000 USCViterbi®
Scope Example

* Globals live as long as
the program is running

* Variables declared in a
block { ... } live as long as
the block has not
completed

— {...}of afunction

— {..}of aloop, if statement,
etc.

* When variables share the
same name the closest
declaration will be used by
default

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

#include <iostream>
using namespace std;

int x = 5;

int main()

{

int a, x = 8, y = 3;

cout << “x = “ << x << endl;

for(int i=0; i < 10; i++){
int j = 1;
j = 2*¥1i + 1;
a += j;

}

a = doit(y);

cout << “a="“ << a ;
cout << “y= << y << endl;

cout << “glob. x” << ::x << endl;

int doit(int x)
{

X-=3

return Xx;

}

Address

0

Code

Globals
Xx=5

Heap

Il

fifffffc

main:
(a=2, x=8,y=3)

Memory (RAM)

POINTERS & REFERENCES

i, TS(“Viterbi

Pointers in C/C++

School of Engineering

* Generally speaking a "reference" can be a pointer or a C++ Reference

* Pointer (type *)

— Really just the memory address of a variable

— Pointer to a data-type is specified as type * (e.g. int *)

— Operators: & and *

* &object => address-of object

* *ptr => object located at address given by ptr

« *(&object) => object [i.e. * and & are inverse operators of each other]

* Example

int* p, *qg;
int i, 3J;

i=5; 3 =10;

p = &i;

cout << p << endl;
cout << *p << endl;
o= 3

*q *p;

qa = p;

© 2015 by Mark Redekopp, All Rights Reserved

OxbeO
Oxbe4
Oxbe8

Oxbec

10

OxbeO

Oxbe8

Oxbe4

Oxbe8

Oxbe8
5

10

Undefined

Oxbe8

e — {5 C Viterbi >
Pointer Notes

* An uninitialized pointer is a pointer just waiting to cause a SEGFAULT
* NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything
— NULL is effectively the value 0 so you can write:
int* p = NULL;
if(p)
{ /* will never get to this code */ }

— To use nullptr compile with the C++11 version:
$ g++ -std=c++11 —g —o test test.cpp

* Anuninitialized pointer is a pointer waiting to cause a SEGFAULT

© 2015 by Mark Redekopp, All Rights Reserved

B ()5 C Viterbi
Check Yourself

P 1 1 . To figure out the type of data a pointer expression will
CO nsi d er th ese d ec I d rat 1oNns. yield...Take the type of pointer in the declaration and
— intk, x[3] ={5, 7, 9}; let each * in the expression 'cancel’ one of the *'s in

the declaration

— int *myptr = x;

— int **ourptr = &myptr; Type Expr Yields
. myptr = int* *myptr int
* Indicate the formal type that — .
_ ourptr = Iint ourptr Int
each expression evaluates to *ourptr int*

(i.e. int, int *, int **)

____ Boreson | _______Twe

X[0]
X
myptr
*myptr
(*ourptr) +1
myptr + 2

ourptr
© 2015 by Mark Redekopp, All Rights Reserved

S ()5 Viterbi
References in C/C++

* Reference type (type &)
e “Syntactic sugar” to make it so you don't have to use pointers

— Probably really using/passing pointers behind the scenes
* Declare a reference to an object as type& (e.g. int &)

* Must be initialized at declaration time (i.e. can’t declare a reference
variable if without indicating what object you want to reference)

— Logically, C++ reference types DON'T consume memory...they are just an alias
(another name) for the variable they reference

— Physically, it may be implemented as a pointer to the referenced object but
that is NOT your concern

* Cannot change what the reference variable refers to once initialized

© 2015 by Mark Redekopp, All Rights Reserved

- USCViterbi@
Using C++ References

e (Can use it within the same function

 Avariable declared with an ‘int &’
doesn’t store an int, but is an alias for

an actual variable

* MUST assign to the reference variable

when you declare it.

With Pointers

Ox1a0 =)

ptr

0x1a0

© 2015 by Mark Redekopp, All Rights Reserved

With References
- Logically

y X
-
Ox1a0 3

School of Engineering

int main ()

{
int
ptr

int

int

//
//
//
//
//

X++;

y = 3, *ptr;
= &y; // address-of
// operator

&z; // NO! must assign

&x = y; // reference
// declaration
we’ve not copied

y into x

we’ve created an alias

Now x can never reference
any other int..only y!

// y just got incr.

cout << y << endl;

ret

urn 0;

I (S C Viterbi (U
Swap Two Variables

* Pass-by-value => Passes a copy

* Pass-by-reference =>

— Pass-by-pointer/address => Passes address of actual variable

School of Engineering

— Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main ()
{
int x=5,y=7;
swapit(x,vy);
cout <<Vx,y="<< x<<MN, <y
cout << endl;

}

void swapit (int x, int vy)
{

int temp;

temp = x;

X = Yy

y = temp;

int main ()
{
int x=5,y=7;
swapit (&x, &y) ;
cout <<Vx, y="<< x<<MN, Ly
cout << endl;

}

void swapit (int *x, int *y)

{

int temp;
temp = *x;
*X = *y;

*y = temp;

int main ()

{
int x=5,y=7;
swapit(x,y)

cout <<Vx, y="<< x<<N, <y
cout << endl;

}

void swapit (int &x, int &y)
{

int temp;

temp = x;
X = y;
y = temp;

program output: x=5,y=7
© 2015 by Mark Redekopp, All Rights Reserved

program output: x=7,y=5

program output: x=7,y=5

i, TS(“Viterbi

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

Correct Usage of Pointers

Can use a pointer to have a function

modify the variable of another

Stack Area of RAM

OxbeO 8 W
area | Oxbe4 5 I
Oxbe8 Oxbf8 D
Oxbec | oo4000ca0 | "5"
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 40 a
Oxbfc | 00400120 | Reu™

link

// Computes rectangle area,
// prints it, & returns it
void area (int, int, int*);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len, &a) ;

}

void area(int w, int 1, int* p)
{

*p:w*l;
}

—————— ()5 \tcrbi >
Misuse of Pointers

’ Make Sure yOU don't return a pOinter toa // Computes rectangle area,
dead variable // prints it, & returns it

int* area(int, int);

* You might get lucky and find that old value |
still there, but likely you won't ?nt main ()

int wid = 8, len = 5, *a;
a = area(wid, len);
cout << *a << endl;

}
Stack Area of RAM

int* area(int w, int 1)

{

int ans = w * 1;
return é&ans;
area | Oxbe4 8 W }
Oxbe8 5 |

Oxbec | 0o4000ca0 | "¢4"

Oxbf0 8 wid
Obe8 i OxbeO a

Oxbfc | oos400120 | Re™

© 2015 by Mark Redekopp, All Rights Reserved

] USCViterbi
Use of C++ References

* We can pass using C++ reference

 The reference 'ans'is just an alias for 'a’

back in main

— In memory, it might actually be a pointer, but you don't
have to dereference (the kind of stuff you have to do

with pointers)

Stack Area of RAM

OxbeO 8 w
area | Oxbe4 5 I
Oxbe8 | 20xbfs? ans =
Oxbec | oo4000ca0 | R&v"
OxbfO 8 wid
main | Oxbf4 5 len
oxbfs | gzl 4% | 4 —ans
Oxbfc | oo4o0120 | "o

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

// Computes rectangle area,
// prints it, & returns it
void area (int, int, inté&);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len, a);

}

void area(int w, int 1, inté& ans)

{
ans = w * 1;

}

i, TS(“Viterbi -

School of Engineering

Pass-by-Value vs. -Reference

 Arguments are said to be:
— Passed-by-value: A copy is made from one function and
given to the other

— Passed-by-reference: A reference (really the address) to
the variable is passed to the other function

Pass-by-Value Benefits Pass-by-Reference Benefits

+ Protects the variable in the caller + Allows another function to modify

since a copy is made (any the value of variable in the caller
modification doesn’t affect the + Saves time vs. copying
original)

e Care needs to be taken when choosing between the
options

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

Pass by Reference

* Notice no copy of x need be made
since we pass it to sum() by reference

— Notice that likely the computer passes the address
to sum() but you should just think of dat as an alias

for

Stack Area of RAM

dat

sum | OxbeO 0 S
Oxbe4 | 20xbfo? dat
Oxbe8 | 004000ca0 | Fe™
Oxbec 0 sum
Oxbf0 1 X1 =

main | Oxbf4 2
Oxbf8
0xb?? | 00400120 R'ﬁtﬁﬁn

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

// Computes rectangle area,
// prints it, & returns it
int sum(const vector<int>&);

int main ()

{

}

int result;
vector<int> x = {1,2,3,4};
result = sum(x);

int sum(const vector<int>& dat)

{

int s = 0;
for(int 1i=0; i < dat.size(); i++)
{
sum += dat[i];
}

return s;

School of Engine

Pointers vs. References

How to tell references and pointers apart

— Check if you see the '&' or '*' in a type declaration
or expression

__Type ____ Expression

& C++ Reference Var Address-of (yields a pointer)
(int &val, vector<int> &vec) &val =>int *, &vec = vector<int>*
sk Pointer De-Reference (Value @ address)

(int *valptr = &val, vector<int> *valptr => val
*vecptr = &vec) *vecptr => vec

© 2015 by Mark Redekopp, All Rights Reserved

USC Viterbi €

DYNAMIC ALLOCATION

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi -«

School of Engineering

Dynamic Memory & the Heap

* Code usually sits at low addresses 0
. Cod
* Global variables somewhere after code ofe
* System stack (memory for each function instance
that is alive) Globals
— Local variables
— Return link (where to return) ’
eap
— etc.
 Heap: Area of memory that can be allocated and l
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program
Stack
* Heap grows downward, stack grows upward... (aréicfor
— Inrare cases of large memory usage, they could d;fca'oc.a' 0
. . ffefefc unction)
collide and cause your program to fail or generate
an exception/error Memory

© 2015 by Mark Redekopp, All Rights Reserved

Motivation

Automatic/Local Variables Dynamic Allocation
* Deallocated (die) when they ¢ Persist until explicitly

go out of scope deallocated by the program
 As ageneral rule of thumb, (via ‘delete’)

they must be statically sized * Can be sized at run-time

(size is a constant known at — int size;

compile time) cin >> size;

% - T
— int data[100]; int *data = new int[size];

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi)

School of Engineering

C Dynamic Memory Allocation

* void* malloc(int num_bytes) function in stdlib.h

— Allocates the number of bytes requested and returns a pointer to the block of
memory

— Use sizeof(type) macro rather than hardcoding 4 since the size of an int may
change in the future or on another system

* free(void * ptr) function

— Given the pointer to the (starting location of the) block of memory, free returns it to the
system for re-use by subsequent malloc calls

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv|[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = (int*) malloc(num*sizeof (int));
// can now access scores[0] .. scores[num-1];

free (scores) ;
return 0;

}

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

C++ new & delete operators

* new allocates memory from heap

— followed with the type of the variable you want or an array type declaration
* double *dptr = new double;

* int *myarray = new int[100];
— can obviously use a variable to indicate array size
— returns a pointer of the appropriate type

* if you ask for a new int, you get an int * in return
* if you ask for an new array (new int[10]), you get an int * in return]

* delete returns memory to heap

— followed by the pointer to the data you want to de-allocate
* delete dptr;

— usedelete [] forpointersto arrays

* delete [] myarray;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi -«

School of Engineering

Dynamic Memory Allocation

int main(int argc, char *argvl[]) 0 Code
{

int num;

cout << “How many students?” << endl; Globals

cin >> num;

int *scores = new int[num]; new
// can now access scores[0] .. scores[num-1]; Heap allocates:
retarn 07 20bc0 00 scores[0]
} 20bc4 00 scores[1]
20bc8 00 scores|2]
20bcc 00 scores|[3]
20bdO 00 scores[4]

int main(int argc, char *argv|[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
delete [] scores FFFFFFFC local vars
return O;
} Memory

© 2015 by Mark Redekopp, All Rights Reserved

Fill in the Blanks

. data = new int;

. data = new char;

. data = new char[100];

. data = new char*[20];

. data = new vector<string>;

. data = new Student;

© 2015 by Mark Redekopp, All Rights Reserved

- USCX]'E?Ebl@
Fill in the Blanks

. data = new int;
— int*
. data = new char;
— char*
. data = new char[100];
— char*
. data = new char*[20];
— char**
. data = new vector<string>;

— vector<string>*

. data = new Student;
— Student*

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Dynamic Allocation

Dynamic Allocation

— Lives on the heap

* Doesn't have a name, only pointer/address to it

— Lives until you 'delete’ it

 Doesn't die at end of function

(though pointer to it may)

Let's draw these as boxes in the heap area

Stack Area of RAM

Heap Area of RAM

Oxbe0 0x93c arrs
area | Oxbe4 8 W
Oxbe8 5 |
Oxbec | 0o04000ca0 | "5"
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "54"

0x93c

40

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main ()

{
int wid = 8, len = 5, *a;
a = area(wid, len);
cout << *a << endl;
delete a;

}

int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
return ans;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Dynamic Allocation

Dynamic Allocation
— Lives on the heap

* Doesn't have a name, only pointer/address to it

— Lives until you 'delete’ it

* Doesn't die at end of function

(though pointer to it may)

Let's draw these as boxes in the heap area

Stack Area of RAM

Heap Area of RAM

main

Oxbf0 8 wid
Oxbf4 5 len
Oxbf8 0x93c &

Oxbfc | oo400120 | "54"

0x93c

40

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main ()

{
int wid = 8, len = 5, *a;
a = area(wid, len);
cout << *a << endl;
delete a;

}

int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
return ans;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Dynamic Allocation

Dynamic Allocation
— Lives on the heap

* Doesn't have a name, only pointer/address to it

— Lives until you 'delete’ it

 Doesn't die at end of function

(though pointer to it may)

Let's draw these as boxes in the heap area

Stack Area of RAM

Heap Area of RAM

Oxbe0 0x93c arrs
area | Oxbe4 8 W
Oxbe8 5 |
Oxbec | 0o04000ca0 | "5"
Oxbf0 8 wid
main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "54"

0x93c

40

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

void print (int);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len) ;

int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
return ans;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi s

Dynamic Allocation

o Dynamic Allocation // Computes rectangle area,
_ // prints it, & returns it
— Lives on the heap int* area(int, int);
« Doesn't have a name, only pointer/address to it | Vo+d print(int);
— Lives until you 'delete' it int MEL ()
* Doesn't die at end of function i el = G o = B
(though pointer to it may) area (wid, len) ;
* Let's draw these as boxes in the heap area }
Stack Area of RAM Heap Area of RAM int* area(int w, int 1)

{
int* ans = new int;
*ans = w * 1;

return ans;
0x93c 40)
MEMORY LEAK
_ No one saved a pointer
Oxbf0 8 wid to this data
main | Oxbf4 5 len
Oxbf8 | 73249515 a
Oxbfc | oo400120 | "54"

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi 2

Dynamic Allocation

° Dynamic Allocation // Computes rectangle area,
. // prints it, & returns it
— Lives on the heap int* area(int, int);
« Doesn't have a name, only pointer/address to it | Vo+d print(int);
— Lives until you 'delete’ it ?nt iz bl)
* Doesn't die at end of function e alel = G e B
(though pointer to it may) area (wid, len) ;
* Let's draw these as boxes in the heap area }
Stack Area of RAM Heap Area of RAM int* area(int w, int 1)
{
int* ans = new int;
Oxbe0 | ox93c ars s = Sw;
area | Oxbe4 8 w return ans;
0x93c 40
Oxbe8 5 | J

Oxbec | 0o04000ca0 | "5"

Oxbf0O 8 wid
main | Oxbf4 5 len
Oxbf8 | -73249515 a

Oxbfc | oo400120 | "54"

© 2015 by Mark Redekopp, All Rights Reserved

- 00000000 USCVlterbl@
Dynamic Allocation

* Be sure you keep a pointer around somewhere // Computes rectangle area,

. // rints it, & returns it
otherwise you'll have a memory leak S . .
int* area(int, 1int);

void print(int);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len) ;

Stack Area of RAM Heap Area of RAM int* area(int w, int 1)
{
int* ans = new int;
0xbe0 t /
Oxbed <——|ans ans = &w:
area | Oxbe4 8 w return ans;
0x93c 40)
Oxbe8 5 |
Oxbec | 004000ca0 | Fe" MEMORY LEAK
Oxbf0 3 wid Lost pointer to this data
main | Oxbf4 5 len
Oxbf8 | -73249515 a
Oxbfc | oo400120 | "54"

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Dynamic Allocation

The LinkedList object is allocated as a
static/local variable

— But each element is allocated on the heap
When y goes out of scope only the data
members are deallocated

— You may have a memory leak

Stack Area of RAM Heap Area of RAM

0x93c
> 3
addData
0x748
Oxbec | 004000ca0 | R 0x748 5
0
main MEMORY LEAK
When vy is deallocated we have

Return no pointer to the data

Oxbfc | 00400120 eLur

// Computes rectangle area,
// prints it, & returns it
struct Item {
int wval;
Item* next;
};
class LinkedList {
public:
void push back(int v);
private:
Item* head;
};
int main ()
{
addData () ;
}

void addData ()

{
LinkedList vy;
y.push back(3);
y.push back(5);

}

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi 2

Dynamic Allocation

* The LinkedList object is allocated as a static/local // Computes rectangle area,
variable // prints it, & returns it
struct Item {
— But each element is allocated on the heap int val;
* When x goes out of scope only the data members Item* next;

[
are deallocated class LinkedList {

— You may have a memory leak public:

: : : void push back(int v);
An Appropriate Destructor Will Help Solve This . -
private:

Item* head;

Stack Area of RAM Heap Area of RAM }i
int main ()
{
Ox93c | B addData () ;
0x748 :
v void addData ()
0x748 5 {
0 LinkedList y;

y.push back(3);
y.push back(5);

main MEMORY LEAK

}

When y is deallocated we have
no pointer to the data

Oxbfc | oo400120 | "54"

© 2015 by Mark Redekopp, All Rights Reserved

PRACTICE ACTIVITIES

© 2015 by Mark Redekopp, All Rights Reserved

- 00000000 USCViterbi@
Object Assignment

* Assigning one struct or class object to another will
cause an element by element copy of the source data

destination struct or class

#include<iostream>
using namespace std;

enum {CS, CECS };

struct student {
char name[80];
int id;
int major;

b2

int main (int argc, char *argvl[])

{
student sl;

strncpy (sl.name, ”Bi11”,80);
sl.id = 5; sl.major = CS;

student s2 = sl;

return 0O;

}

0x00 ‘B’
0x01 P’
Ox4F 00
0x50 5
0x54 1
B

|

00

5

1
Memory

© 2015 by Mark Redekopp, All Rights Reserved

Se

name

major
—

name

hool of Engineering

major
—

Memory Allocation Tips

* Take care when returning a pointer or reference that

the object being referenced will persist beyond the
end of a function

* Take care when assighing a returned referenced
object to another variable...you are making a copy

* Try the examples yourself
— S wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

© 2015 by Mark Redekopp, All Rights Reserved

USC Viterbi

School of Engineering

Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item class Item class Item
{ public: { public: { public:
Item(int w, string y); Item(int w, string y); Item(int w, string y);
}i }i)
Item buildItem() Item& buildItem() i;em* buildItem ()
{ Item x(4, “hi”); { Item x(4, “hi”); N S
ceturn x- s st { Item* x = new Item(4,“hi”);
} ¢ } ! return x;
}
int main () int main () int main ()
{ Ttem i = buildItem(); { Item& i = buildItem(); { Item *i = buildItem();
// access i’s data. // access i’s data _, ’
\ // access 1’s data
/ exl ex2) ex3
ltem
on
Bulld | Oxbe4 4 x | BUld] oxbes Bulld D
lte lte X lte
Oxbe8 "hi" Oxbe8 Oxbe8 0x93c X
Oxbec | o0o4000ca0 | "5" Oxbec | 0o4000ca0 | o™ Oxbec | 0o04000ca0 | "§"
main | Oxbf4 4 i main main
Oxbf8 "hi Oxbf8 Oxbe4 i Oxbf8 0x93c i
Oxbfc | oo400120 | "54" Oxbfc | oo400120 | "54" Oxbfc | oo400120 | 754"

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

Understanding Memory Allocat

e Schoolof Engineering

10N

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

class Item
{ public:
Item(int w,

157

Item* buildItem()

{ Ttem x(4, “hi”);
return &x;

}

int main ()
{ Item *i1i = buildItem()

string vy);

class Item
{ public:

Item(int w, string vy):

}:

Item& buildItem()

{ Item* x = new Item(4,%“hi”);
return *x;

}

int main ()

{ Item& 1 = buildItem();
// access i’s data // access i’s data
) ex4 J exb
Item
on
?und Oxbe4 X Build Heap
ie lte
Oxbe8 Oxbe8 0x93c X
Ret
Oxbec . Oxbec | 004000ca0 | R
main 0be4 main Obe4
Oxbf8 Oxbe4 i Oxbf8 | 2 0x93c ? i
Oxbfc | oo400120 | FSu" Oxbfc | oosoorz0 | Rewm

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Memory Allocation

class Item
{ public:
Item(int w,

¥

return *x;

}

int main ()
{ Item 1 =

string vy);

Item& buildItem ()
{ Item* x = new Item(4,“hi”);

buildItem() ;

class Item
{ public:

'y

{ Item* x =
return *x;

}

int main ()

Item(int w,

Item& buildItem()

string y);

new Item(4,“hi”);

{ Item *i = & (buildItem())

USC Viterbi

School of Engineering

class Item
{ public:
Item(int w,

};

Item& buildItem ()

{ Item* x = new Item(4,“hi”);
return *x;

}

int main ()

string vy);

., ., { Ttem &i = buildItem();
// access 1’s data. // access 1’'s data. 1] cceass 478 deke
: ex6 } ex7) ex8
Iltem ltem ltem
on on on
Heap Heap Heap
Build uild Build
lte lte lte
Oxbe8 0x93c X Oxbe8 0x93c X Oxbe8 0x93c X
Oxbec | oo4000ca0 | “fL" Oxbec | oo4000ca0 | "7L" Oxbec | 004000ca0 | Reur
main Oxbf4 4 i main Oxbf4 main Oxbf4
Oxbf8 "hi" Oxbf8 0x93c i Oxbf8 | 2 o0x93c ? i
Oxbfc 00400120 RleitrL]lIin Oxbfc 00400120 R‘Tit#lin Oxbfc 00400120 R|eit:|:n

© 2015 by Mark Redekopp, All Rights Reserved

STREAMS REVIEW

© 2015 by Mark Redekopp, All Rights Reserved

Kinds of Streams

|/O streams
— Keyboard (cin) and monitor (cout)

* File streams — Contents of file are the stream of data
— #tinclude <fstream> and #include <iostream>
— ifstream and ofstream objects

* String streams
— #tinclude <sstream> and #include iostream
— sstream objects

* Streams support appropriate << or >> operators as
well as .fail(), .getline(), .get(), .eof() member
functions

© 2015 by Mark Redekopp, All Rights Reserved

- 00000000 USCViterbi ‘
C++ Stream Input

e cin, ifstreams, and stringstreams can be used to accept data from the user
— intx;
— cout << "Enter a number: ";
— Ccin>>X;

 What if the user does not enter a valid number?

— Check cin.fail() to see if the read worked

 What if the user enters multiple values?
— >>reads up until the first piece of whitespace

— cin.getline() can read a max number of chars until it hits a delimeter but only works
for C-strings (character arrays)

cin.getline (buf, 80) // reads everything through a '\n'
// stopping after 80 chars if no '\n'

cin.getline (buf, 80, ';') // reads everything through a ';'
// stopping after 80 chars if no ';'
— The <string> header defines a getline(...) method that will read an entire line
(including whitespace):
string x;

etline(cin,x,';"'); // reads everything through a ';'
© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

When Does It Fail

* For files & string streams the stream doesn't fail until you read PAST
the EOF

char buf[40]; gelp. 3,

Ifstream inf(argv[1]); Filetext |t|n|e| [e]n]a].[\n|zor
et

Inf >> buf; o ¥

File text |T|h|e| |e[n|d|.|[\n|EOF

EOF BAD FAIL

buf T|h|e|\0 o| o | o
. et
inf >> buf: gep V
File text |T|h|e| |e[n|d|.|[\n|EOF
EOF BAD FAIL
buf eln|d]|. \O 0 0 0
inf >> buf; getp 1

File text [T|hle| |e|n|d|.|\n|EOF

EOF BAD FAIL
e|n|d|.|\O 1 0 1

© 2015 by Mark Redekopp, All Rights Reserved bUf

Which Option?

#include<iostream>
#include<fstream>
using namespace std;
int main ()

{

vector<int> nums;

int x;

while(!ifile.fail()
ifile >> x;
nums.push back (x) ;

}

ifstream ifile ("data.txt");

data.txt
7 8 EOF

) { nums

School of Engineering

®

Need to check for failure after you

extract but before you

© 2015 by Mark Redekopp, All Rights Reserved

store/use

#include<iostream>
#include<fstream>
using namespace std;
int main ()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1){
ifile >> x;
if(ifile.fail()) break;
nums.push back (x) ;

}

int x;
while(ifile >> x) {
nums .push back (x) ;

}

A stream returns itself after extraction
A stream can be used as a bool (returns true if it hasn't failed)

USC Viterbi

Keyboard
(use)

Yes, n items
Use

© 2015 by Mark Redekopp, All Rights Reserved

Choices

Where is my
data?

File
(use)

Do | know how many
items to read?

String
(use

No, arbitrary
Use

Text

Yes

© 2015 by Mark Redekopp, All Rights Reserved

Choices

What type
of data?

Is it
delimited?

No

Integers/
Doubles

Yes

i, TS(“Viterbi

Keyboard
(use iostream [cin])

Yes, n items
Use for(i=0;i<n;i++)

© 2015 by Mark Redekopp, All Rights Reserved

Choices

Where is my
data?

File
(use ifstream)

Do | know how many
items to read?

School of Engineering

String
(use stringstream)

No, arbitrary
Use while(cin >> temp) or
while(getline(cin,temp))

i, TS(“Viterbi

Text
(getline or >>)
getline ALWAYS returns text

Yes at newlines
Use getline()

© 2015 by Mark Redekopp, All Rights Reserved

Choices

What type
of data?

Is it
delimited?

No, stop on any
whitespace...use >>

School of Engineering

Ints/Doubles
(Use >> b/c it converts
text to the given type)

Yes at special chars
(' or')')
Use getline with 3™
input parameter
(delimeter parameter)

i, TS(“Viterbi -«

School of Engineering

getline() and stringstreams

int num lines = 0;
* Imagine a file has a certain format int total words = 0;
where you know related dataison a |itstrean mysite(argviil);
single line of text but aren't sure string myline;
. . while (getline (myfile, myline)) {
how many data items will be on that o otine)
stringsctream ss (myline) ;
line

string word;
while (ss >> word)

¢ Can we use >>? { total words++; }

num lines++;

— No it doesn't differentiate between ;
different whitespace (i.e.a''and a '\n'

. . . double avg =
look the same to >> and it will skip over (double) total words / num_lines;
them) cout << "Avg. words per line: ";

cout << avg << endl;

 We can use getline() to get the
whole line, then a stringstream with ————————"——
>> 10 parse out the pleces The bear ate some honey.

The CS student solved a hard problem.

© 2015 by Mark Redekopp, All Rights Reserved

e — 5 Viterbi
Using Delimeters

_ _ _ Text file:
¢ Imag|ne d f'le haS d Certaln fOFmat garbage stuff (words I care about) junk

where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

vector<string> mywords;
ifstream myfile (argvI[l]);

string myline;
getline (myfile, myline, '(');

¢ Can we use >>? // gets "garbage stuff "

.]] // and throws away ' ('
— No it doesn't differentiate between
getline (myfile, myline, ')');

H H H 1 1 1
different whitespace (i.e.a''and a "\n) A
look the same to >> and it will skip over | // and throws away ')

them) stringstream ss(myline) ;
i string word;
 We can use getline() to get the while(ss >> word) |

mywords.push back (word) ;

whole line, then a stringstream with |
>> to parse out the pieces

"wordsvl "Ill "Care" llabout"

mywords

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi -«

* |s my data delimited by particular characters?
— Yes, stop on newlines: Use getline()
— Yes, stop on other character: User getline() with optional 3™ character
— No, Use >> to skip all whitespaces and convert to a different data type
(int, double, etc.)
* If "yes" above, do | need to break data into smaller pieces (vs.
just wanting one large string)
— Yes, create a stringstream and extract using >>
— No, just keep the string returned by getline()

* |sthe number of items you need to read known as a constant
or a variable read in earlier?

— Yes, Use a loop and extract (>>) values placing them in array or vector
— No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
© 2015 by Mark Redekond To convert to other types it is easiest to use >>

RECURSION

© 2015 by Mark Redekopp, All Rights Reserved

- USCViterbi @
Recursion

* Problem in which the solution can be expressed in terms of
itself (usually a smaller instance/input of the same problem)
and a base/terminating case

* Input to the problem must be categorized as a:

— Base case: Solution known beforehand or easily computable (no
recursion needed)

— Recursive case: Solution can be described using solutions to smaller
problems of the same type

» Keeping putting in terms of something smaller until we reach the base case
 Factorial:n!=n*(n-1) *(n-2) *..*2*1
— nl=n*(n-1)!
— Base case: n=1
— Recursive case: n >1 => n*(n-1)!

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Recursive Definitions

 n = Non-Negative Integers and is defined as:
— The number O [Base]
— n+ 1 where n is some non-negative integer [Recursive]
* String
— Empty string, € [Base]
— String concatenated with a character (e.g. 'a'-'z') [Recursive]

Palindrome (string that reads the same forward as backwards)
— Example: dad, peep, level

— Defined as:
* Empty string [Base]
* Single character [Base]
* xPx where x is a character and P is a Palindrome [Recursive]

* Recursive definitions are often used in defining grammars for
languages and parsers (i.e. your compiler)

© 2015 by Mark Redekopp, All Rights Reserved

C++ Grammar

* Languages have rules governing their syntax and
meaning

* These rules are referred to as its grammar
* Programming languages also have grammars that code
must meet to be compiled

— Compilers use this grammar to check for syntax and other
compile-time errors

— Grammars often expressed as “productions/rules”

ANSI C Grammar Reference:
— http://www.lysator.liu.se/c/ANSI-C-grammar-y.html#tdeclaration

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Simple Paragraph Grammar

Substitution Rule

subject “I"] "You" | "We"

verb "run" | "walk" | "exercise" | "eat" | "play" | "sleep"”
sentence subject verb .

sentence_list sentence

| sentence_list sentence

paragraph [TAB = \t] sentence_list [Newline =\n]
Example: Example:
I run. You walk. We exercise. I eat You sleep
subject verb. subject verb. Subject verb subject verb
SUbj ect Verb. Error

sentence sentence sentence
sentence_list sentence sentence
sentence list sentence

sentence 1ist

paragraph
© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

Rule

expr

assign_statement

expr_statement

School of Engineering

C++ Grammar

Expansion

constant

| variable_id

| function_call

| assign_statement

| (* expr ‘)

| expr binary op expr
| unary_op expr

variable_id ‘=’ expr

()
’

| expr‘;’

expr * (expr + expr); expr + expr = expr;
expr * (expr); expr = expr;

expr * expr;
expr;

NO SUBSTITUTION

expr_statement Compille Error!

© 2015 by Mark Redekopp, All Rights Reserved

] USCViterbi
C++ Grammar

Rule

statement

compound_statement

statement_list

x >
expr
expr
expr
expr
expr

while
while
while
while
while
while
while (expr
while (expr
while (expr
statement

(
()
()
()
()
()
()
()
)

© 2015 by Mark Redekopp, All Rights Reserved

)
{
{
{
{
{
{

Substitution

expr_statement

| compound_statement

| if (expr) statement

| while (expr) statement

{* statement_list ‘}

statement
| statement_list statement

{ doit(); x = x-2; }
expr; assign_statement; }
expr; expr; '}

expr_statement expr_statement }
statement statement }
statement _list statement }
statement _list }

compound_statement
statement

School of Engineering

while(x > 0)

while (expr)
statement
statement

statement
statement

Recursive Functions

e Recall the system stack C Code:

essentially provides
int fact(int n)

separate areas of {
memory for each O e
‘instance’ of a function | retem

* Thus each local variable S ecursive cace
and actual parameter of a S 1B EskEt)

function has its own ;
value within that
particular function

instance’s memory space

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Recursion & the Stack

e Must return back through the each call

Stack Area of RAM

Oxbd8

fact 1 n
Oxbdc | oo4001844 | Rou"
OxbeO

fact 2 n
Oxbe4 | oo4001844 | "5"
Oxbe8

fact 3 n
Oxbec | oo4001844 | "S"
Oxbf0

fact 4 n
Oxbf4 | oos001844 | "°4"
Oxbf8 4 val

main
Oxbfc | oo400120 | "™

LA 7

© 2015 by Mark Redekopp, All Rights Reserved

24

int fact(int n)

{
if(n == 1) {
// base case
return 1;

}

else {
// recursive case
return n * fact(n-1);

int main()
{
int val = 4;

cout << fact(val) << endl;

School of Engineering

Recursion

 Googleisin on the joke too...

USC Viterbi

Web Images Videos Maps Mews Shopping Gmail more »

GO L Jg[e Recursion Search

e =rifa, the free encyclopedia

Recursion, in mathematics and computer science, is a method of defining functions in which
the function being defined is applied within its own definition; ...
en.wikipedia.org/wiki/Recursion - Cached - Similar -

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Recursive Functions

C Code:
* Many loop/iteration e main
based approaches can be i €Rll) 1By Go Ty 2D
deflnEd recurSiVEIV as int suml = isum it(data, size);
int sum2 = rsum it(data, size);
well }

int isum it(int data[], int len)
{
int sum = data[0];
for(int i=1; i < len; i++){
sum += data[i];
}
}

int rsum it(int data[], int len)
{
if(len == 1)
return data[O0];
else
int sum = rsum it(data, len-1);
return sum + data[len-1];

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

Recursive Call Timeline

int rsum it(int data[], int len)

int main() { {
int data[4] = {8, 6, 7, 9}; if(len == 1)
int size=4; return data[0];
int sum2 = rsum it(data, size); else

int sum = rsum it(data, len-1);
return sum + data[len-1];

USC Viterbi

e
rsum_it(data,4)
int sum=

rsum_it(data,4-1) —rsum_it(data,3) |en — 2 |en — 1
int sum=
rsum_it(data,3-1)

rsum_it(data,2)

— — int sum=
|en - 4 |en - 3 rsum_it(data,2-1) rsum_it(data,1)
___return data[0];

int sum =8 ‘/-8

_— return 8+data[1];

intsum = 14 «— | 14

— return 14+data[2];

int sum =21 «— | 21
return 21+data[3];

30

Each instance of rsum_it has its own len argument and sum variable
© 2015 by Mark Redekopp, All Rights Reserved Every instance of a function has its own copy of local variables

I (/S C Viterbi (2

System Stack & Recursion

School of Engineering

* The system stack makes recursion
possible by providing separate memory
storage for the local variables of each
running instance of the function

Code for all functions

Data for rsum it (data=800,

len=1, sum=27?) and return link

int main ()
{
int data[4] = {8, 6, 7, 9};
int size=4;
int sum2 = rsum it(data, size);

}

int rsum it(int data[], int len)
{
if(len == 1)
return data[0];
else
int sum =
rsum it (data, len-1);
return sum + data[len-1];

ES)/SStEBrT1 Data for rsum it (data=800,
len=2, sum=8) and return link
Memory Data for rsum it (data=800,

(RAM) len=3, sum=14) and return link

Data for rsum it (data=800,
len=4, sum=21) and return link

Data for main (data=800, size=4,
suml=?7?, sum2=27?) and return link

System stack area

© 2015 by Mark Redekopp, All Rights Reserved

N
w | ©

HELPER FUNCTIONS

© 2015 by Mark Redekopp, All Rights Reserved

Exercise

 Write a recursive routine to find the maximum element of an
array containing POSITIVE integers.

int data[4] = {8, 9, 7, 6};
* Primary signature:
int max(int* data, int len);

* For recursion we usually need some parameter to tell use
which item we are responsible for...thus the signature needs
to change. We can make a helper function.

* The client uses the original:
int max(int* data, int len);
e Butit just calls:

int max(int* data, int len, int curr);

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

Exercise — Helper Function

e Head recursion
int data[4] =

School of Engineering

* Tail recursion

(8, 9, 7, 6};)

// The client only wants this
int max(int* data, int 1len);

// But to do the job we need this
int max(int* data, int len, int curr);

// The client only wants this
int max(int* data, int len);

// But to do the job we need this
void max (int* data, int len, int curr, inté& mx);

int max(int* data, int len)
{ return max(data, len, 0);

}

int max(int* data, int len, int curr)
{
if (curr == len) return 0O;
else {
int prevmax = max(data, len, curr+l);
if (data[curr] > prevmax)
return data[curr];
else
return prevmax;

© 2015 by Mark Redekopp, All Rights Reserved

int max(int* data, int len)
{ int mymax = 0;
max (data, len, 0, mymax);
return mymax;

}

void max(int* data, int len, int curr, inté& mx)
{
if(curr == len) return;
else {
if (data[curr] > mx)
mx = data[curr];
max (data, len, curr+l, mx);

i, TS(“Viterbi

School of Engineering

Exercise

* We can also formulate things w/o the helper function in this case...

int datal[4] = {8, 6, 9, 7};

int max(int* data, int len)
{
if(len == 1) return data[0];
else {
int prevmax = max(data, len-1);
if (data[len-1] > prevmax)
return data[len-1];
else
return prevmax;

© 2015 by Mark Redekopp, All Rights Reserved

GENERATING ALL COMBINATIONS

Recursion's Power

* The power of recursion often comes when

each function instance makes multiple
recursive calls

* As you will see this often leads to exponential
number of "combinations” being

generated/explored in an easy fashion

Binary Combinations

° : 0 00 000 0000
If you are given the value, n, i I o 01 0001
and a string with n o | 10 010 0010

: 11 011 0011

characters could you Bin. - L . 0100
generate all the Bin. 101 0101
. . . 110 0110
combinations of n-bit 111 0111
binary? 2ot 1000
y Bin. 1001

* Do so recursively! 1010
1011

L 1100

Exercise: bin_combo_str 1101

1110

1111

4-bit

Bin.

© 2015 by Mark Redekopp, All Rights Reserved

I Uscviterbi
School of Engineering

Recursion and DFS

e Recursion forms a kind of Depth-First Search

Options | 0O

N = length

binCombos(...,3)
Set to O; recurse;
Set to 1; recurse;

binCombos(...,3)
Set to O; recurse;
Set to 1; recurse;

11

binCombos(...,3)
Set to O; recurse;
Setto 1; recurse; 01 11

binCombos(...,3)
Base case
© 2015 by Mark Redekopp, All Rights Reserved

// user interface
vold binCombos (int len)

{

binCombos ("", len);
}
// helper-function
void binCombos (string prefix,
int len)

if (prefix.length() == len)
cout << prefix << endl;
else {
// recurse
binCombos (prefix+"0", len);
// recurse
binCombos (prefix+"1", len);

i, TS(“Viterbi @D

School of Engineering

Recursion and DFS (w/ C-Strings)

e Recursion forms a kind of Depth-First Search

Options | 0O

N = length

binCombos(0,3)
Set to O; recurse;
Set to 1; recurse;
binCombos(1,3)
Set to O; recurse;
Set to 1; recurse;

1
binCombos(2,3)
Set to O; recurse;
Setto 1; recurse; 0

binCombos(3,3)
Base case
© 2015 by Mark Redekopp, All Rights Reserved

void binCombos (char* data,
int curr,
int len)

if (curr == len)
data[curr] = '\0';
else {
// set to O
data[curr] = '0"';
// recurse
binCombos (data, curr+l,
// set to 1
data[curr] = '1"';
// recurse
binCombos (data, curr+l,

len);

len) ;

USC Viterbi

School of Engineering

Generating All Combinations

* Recursion offers a simple way to generate all combinations of N

items from a set of options, S
— Example: Generate all 2-digit decimal numbers (N=2, S={0,1,...,9})

00
F/ void TwoDigCombos (string data)
g| [~01 {
NZFE if (data.size() ==)
8 L[02 cout << data;
| 9] else {
< \ 09 for(int i=0; i < 10; i++){
& // recurse
0 / O TwoDigCombos (data+ (char) ('0"+1)) ;
/2 |E }
| 1 = }
S [AL1] g8 }
%é 2H 2 —> _8,
0| b O I
=IEIN e 90 0]
9 1]
< (0] »91 ions [2.
\ £ T] Options
S | L | 1 N =length
) élﬂ 92 9|
19 — | — | —
N 99 AN

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi D

School of Engineering

Recursion and Combinations

* Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
— Ex. Generate all length-n combinations of the letters in the set S={'U",'S",'C'}
(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)
* General approach:

— Need some kind of array/vector/string to store partial answer as it is being
built

— Each recursive call is only responsible for one of the n "places" (say location, i)

— The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

« Remember you are responsible for only one location
— Upon return, try another option value and recurse again
— Base case can stop when all n locations are set (i.e. recurse off the end)
— Recursive case returns after trying all options

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Another Exercise

* Generate all string
combinations of
length n from a
given list (vector)
of characters

Options | U

wn

N =length

Use recursion to walk down the 'places’
o 2015 by MarlXEBBHIN RIRGE:HQrate through & try all options

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all combos (vector<char>& letters, int n)
}
int main() {

vector<char> letters;

letters.push back('U'");

letters.push back('S'");

letters.push back('C");

all combos (letters, 2);

all combos (letters, 4);

return O;

{

Exercises

* bin_combos_str

e /Zero_sum

* Prime_products_print
* Prime_products

* basen _combos
e all_letter combos

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Follow slides are for your own review

END LECTURE

© 2015 by Mark Redekopp, All Rights Reserved

MORE EXAMPLES

© 2015 by Mark Redekopp, All Rights Reserved

Towers of Hanoi Problem

* Problem Statements: Move n discs from source pole to
destination pole (with help of a 37 alternate pole)
— Cannot place a larger disc on top of a smaller disc
— Can only move one disc at a time

C
(src) (dst) (alt) (src) (dst) (alt)
Start (n=3) Goal (n=3)
A B C
| 1
3 J 1]

Not allowed

© 2015 by Mark Redekopp, All Rights Reserved

School of Engineering

Observation 1

* QObservation 1: Disc 1 (smallest) can always be moved

 Solve the n=2 case:
A (src) B (dst) C (alt)

== I

Start
A B C A B C
I
Move 1 from src to alt Move 2 from src to dst
A B C

Move 1 from alt to dst

© 2015 by Mark Redekopp, All Rights Reserved

USC Viterbi

School of Engineering

Observation 2

* Observation 2: If there is only one disc on the src pole and the

dest pole can receive it the problem is trivial
A (src) B (dst) C (alt)

S

A B C A B C
(3] . 3 J [2]
Move n-1 discs from src to alt Move disc n from src to dst

A B C
2
(3]

Move n-1 discs from alt to dst

© 2015 by Mark Redekopp, All Rights Reserved

USC Viterbi

School of Engineering

Recursive solution

e But to move n-1 discs from src to alt is really a smaller version of
the same problem with
— n=>n-1
— Src=>src A (src) B (dst) C (alt)

— alt =>dst A/I\I
— dst=>alt 3

 Towers(n,src,dst,alt)

— Base Case: n==1 // Observation 1: Disc 1 always movable

e Move disc 1 from src to dst
— Recursive Case: // Observation 2: Move of n-1 discs to alt & back
* Towers(n-1,src,alt,dst)
e Move disc n from src to dst
* Towers(n-1,alt,dst,src)

© 2015 by Mark Redekopp, All Rights Reserved

USC Viterbi

Exercise

* Implement the Towers of Hanoi code
— S wget http://ee.usc.edu/~redekopp/cs104/hanoi.cpp

— Just print out "move disc=x from vy to z" rather than trying
to "move" data values
* Movedisclfromatob
* Move disc2 fromatoc
* Movedisc1lfrombtoc
e Movedisc3fromatob
* Move disc1fromctoa
* Movedisc2 fromctob
e Movedisclfromatob

© 2015 by Mark Redekopp, All Rights Reserved

http://ee.usc.edu/~redekopp/cs102/hanoi.cpp

] USCViterbi
cursive Box Dia

Towers Function PlrgtOQype

(Towers(disc,src,dst,alt)

L Towers(2,a,c,b)

~

~

Towers(3,a,b,c) Move D=3 atob

v

{ Towers(2,c,b,a)

© 2015 by Mark Redekopp, All Rights Reserved

Towers(1,a,b,c)

School of Engineering

gram

Move D=1atob

Move D=2 atoc

Towers(1,b,c,a)

Move D=1b toc

Towers(1,c,a,b)

Move D=1 cto a

Move D=2ctob

Towers(1,a,b,c)

Move D=1atob

- USC\C/’iterbcim
Combinatorics Examples

* Given n things, how can you choose k of them?
— Written as C(n,k)
* How do we solve the problem?

— Pick one person and single them out
* Groups that contain Joe =>

* Groups that don't contain Joe =>

— Total number of solutions:

— What are base cases?

Joe

Mrrrrereree
AANAAAAAAAAA

© 2015 by Mark Redekopp, All Rights Resellved

Combinatorics Examples

* Given n things, how can you choose k of them?
— Written as C(n,k)

* How do we solve the problem?

— Pick one person and single them out

* Groups that contain Joe => C(n-1, k-1)

* Groups that don't contain Joe => C(n-1, k)
— Total number of solutions: C(n-1,k-1) + C(n-1,k)
— What are base cases?

Joe

Mrrrrereree

AMAAAAAAAAAA

© 2015 by Mark Redekopp, All Rights Resellved

Combinatorics Examples

* You're going to Disneyland and you're trying to pick 4
people from your dorm to go with you

* Given n things, how can you choose k of them?
— Written as C(n,k)
— Analytical solution: C(n,k) =n!/[k!* (n-k)!]

* How do we solve the problem?

© 2015 by Mark Redekopp, All Rights Reserved

Recursive Solution

 Sometimes recursion can yield an incredibly simple

solution to a very complex problem

* Need some base cases

— C(n,0)=1
— C(n,n)=1

© 2015 by Mark Redekopp, All Rights Reserved

int C(int n, int k)
{
if(k == 0 || k == n)
return 1;
else
return C(n-1,k-1)
}

+ C(n-1,k);

You are responsible for this on your own since its covered in CS103

C++ LIBRARY REVIEW

© 2015 by Mark Redekopp, All Rights Reserved

* String
* |/O Streams
* Vector

© 2015 by Mark Redekopp, All Rights Reserved

C++ Library

C Strings

* |In C, strings are:
— Character arrays (char mystring[80])
— Terminated with a NULL character
— Passed by reference/pointer (char *) to functions
— Require care when making copies

* Shallow (only copying the pointer) vs.
Deep (copying the entire array of characters)

— Processed using C String library (<cstring>)

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

String Function/Library (cstring)

e int strlen(char *dest)
* int strcmp(char *strl, char *str2);

In C, we have to pass the C-String
as an argument for the function

to operate on it

— Return 0 if equal, >0 if first non-equal char in strl is alphanumerically

larger, <0 otherwise

e char *strcpy(char *dest, char *src);
— strncpy(char *dest, char *src, int n);
— Maximum of n characters copied

e char *strcat(char *dest, char *src);

— strncat(char *dest, char *src, int n);

#include <cstring>
using namespace std;
int main () {

char temp buf[5];

char str[] = "Too much";
strcpy (temp buf, str);
strncpy (temp buf, str, 4);
temp buf[4] = '\O'

return 0;

— Maximum of n characters concatenated plus a NULL

e char *strchr(char *str, char c);

— Finds first occurrence of character ‘c’ in str returning a pointer to that
character or NULL if the character is not found

© 2015 by Mark Redekopp, All Rights Reserved

C++ Strings

 So you don't like remembering all these details?
— You can do it! Don't give up.

e C++ provides a 'string' class that abstracts all
those worrisome details and encapsulates all the
code to actually handle:

— Memory allocation and sizing
— Deep copy
— etc.

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

String Examples

Must:

— #include <string>
— using namespace std;

Initializations / Assignment
— Use initialization constructor
— Use ‘=" operator

— Can reassign and all memory allocation

will be handled
Redefines operators:

— + (concatenate / append)
— += (append)

— ==, I, >, <, <=, >= (comparison)
— [] (access individual character)
http://www.cplusplus.com/reference/string/string/ First letter is C

#include <iostream>
#include <string>
using namespace std;

int main (int argc, char *argv[]) {
int len;
string s1("CS is ");
string s2 = "fun";

s2 = "really fun";

cout << sl << " is " << s2 << endl;
S2 = 82 + w7,
cout << s2 << endl;
string s3 = sl;
if (sl == s3){
cout << sl << " same as " << s3;
cout << endl;

}

cout << “First letter is “ << s1[0];
cout << endl;

Output: CSis really fun
really fun!!!
CSis sameas CSis

©2015 _,

http://www.cplusplus.com/reference/string/string/

i, TS(“Viterbi

More String Examples

©2015_,

Size/Length of string
Get C String (char *) equiv.
Find a substring

— Searches for occurrence of a substring

— Returns either the index where the
substring starts or string::npos

— std::npos is a constant meaning ‘just
beyond the end of the string’...it's a
way of saying ‘Not found’

Get a substring

— Pass it the start character and the
number of characters to copy

— Returns a new string

Others: replace, rfind, etc.

School of Engineering

#include <iostream>
#include <string>
using namespace std;

int main (int argc, char *argv[]) {
string sl (“abc def”);
cout << "Len of sl: " << sl.size() << endl;
char my c str[80];
strcpy(my ¢ str, sl.c str());
cout << my c str << endl;

if(sl.find(“bc d”) !'= string::npos)
cout << “Found bc d starting at pos=":
cout << sl.find(“bc d”) << endl;

found = sl.find(“def”);

if(found != string::npos) {
string s2 = sl.substr (found, 3)
cout << s2 << endl;

}

Lenofsl: 7

abc def

The string is: abc def

Found bc_d starting at pos=1

Output:

http://www.cplusplus.com/reference/string/string/

def

http://www.cplusplus.com/reference/string/string/

C++ Strings

* Why do we need the string class?
— C style strings are character arrays (char[])

* See previous discussion of why we don't like arrays

— C style strings need a null terminator ('\0')
“abcd” is actually a char[5] ... Why?

— Stuff like this won't compile:
char my_string[7] = “abc” + “def”;
* How can strings help?
— Easier to use, less error prone
— Has overloaded operators like +, =, [], etc.

— Lots of built-in functionality (e.g. find, substr, etc.)

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

C++ Streams

e Whatis a “stream”?

— A sequence of characters or bytes (of potentially infinite length) used for input
and output.

e C++ has four major libraries we will use for streams:
— <iostream>
— <fstream>
— <sstream>
— <iomanip>

* Stream models some input and/or output device
— fstream => a file on the hard drive;
— cin => keyboard and cout => monitor

 C++ has two operators that are used with streams
— Insertion Operator “<<”
— Extraction Operator “>>”

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

C++ 1/0 Manipulators

* The <iomanip> header file has a number of “manipulators” to
modify how 1/O behaves
— Alignment: internal, left, right, setw, setfill
— Numeric: setprecision, fixed, scientific, showpoint
— Other: endl, ends, flush, etc.
— http://www.cplusplus.com/reference/iostream/manipulators/

* Use these inline with your cout/cerr/cin statements
— double pi =3.1415;
— cout << setprecision(2) << fixed << pi << end|;

© 2015 by Mark Redekopp, All Rights Reserved

Understanding Extraction

. User enters value “512” at 15! prompt, enters “123” at 2"d prompt

Int x=0:

cout << “Enter X: “;

cin >> x;

inty =0;
cout << “Enter Y: ;

cin >>vy;

© 2015 by Mark Redekopp, All Rights Reserved

512

123

\n

cin =
cin=|5
cin = |\n

cin.fail() is false

cin = |\n

cin = |\n

\n

cin = |\n

cin.fail() i1s false

Understanding Extraction

. User enters value “23 99” at 1st prompt, 2"4 prompt skipped

int x=0; X=] 0 cin =
cout << “Enter X: “; X=| 0 cin=1213 9|9 |\n
cin >> x; X=| 23 cin = 9|9 |\n

cin.fail() is false

inty =0; Y = 0 cin = 9|19 |\n
<< 114 w kb .
cout Enter Y: y Y = 0 cin = 9|19 |\n
cin >>vy,; .
Y=| 99 cin = |\n

© 2015 by Mark Redekopp, All Rights Reserved C I n .fal I () I S fal S e

Understanding Extraction

. User enters value “23abc” at 15t prompt, 2"d prompt fails

int x=0; X=| 0 cin =

cout << “Enter X: “; X = 0

cin=12|3|a|b|c|\n

cin >>x; X=| 23 Cin=|a|b|c|\n

cin.fail() is false

inty =0; Y=| 0 cin=|a|b|c|\n
cout << “Enter Y: “; Y=| 0 cin=1|a|b|c|\n

© 2015 by Mark Redekopp, All Rights Reserved C I n 'fal I () I S t r u e

Understanding Extraction

. User enters value “23 99” at 1t prompt, everything read as string

string X; X = cin =

cout << “Enter X: “;

getline(cin,x);

[
N
w
©
©

\n |EOF

X = cin

X=|23 99 cin =

cin.fail() is
false

NOTE: \n character is
discarded!

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Understanding cin

* Things to remember
— When a read operation on cin goes wrong, the fail flag is set
— If the fail flag is set, all reads will automatically fail right away
— This flag stays set until you clear it using the cin.clear() function
— cin.good() returns true if ALL flags are false

* When you're done with a read operation on cin, you should
wipe the input stream

— Use the cin.ignore(...) method to wipe any remaining data off of cin
— Example: cin.ignore(1000,'\n'); cin.clear();

EOF BAD FAIL

ISstream |/ |t/F|T/F
(cin)

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

Understanding Extraction

. User enters value “23abc” at 15t prompt, 2"d prompt fails

inty =0;
cout << “Enter Y: ;

cin >>vy,;

cin.ignore(100, '\n");
/[doing a cin >> here will

/I still have the fail bit set

cin.clear();

/ now safe to do cin >>

© 2015 by Mark Redekopp, All Rights Reserved

cin

cin

XXX

EOF

EOF

Cin — |a|b| c|\n|EoF
Cin — | a|b| c|\n[EoF
cin =l al|b| c|\nfEoF

cin.fail() is true

EOF BAD FAIL

0

0

1

EOF BAD FAIL

0

0

0

School of Engineering

C++ File I/O

* Use <fstream> library for reading/writing files
— Use the open() method to get access to a file

ofstream out; //ofstream is for writing, ifstream is for reading
out.open(“my_filename.txt”) //must be a C style string!

* Write to a file exactly as you would the console!

— out << “This line gets written to the file” << endl;

 Make sure to close the file when you're done

— out.close();

e Use fail() to check if the file opened properly

— out.open(“my_filename.txt”)

— if(out.fail()) cerr << “Could not open the output file!”;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Validating User Input

 Reading user input is easy, validating it is hard

 What are some ways to track whether or not the user has

entered valid input?
— Use the fail() function on cin and re-prompt the user for input

— Use a stringstream for data conversions and check the fail() method
on the stringstream

— Read data in as a string and use the cctype header to validate each
character (http://www.cplusplus.com/reference/clibrary/cctype/)

— for(int i=0; i < str.size(); i++)

if(! isdigit(strl[i]))
cerr << “stris not a number!” << end|

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

e |f streams are just sequences of characters, aren't
strings themselves like a stream?

— The <sstream> library lets you treat C++ string objects like
they were streams

* Why would you want to treat a string as a stream?
— Buffer up output for later display
— Parse out the pieces of a string
— Data type conversions

* This is where you'll use stringstream the most!

* Very useful in conjunction with string's getline(...)

© 2015 by Mark Redekopp, All Rights Reserved

- 00000000 USCV1terb1@
C++ String Stream

* Convert numbers into strings (i.e. 12345 =>"12345")

#include<sstream>

using namespace std;

int main ()

{

stringstream ss;
int number = 12345;

ss << number;

string strNumber;

ss >> strNumber;

return 0O;

}

sstream_testl.cpp

© 2015 by Mark Redekopp, All Rights Reserved

C++ String Stream

* Convert string into numbers [same as atoi()]

© 2015 by Mark Redekopp, All Rights Reserved

#include<sstream>
using namespace std;

int main ()

{

stringstream ss;
string numStr = “12345”;

Ss << numStr;

int num;
Ss >> num;

return 0O;

sstream_test2.cpp

C++ String Stream

* Beware of re-using the same stringstream object for
multiple conversions. It can be weird.

— Make sure you clear it out between uses and re-init with
an empty string

* Or just make a new stringstream each time

stringstream ss;

//do something with ss

ss.clear () ;
ss.str("");
// now you can reuse SS

// or just declare another stream
stringstream ss2;

© 2015 by Mark Redekopp, All Rights Reserved

C++ Arrays

 What are arrays good for?

— Keeping collections of many pieces of the same data type
(e.g. | want to store 100 integers)

— int n[100];
 Each value is called out explicitly by its index

— Indexes start at O:

 Read an array value:

— cout << “5th value = “ << n[4] << end];

 Write an array value
— n[2] = 255;

© 2015 by Mark Redekopp, All Rights Reserved

C++ Arrays

e Unfortunately C++ arrays can be tricky...
— Arrays need a contiguous block of memory
— Arrays are difficult/costly to resize
— Arrays don't know their own size
— You must pass the size around with the array
— Arrays don't do bounds checking

— Potential for buffer overflow security holes

* e.g. Twilight Hack: http://wiibrew.org/wiki/Twilight_Hack
— Arrays are not automatically initialized
— Arrays can't be directly returned from a function

— You have to decay them to pointers

© 2015 by Mark Redekopp, All Rights Reserved

C++ Vectors

* Why do we need the vector class?
— Arrays are a fixed size. Resizing is a pain.
— Arrays don't know their size (no bounds checking)
— This compiles:
* int stuff[5];
e cout << stuff[-1] << “ and “ << stuff[100];
* How can vectors help?
— Automatic resizing to fit data
— Sanity checking on bounds
— They do everything arrays can do, but more safely

* Sometimes at the cost of performance

— See http://www.cplusplus.com/reference/stl/

© 2015 by Mark Redekopp, All Rights Reserved

B ()5 C Vierbi 1
Vector Class

* Container class (what it contains #include <iostream>
. . #include <vector>
is up to you via a template)

using namespace std;

* Mimics an array where we have int main()
an indexed set of homogenous { | . |
vector<int> my vec(5); // init. size of 5
objects 1 for (unsigned int i=0; i < 5; i++){
)] my vec[i] = 1+50;
* Resizes automatically)

my vec.push back(10); my vec.push back(8);
22 my vec[0] = 30;

unsigned int i;
0O 1 2 3 4 for(i=0; 1 < my vec.size(); i++){

1 my_vec 50511525354 } cout << my vec[i] << 8

cout << endl;

O 1 2 3 4 5 6

mvoveec T T T T T 1. 1 = i int x = my vec.back(); // gets back wval.
2 Y- 30|51 |52|53|54|10 8i 3 X += my vec.front(); // gets front val.

// x is now 38;

0O 1 2 3 4 5 cout << “x is Y << x << endl;
T my vec.pop back();
3 My_VeC 30|51 |52|53|54 10| | e eerl
- Z1 my vec.erase (my vec.begin() + 2);
0 1 2 3 4 5 my vec.insert (my vec.begin() + 1, 43);
4 Tt return 0;
MY_VEC 130|43|51|53|54|10| |)

© 2015 by Mark Redekopp, All Rights Reserved

- USCViterbi .
Vector Class

— Can pass an initial number of items or leave blank , ,
#include <iostream>

* operator][] #include <vector>

— Allows array style indexed access (e.g. myvec[1] + myvec[2]) | ysing namespace std;

* push_back(T new_val) S et ()
— Adds a copy of new_val to the end of the array allocating {
more memory if necessary vector<int> my vec (5); // 5= 1init. size
+ size(), empty() ol 0w
— Size returns the current number of items stored as an } B
unsigned int my vec.push back(10); my vec.push back(8);
— Empty returns True if no items in the vector my vec[0] = 30;

for(int i=0; i < my vec.size(); i++) {
* pop_backO cout << my vec[i] << ™ %;

— Removes the item at the back of the vector (does not return }
it) cout << endl;

* front(), back()

int x = my vec.back(); // gets back val.
— Returnitem at front or back -

x += my vec.front(); // gets front val.
* erase(iterator) // x is now 38;
cout << “x is M << x << endl;

— Removes item at specified index
P my vec.pop back();

(use begin() + index)
i insert(iterator, T new_val) my vec.erase (my vec.begin() + 2);

— Adds new_val at specified index (use begin() + index) my_vec.insert (my_vec.begin() + 1, 43);
return 0;

© 2015 by Mark Redekopp, All Rights Reserved

i, TS(“Viterbi

School of Engineering

Vector Suggestions

If you don’t provide an initial size to the

vector, you must add items using
push_back()

When iterating over the items with a
for loop, used an ‘unsigned int’

When adding an item, a copy will be
made to add to the vector

[] or at() return a reference to an
element, not a copy of the element

Usually pass-by-reference if an
argument to avoid the wasted time of
making a copy

© 2015 by Mark Redekopp, All Rights Reserved

#include <iostream>
#include <vector>

using namespace std;

int main ()
{
vector<int> my vec;
for(int 1i=0; 1 < 5; i++){
// my vec[i] = i+450; // doesn’t work
my vec.push back (i+50);
}
for (unsigned int 1i=0;
1 < my vec.size();
i++)

{ cout << my vec[i] << " "; }
cout << endl;
my vec[l] = 5; my vec.at(2) = 6;

do something (myvec) ;

return 0;

}

void do something (vector<int> &v)

{

// process v;

