
1

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Overview

Mark Redekopp

Aaron Cote

2

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Administrivia 1

• In-Person
– We are post-pandemic. In-person attendance is expected. No remote

attendance

– Zoom recordings will not be automatically posted. You may request 2
lectures.

• CS 103 / 170 Preparation
– Basic if, while, for constructs and functions

– Arrays, linked-lists

– Structs, classes (constructors, destructors, operator overloading, copy
semantics, inheritance)

– Dynamic memory allocation and pointers

– Basics of Recursion

– Asymptotic Notation: Big-O/Theta/Omega notations

• All other content is on our website (https://bytes.usc.edu/cs104/)

https://bytes.usc.edu/cs104/

3

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Administrivia 2
• Syllabus

– https://bytes.usc.edu/cs104/syllabus/

– Exams: 1 midterm and 1 final

– Six assignments.
• Each assignment has a written component and a programming component

• Key: Start early, work consistently, and meet the "checkpoint" schedule.

• Expectations
– Class should be interactive. Speak up directly (I don't mind being

interrupted) or raise your hand.

– I'll give you my best, you give me yours…

• Attendance, participation, asking questions, academic integrity, take an interest

– Treat CS104 right!

– Let's make this fun

https://bytes.usc.edu/cs104/syllabus/

4

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Organizing Your Data
• Intentionally vague question: "Should you always sort your

data?"
– No. What are the tradeoffs?
– An Insert operation becomes more expensive, but a Lookup

operation becomes less expensive
– In a backup system, you are constantly inserting information,

and you rarely (hopefully never) performing lookups on that
information.

• How should you organize your data? What is the best data
structure?
– The answer is, invariably, “it depends.”
– Otherwise, this class would be called “Data Structure” (singular),

I’d teach it to you today, and everyone would go home and get
an A.

– Demo…Need 2 volunteers

5

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Data Structure Consideration

• Some questions to consider:

– Will you search the data often?

– Will data be added in small, frequent chunks?

– Will data be added in large, infrequent chunks?

• Besides Insert and Lookup, what other operations are common?

– Remove and Update

• Which of these operations you need, and how frequently you need each
one, will dictate which data structure you select!

– There is a data structure called a “Heap” which is really good at all of
these operations… except Lookup!

– Others, such as AVL Trees, are able to do all 4 operations fairly well
(but they are worse than Heaps on every operation except Lookup!)

– Yet others, such as Hash Tables, are usually lightning fast, but are
probabilistic and occasionally produce very bad runtimes.

6

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Why Data Structures Matter?

• Modern applications process vast amount of data

• Adding, removing, searching, and accessing are common operations

• Various data structures allow these operations to be completed with
different time and storage requirements

Recall  (n) indicates that the actual run-time is bounded by some

expression a*n for some n > n0 (where a and n0 are constants)

Data Structure Insert Lookup Get-Min

Unsorted List (1) (n) (n)

AVL Tree (log n) (log n) (log n)

Heap (log n) (n) (1)

7

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Importance of Complexity

Problem
Size

Bit operations used

n = log n n n log n n2 2n n!

10 3 x 10-11 s 10-10 s 3 x 10-10 s 10-9 s 10-8 s 3 x 10-7 s

102 7 x 10-11 s 10-9 s 7 x 10-9 s 10-7 s 4x1011 yrs *

103 10-10 s 10-8 s 10-7 s 10-5 s * *

104 1.3 x 10-10 s 10-7 s 10-6 s 10-3 s * *

105 1.7 x 10-10 s 10-6 s 2 x 10-5 s 0.1 s * *

106 2 x 10-10 s 10-5 s 2 x 10-4 s 10.2 s * *

8

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Abstract Data Types

• Programming students tend to focus on the code and less on the data and
its organization

• More seasoned programmers focus first on

– What data they have

– How it will be accessed

– How it should be organized

• An abstract data type describes what data is stored and what operations
are to be performed

• A data structure is a specific way of storing the data implementing the
operations

• Example ADT: List

– Data: items of the same type in a particular order

– Operations: insert, remove, get item at location, set item at location, find

• Example data structures implementing a List: Linked List, array, etc.

9

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Another ADT

• add(key, value)
– The key is a unique identified that we can use to find

the value in the future.
– add("Tetris", 3)

• lookup(key)
– Lookup("Tetris"), to find "Tetris" sales rank

• remove(key)
– remove("Tetris"), to remove "Tetris".

• This ADT is known as a map. We could implement
the above map using a sorted list. So, is a sorted
list an ADT?
– No! The sorted list is the data structure. The map is

the ADT.

10

© 2022 by Mark Redekopp and Aaron Cote. This content is protected and may not be shared, uploaded, or distributed.

Course Goals

Learn basic and advanced
techniques for
implementing data
structures and analyzing
their efficiency

• Will require mathematical
analysis from CS 170

01
Learn how to identify
the best data
structure for your
needs.

02
Learn object-oriented
design principles that
make your code
readable, modular,
and extensible

03

	Slide 1: CSCI 104 Overview
	Slide 2: Administrivia 1
	Slide 3: Administrivia 2
	Slide 4: Organizing Your Data
	Slide 5: Data Structure Consideration
	Slide 6: Why Data Structures Matter?
	Slide 7: Importance of Complexity
	Slide 8: Abstract Data Types
	Slide 9: Another ADT
	Slide 10: Course Goals

