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Administrivia 1

• In-Person
– We are post-pandemic. In-person attendance is expected. No remote 

attendance 

– Zoom recordings will not be automatically posted.  You may request 2 
lectures. 

• CS 103 / 170 Preparation
– Basic if, while, for constructs and functions

– Arrays, linked-lists

– Structs, classes (constructors, destructors, operator overloading, copy 
semantics, inheritance)

– Dynamic memory allocation and pointers

– Basics of Recursion

– Asymptotic Notation: Big-O/Theta/Omega notations

• All other content is on our website (https://bytes.usc.edu/cs104/)

https://bytes.usc.edu/cs104/
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Administrivia 2
• Syllabus

– https://bytes.usc.edu/cs104/syllabus/

– Exams: 1 midterm and 1 final

– Six assignments.
• Each assignment has a written component and a programming component  

• Key:  Start early, work consistently, and meet the "checkpoint" schedule.

• Expectations
– Class should be interactive.  Speak up directly (I don't mind being 

interrupted) or raise your hand.

– I'll give you my best, you give me yours…

• Attendance, participation, asking questions,  academic integrity, take an interest

– Treat CS104 right!

– Let's make this fun

https://bytes.usc.edu/cs104/syllabus/
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Organizing Your Data
• Intentionally vague question: "Should you always sort your 

data?"
– No.  What are the tradeoffs?
– An Insert operation becomes more expensive, but a Lookup

operation becomes less expensive
– In a backup system, you are constantly inserting information, 

and you rarely (hopefully never) performing lookups on that 
information.

• How should you organize your data?  What is the best data 
structure?
– The answer is, invariably, “it depends.”
– Otherwise, this class would be called “Data Structure” (singular), 

I’d teach it to you today, and everyone would go home and get 
an A.

– Demo…Need 2 volunteers
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Data Structure Consideration

• Some questions to consider:

– Will you search the data often?

– Will data be added in small, frequent chunks?

– Will data be added in large, infrequent chunks?

• Besides Insert and Lookup, what other operations are common?

– Remove and Update

• Which of these operations you need, and how frequently you need each 
one, will dictate which data structure you select!

– There is a data structure called a “Heap” which is really good at all of
these operations… except Lookup!

– Others, such as AVL Trees, are able to do all 4 operations fairly well
(but they are worse than Heaps on every operation except Lookup!)

– Yet others, such as Hash Tables, are usually lightning fast, but are 
probabilistic and occasionally produce very bad runtimes.
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Why Data Structures Matter?

• Modern applications process vast amount of data

• Adding, removing, searching, and accessing are common operations

• Various data structures allow these operations to be completed with 
different time and storage requirements

Recall  (n) indicates that the actual run-time is bounded by some 

expression a*n for some n > n0 (where a and n0 are constants)

Data Structure Insert Lookup Get-Min

Unsorted List (1) (n) (n)

AVL Tree (log n) (log n) (log n)

Heap (log n) (n) (1)
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Importance of Complexity

Problem 
Size

Bit operations used

n = log n n n log n n2 2n n!

10 3 x 10-11 s 10-10 s 3 x 10-10 s 10-9 s 10-8 s 3 x 10-7 s

102 7 x 10-11 s 10-9 s 7 x 10-9 s 10-7 s 4x1011 yrs *

103 10-10 s 10-8 s 10-7 s 10-5 s * *

104 1.3 x 10-10 s 10-7 s 10-6 s 10-3 s * *

105 1.7 x 10-10 s 10-6 s 2 x 10-5 s 0.1 s * *

106 2 x 10-10 s 10-5 s 2 x 10-4 s 10.2 s * *
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Abstract Data Types

• Programming students tend to focus on the code and less on the data and 
its organization

• More seasoned programmers focus first on

– What data they have

– How it will be accessed

– How it should be organized 

• An abstract data type describes what data is stored and what operations 
are to be performed

• A data structure is a specific way of storing the data implementing the 
operations

• Example ADT:  List

– Data: items of the same type in a particular order

– Operations: insert, remove, get item at location, set item at location, find

• Example data structures implementing a List:  Linked List, array, etc.
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Another ADT

• add(key, value)
– The key is a unique identified that we can use to find 

the value in the future.
– add("Tetris", 3)

• lookup(key)
– Lookup("Tetris"), to find "Tetris" sales rank

• remove(key)
– remove("Tetris"), to remove "Tetris".

• This ADT is known as a map.  We could implement 
the above map using a sorted list.  So, is a sorted 
list an ADT?
– No!  The sorted list is the data structure.  The map is 

the ADT.
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Course Goals

Learn basic and advanced 
techniques for 
implementing data 
structures and analyzing 
their efficiency

• Will require mathematical 
analysis from CS 170

01
Learn how to identify 
the best data 
structure for your 
needs.

02
Learn object-oriented 
design principles that 
make your code 
readable,  modular, 
and extensible
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