CS103 Unit 8

Recursion

Mark Redekopp

Recursion

* Defining an object, mathematical function, or
computer function in terms of itself

GNU
« Makers of gedit, g++ compiler, etc.
« GNU = GNU_is Not Unix

e

GNU is Not Unix

T

GNU is Not Unix
T~

... Is Not Unix is not Unix is Not Unix

Recursion

* Problem in which the solution can be expressed in terms of
itself (usually a smaller instance/input of the same problem)
and a base/terminating case

e Usually takes the place of a loop
* Input to the problem must be categorized as a:

— Base case: Solution known beforehand or easily computable (no
recursion needed)

— Recursive case: Solution can be described using solutions to smaller
problems of the same type

» Keeping putting in terms of something smaller until we reach the base case
 Factorial:n!=n*(n-1) *(n-2)*..*2*1
— nl=n*(n-1)!
— Base case: n=1

— Recursive case: n >1 => n*(n-1)!

Recursive Functions

e Recall the system stack

essentially provides
separate areas of
memory for each
‘instance’ of a function

Thus each local variable
and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

C Code:

int fact(int n)

{

// base case
if(n == 1)
return 1;

// recursive case
else {
// calculate (n-1)!
int small_ans = fact(n-1);

// now ans = (n-1)!
// so calculate n!
return n * small_ans;

}

USC Vierbi >
Recursive Call Timeline

int fact(int n)
{
if(n == 1)
return 1;
else {
int small ans = fact(n-1);
return n * small_ans ;

b}

Fact(3)
{n=3} T

~ Fact(2)
{n=2} BN Fact(1)
n=23 n=2 n=1

return 1

<
4

small_ ans=1
— ret. (n *small_ans) = 2*1

small_ans =2 -
ret. (n*small_ans) = 3*2

* Value/version of n is implicitly “saved” and “restored” as we
move from one instance of the ‘fact’ function to the next

e — {5 C Viterbi >
Head vs. Tail Recursion

e Head Recursion: Recursive call is made before the real work is
performed in the function body

* Tail Recursion: Some work is performed and then the recursive

call is made
Tail Recursion Head Recursion

void doit(int n) void doit(int n)
{ {

if(n == 1) cout << "Stop"; if(n == 1) cout << "Stop";

else { else {

cout << "Go" << endl; doit(n-1);

doit(n-1); cout << "Go" << endl;

} }
} }

e — {5 Viterbi
Head vs. Tail Recursion

e Head Recursion: Recursive call is made before the real work is
performed in the function body

* Tail Recursion: Some work is performed and then the recursive

call is made
Tail Recursion Head Recursion
Void doit(int n) Void doit(int n)
{ {
if(n == 1) cout << "Stop"; if(n == 1) cout << "Stop";
else { else {
cout << "Go" << endl; doit(n-1);
doit(n-1); cout << "Go" << endl;
} }
} }
doit(3) return Go doit(3) Go Stop
Go Go eturn Go
doit(2) return Stop doit(2) Go Go
Go | ’ | ’return
doit(1) return doit(1) return
Stop Stop

Recursive Functions

e Recall the system stack

essentially provides
separate areas of
memory for each
‘instance’ of a function

e Thus each local variable

and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

C Code:

int main()
{
int data[4] = {8, 6, 7, 9};
int suml = isum_it(data, 4);
int sum2 = rsum_it(data, 4);
}
int isum_it(int data[], int 1len)
{
sum = data[@];
for(int i=1; i < len; i++){
sum += data[i];
}
}

int rsum_it(int data[], int len)
{
if(len == 1)
return data[@];
else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

USCVierbi >
Recursive Call Timeline

int rsum_it(int data[], int len)

int main(){ {
int data[4] = {8, 6, 7, 9}; if(len == 1)
int sum2 = rsum_it(data, 4); return data[o@];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

Tim
rsum_it(data,4)
int sum=

rsum_it(data,4-1) —rsum_it(data,3) |en — 2 |en — 1
int sum=
rsum_it(data,3-1)

rsum_it(data,2)

— — int sum=
|en - 4 |en - 3 rsum_it(data,2-1) rsum_it(data,1)
___return data[0];

int sum =8 ‘/-8

L—return 8+data[1];

intsum = 14 «— | 14

— return 14+data[2];

intsum =21« |51
return 21+data[3];

30

Each instance of rsum_it has its own len argument and sum variable
Every instance of a function has its own copy of local variables

IlllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIII]JS(TVheﬂjlilb

School of Engineering

System Stack & Recursion

* The system stack makes recursion
possible by providing separate
memory storage for the local
variables of each running instance
of the function

Code for all functions

Data for rsum_it (data=800,

len=1. sum=??) and return link
System Data for rsum_it (data=800,
Memory len=2, sum=8) and return link
Data for rsum_it (data=800,
(RAM) len=3, sum=14) and return link

Data for rsum_it (data=800,
len=4, sum=21) and return link

Data for main (data=800,sum2=??) and
return link

System stack area

int main()

{
int data[4] = {8, 6, 7, 9};
int sum2 = rsum_it(data, 4);

}

int rsum_it(int data[], int len)
{
if(len == 1)
return data[o];
else
int sum =
rsum_it(data, len-1);
return sum + data[len-1];

800
8|6
01

data[4]:

Exercises
— Count-down
— Count-up

Exercise

Recursion Double Check

* When you write a recursive routine:

— Check that you have appropriate base cases
* Need to check for these first before recursive cases

— Check that each recursive call makes progress
toward the base case

* Otherwise you'll get an infinite loop and stack overflow

— Check that you use a 'return’ statement at each
level to return appropriate values back to each

recursive call
* You have to return back up through every level of

recursion, so make sure you are returning something
(the appropriate thing)

e — 5 Viterbi
Loops & Recursion

* Isit better to use recursion or iteration?
— ANY problem that can be solved using recursion can also be solved
with iteration and other appropriate data structures
 Why use recursion?
— Usually clean & elegant. Easier to read.
— Sometimes generates much simpler code than iteration would
— Sometimes iteration will be almost impossible
— The power of recursion often comes when each function instance
makes multiple recursive calls
* How do you choose?
— lteration is usually faster and uses less memory

— However, if iteration produces a very complex solution, consider
recursion

i, TS(“Viterbi

School of Engineering

Recursive Binary Search

* Assume remaining items = [start, end)

— start is inclusive index of start item in remaining list
— End is exclusive index of start item in remaining list

binSearch(target, List[], start, end)

— Perform base check (empty list)
e Return NOT FOUND (-1)

— Pick mid item

— Based on comparison of k with List[mid]
 EQ =>Found => return mid
e LT =>return answer to BinSearch([start,mid)
e GT =>return answer to BinSearch[mid+1,end)

Kk

=11

W 2 3 4 6 9 11 131519

index 0 1 2 3 456 7 8

start

List
index

List
index

List
index

T

T

end

N 11 13(15 19
4

5 6 7 8

T

start

f

T

end

19

l 11 13 s
4

5 6 7 8

T

T

start ; end

6

O RS 13

15

19

N

3 45 6 7 8

f

start\end

i, TS(“Viterbi 9

Sorting

* If we have an unordered list, sequential
search becomes our only choice

* If we will perform a lot of searches it may
be beneficial to sort the list, then use
binary search

* Many sorting algorithms of differing
complexity (i.e. faster or slower)

* Bubble Sort (simple though not terribly
efficient)

— On each pass through thru the list, pick up the
maximum element and place it at the end of
the list. Then repeat using a list of size n-1 (i.e.
w/o the newly placed maximum value)

List
index

List
index

List
index

List
index

List
index

School of Engineering

7(3(8|6|5]|1

0123465
Original

3[7]6]5[1 0

012 3 45
After Pass 1

36|51 AR

012 3 45
After Pass 2

3]s [+ A

012 3 45
After Pass 3

KAl 5 6 7 8

012 3 465
After Pass 4

Wl 1 3 5 6 7 8

index

012 3 465
After Pass 5

Exercises
— Text-based fractal

Exercise

Flood Fill

Imagine you are given an image with
outlines of shapes (boxes and circles)
and you had to write a program to

shade (make black) the inside of one
of the shapes. How would you do it?

Flood fill is a recursive approach

Given a pixel
— Base case: If it is black already, stop!

— Recursive case: Call floodfill on each
neighbor pixel

— Hidden base case: If pixel out of bounds,
stop!

