
1

CS103 Unit 8

Recursion

Mark Redekopp

2

Recursion

• Defining an object, mathematical function, or
computer function in terms of itself

GNU

• Makers of gedit, g++ compiler, etc.

• GNU = GNU is Not Unix

GNU is Not Unix

GNU is Not Unix

… is Not Unix is not Unix is Not Unix

3

Recursion
• Problem in which the solution can be expressed in terms of

itself (usually a smaller instance/input of the same problem)
and a base/terminating case

• Usually takes the place of a loop

• Input to the problem must be categorized as a:
– Base case: Solution known beforehand or easily computable (no

recursion needed)

– Recursive case: Solution can be described using solutions to smaller
problems of the same type

• Keeping putting in terms of something smaller until we reach the base case

• Factorial: n! = n * (n-1) * (n-2) * … * 2 * 1

– n! = n * (n-1)!

– Base case: n = 1

– Recursive case: n > 1 => n*(n-1)!

4

Recursive Functions

• Recall the system stack
essentially provides
separate areas of
memory for each
‘instance’ of a function

• Thus each local variable
and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

int fact(int n)
{

// base case
if(n == 1)

return 1;

// recursive case
else {

// calculate (n-1)!
int small_ans = fact(n-1);

// now ans = (n-1)!
// so calculate n!

return n * small_ans;

}
}

C Code:

5

Recursive Call Timeline

• Value/version of n is implicitly “saved” and “restored” as we
move from one instance of the ‘fact’ function to the next

Fact(3)

{n=3} Fact(2)

{n=2} Fact(1)

return 1

small_ans = 2

ret. (n*small_ans) = 3*2

Time

small_ans = 1

ret. (n * small_ans) = 2*1

n = 3 n = 2 n = 1

int fact(int n)

{

if(n == 1)

return 1;

else {

int small_ans = fact(n-1);

return n * small_ans ;

} }

6

Head vs. Tail Recursion
• Head Recursion: Recursive call is made before the real work is

performed in the function body

• Tail Recursion: Some work is performed and then the recursive
call is made

void doit(int n)
{

if(n == 1) cout << "Stop";
else {
cout << "Go" << endl;
doit(n-1);
}

}

void doit(int n)
{

if(n == 1) cout << "Stop";
else {
doit(n-1);
cout << "Go" << endl;
}

}

Tail Recursion Head Recursion

7

Head vs. Tail Recursion
• Head Recursion: Recursive call is made before the real work is

performed in the function body

• Tail Recursion: Some work is performed and then the recursive
call is made

Void doit(int n)
{

if(n == 1) cout << "Stop";
else {
cout << "Go" << endl;
doit(n-1);
}

}

doit(3)
Go

doit(2)
Go

doit(1)
Stop

return

return

return

Void doit(int n)
{

if(n == 1) cout << "Stop";
else {
doit(n-1);
cout << "Go" << endl;
}

}

doit(3)

doit(2)

doit(1)
Stop

Go
return

return

Go
return

Go

Go

Stop

Stop

Go

Go

Tail Recursion Head Recursion

8

Recursive Functions

• Recall the system stack
essentially provides
separate areas of
memory for each
‘instance’ of a function

• Thus each local variable
and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

int main()
{

int data[4] = {8, 6, 7, 9};
int sum1 = isum_it(data, 4);
int sum2 = rsum_it(data, 4);

}

int isum_it(int data[], int len)
{

sum = data[0];
for(int i=1; i < len; i++){

sum += data[i];
}

}

int rsum_it(int data[], int len)
{

if(len == 1)
return data[0];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

C Code:

9

Recursive Call Timeline

Each instance of rsum_it has its own len argument and sum variable

Every instance of a function has its own copy of local variables

rsum_it(data,4)

int sum=

rsum_it(data,4-1)

Time

len = 4 len = 3

len = 2 len = 1rsum_it(data,3)

int sum=

rsum_it(data,3-1)
rsum_it(data,2)

int sum=

rsum_it(data,2-1) rsum_it(data,1)

return data[0];

int main(){
int data[4] = {8, 6, 7, 9};
int sum2 = rsum_it(data, 4);
...

}

8

int rsum_it(int data[], int len)
{
if(len == 1)
return data[0];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

int sum = 8

return 8+data[1];
int sum = 14

return 14+data[2];
int sum = 21

return 21+data[3];

14

21

30

10

Code for all functions

System Stack & Recursion

• The system stack makes recursion
possible by providing separate
memory storage for the local
variables of each running instance
of the function

System stack area

System

Memory

(RAM)

Code for all functions

int main()
{

int data[4] = {8, 6, 7, 9};
int sum2 = rsum_it(data, 4);

}

int rsum_it(int data[], int len)
{

if(len == 1)
return data[0];

else
int sum =

rsum_it(data, len-1);
return sum + data[len-1];

}

Data for rsum_it (data=800,
len=4, sum=??) and return link

Data for rsum_it (data=800,
len=3, sum=??) and return link

Data for rsum_it (data=800,
len=2, sum=??) and return link

Data for rsum_it (data=800,
len=1, sum=??) and return link

Data for rsum_it (data=800,
len=2, sum=8) and return link

Data for rsum_it (data=800,
len=3, sum=14) and return link

Data for rsum_it (data=800,
len=4, sum=21) and return link

Data for main (data=800,sum2=??) and
return link

8 6 7 9

0 1 2 3data[4]:

800

11

Exercise

• Exercises

– Count-down

– Count-up

12

Recursion Double Check

• When you write a recursive routine:

– Check that you have appropriate base cases

• Need to check for these first before recursive cases

– Check that each recursive call makes progress
toward the base case

• Otherwise you'll get an infinite loop and stack overflow

– Check that you use a 'return' statement at each
level to return appropriate values back to each
recursive call

• You have to return back up through every level of
recursion, so make sure you are returning something
(the appropriate thing)

13

Loops & Recursion

• Is it better to use recursion or iteration?
– ANY problem that can be solved using recursion can also be solved

with iteration and other appropriate data structures

• Why use recursion?
– Usually clean & elegant. Easier to read.

– Sometimes generates much simpler code than iteration would

– Sometimes iteration will be almost impossible

– The power of recursion often comes when each function instance
makes multiple recursive calls

• How do you choose?
– Iteration is usually faster and uses less memory

– However, if iteration produces a very complex solution, consider
recursion

14

Recursive Binary Search

• Assume remaining items = [start, end)
– start is inclusive index of start item in remaining list

– End is exclusive index of start item in remaining list

• binSearch(target, List[], start, end)
– Perform base check (empty list)

• Return NOT FOUND (-1)

– Pick mid item

– Based on comparison of k with List[mid]

• EQ => Found => return mid

• LT => return answer to BinSearch[start,mid)

• GT => return answer to BinSearch[mid+1,end)

2 3 4 6 9 11 13 15 19List

index

2 3 4 6 9 11 13 15 19List

index

i

k = 11

endstart

i endstart

2 3 4 6 9 11 13 15 19List

index

endstart i

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

2 3 4 6 9 11 15 19List

index

endstart

i

0 1 2 3 4 5 6 7 8

13

15

Sorting

• If we have an unordered list, sequential
search becomes our only choice

• If we will perform a lot of searches it may
be beneficial to sort the list, then use
binary search

• Many sorting algorithms of differing
complexity (i.e. faster or slower)

• Bubble Sort (simple though not terribly
efficient)
– On each pass through thru the list, pick up the

maximum element and place it at the end of
the list. Then repeat using a list of size n-1 (i.e.
w/o the newly placed maximum value)

7 3 8 6 5 1List

index

Original

1 2 3 4 50

3 7 6 5 1 8List

index

After Pass 1

1 2 3 4 50

3 6 5 1 7 8List

index

After Pass 2

1 2 3 4 50

3 5 1 6 7 8List

index

After Pass 3

1 2 3 4 50

3 1 5 6 7 8List

index

After Pass 4

1 2 3 4 50

1 3 5 6 7 8List

index

After Pass 5

1 2 3 4 50

16

Exercise

• Exercises

– Text-based fractal

17

Flood Fill

• Imagine you are given an image with
outlines of shapes (boxes and circles)
and you had to write a program to
shade (make black) the inside of one
of the shapes. How would you do it?

• Flood fill is a recursive approach

• Given a pixel
– Base case: If it is black already, stop!

– Recursive case: Call floodfill on each
neighbor pixel

– Hidden base case: If pixel out of bounds,
stop!

