
1

CS 103 Unit 7 Slides

File I/O

Mark Redekopp

2

Get the Files for Today

• Login to Vocareum and start assignment: sandbox-fileio

• If working on your own machine:
– Go to your cs103/examples directory

• $ wget http://ee.usc.edu/~redekopp/cs103/redir_pipe.tar

• $ tar xvf redir_pipe.tar

• $ wget http://ee.usc.edu/~redekopp/cs103/cinfail.cpp

• $ wget http://ee.usc.edu/~redekopp/cs103/file_io_ex.tar

• $ tar xvf file_io_ex.tar

3

I/O redirection via th eOS

Overview

• Two methods for file I/O
– I/O redirection: The OS reads

or writes data to/from a file by
controlling cin & cout

• The program just performs
normal cin and cout
commands

– File streams (ifstream and
ofstream) are part of the C++
library and perform file I/O
directly through a cin- and
cout-like interface

2 1

cin

\n

input stream:

input stream:

\n

DISK

15 21
hello

data.txt

Your program variables:

15x

cin >> x >> y

1 5

21y

ifstream

ifstream ifile;
ifile >> x >> y

./app1

$./app1 < data.txt
./app1

4

I/O REDIRECTIONS

5

I/O Streams
• I/O is placed in temporary buffers/streams by the OS & C++ libraries

• cin pulls data from an input stream known as 'stdin' (standard input)
– It is usually the stream coming from the keyboard

• cout puts data in an output stream known as 'stdout' (standard output)
– It is usually directed to the monitor

7 5 y ...

input stream [stdin] (user types all at once):

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{

int dummy, x;
cin >> dummy >> x;

}

I t w a s t h e

output stream (stdout) in OS:

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{

cout << “It was the” << endl;
cout << 4;

}

y ...stdin

4\n

It was the

6 1

stdout

6

I/O Streams
• '>>' operator used to read data from an input stream

– Always stops at whitespace

• '<<' operator used to write data to an output stream
– 'endl' forces a flush…Flush forces the OS to move data from the internal OS stream to

the actual output device (like the monitor)

7 5 y ...

input stream (user types all at once):

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{
int dummy, x;
cin >> dummy >> x;

}

I t w a s t h e

output stream in OS:

#include<iostream>
using namespace std;
int main(int argc, char *argv[])
{

cout << “It was the” << endl;
cout << 4;

}

y ...input stream:
4

output stream after flush:

4\n

It was the

6 1

7

File I/O Intro

• What methods does a user have to provide a program
input:

– cin

– Command line (argc, argv)

• Now a new method: File I/O (accessing data in files)

• Primary method for a program to read/write files:

– File streams [Main subject of our lecture]

• OS-based tools (for scripts) to read/write file data

– I/O Redirection via the OS (use of '<' and '>' at command line)

– Pipes via the OS (use of | at command line)

8

Redirection & Pipes

• The OS (Linux or Windows or Mac) provides the following
abilities at the command line

• '<' redirect contents of a file as input (stdin) to program
– ./simulation < input.txt

– OS places contents of input.txt into 'stdin' input stream which broke can
access via 'cin'

• '>' redirect program output to a file
– ./ simulation < input.txt > results.txt

– OS takes output from 'stdout' produced by cout and writes them into a
new output file on the hard drive: results.txt

• 'l' pipe output of first program to second
– stdout of first program is then used as stdin of next program

9

Redirection & Pipe Examples

• $./lab5_sol < input.txt
– Redirects contents of input.txt to stdin

(i.e. cin) in lab5 program

• Get the demo files:
– Go to your cs103/examples directory

– $ wget http://ee.usc.edu/~redekopp/cs103/redir_pipe.tar

– $ tar xvf redir_pipe.tar

– $ make randgen

– $ make average

• Run them without using redirection and pipes
– $./randgen 20 10

• Notice 20 values between 1-10 are output on stdout/cout

– $./average
• Now type in a list of numbers followed by typing Ctrl-D

0 10 10 100 50

0 200 220 20 30

1 80 180 25 25

1 180 50 30 60

2

input.txt

10

Redirection & Pipe Examples

• Output Redirection: >

– $./randgen 20 10 > out.txt

– Now inspect out.txt contents

– What would have displayed on the screen is now in out.txt

• Input redirection: <

– $./average < out.txt

– The output captured from randgen is now used as input to
average

• Pipes: |

– $./randgen 20 10 | ./average

– The output of randgen is fed as input to average

11

DIRECT FILE I/O USING C++
STREAMS

12

MORE ABOUT STREAMS
Other capabilities you can use for streams

13

Input & Output Streams
• There are other types of input and output streams

other than cin and cout

• File streams gives the same capabilities of cin and
cout except data is read/written from/to a file on the
hard drive

– Everything you do with cin using the '>>' operator you can
now use to access data from a file rather than the
keyboard

– Everything you do with cout using the '<<' operator you
can now use to output data to a file

• Let's learn more about streams '>>'…we'll see it in
the context of cin and cout but realize it will apply to
other streams we'll learn about next

14

getline() and Lines of Text
• cin stops reading at

whitespace

– If you want to read a
whole line of text use
cin.getline()

• It will read spaces and tabs
but STOP at '\n'

– cin.getline(char *buffer,
int max_chars)

• Reads max_chars-1 leaving
space for the null character

#include <iostream>
using namespace std;

int main ()
{

char mytext[80];
cout << "Enter your full name" << endl;
cin.getline(mytext, 80);

int last=0;
for(int i=0; i<80; i++){

if(mytext[i] == ' '){
last = i+1;
break;

}
}
cout << "Last name starts at index: ";
cout << last << endl;
return 0;

}

Enter your full name
Tommy Trojan
Last name starts at index 6.

15

Sample Code

• Get the sample code

– $ wget http://ee.usc.edu/~redekopp/cs103/cinfail.cpp

16

Input Stream Error Checking

• We can check errors when cin
receives unexpected data that
can’t be converted to the given
type

• Use the function cin.fail() which
returns true if anything went
wrong opening or reading data in
from the file (will continue to
return true from then on until
you perform cin.clear())

• Try this code yourself and see
what happens with and with out
the check using fail()

#include <iostream>
using namespace std;

int main ()

{

int x;
cout << "Enter an int: " << endl;
cin >> x; // What if the user enters:

// "abc"

// Check if we successfully read an int
if(cin.fail()) {

cout << "Error: I said enter an int!";
cout << " Now I must exit!" << endl;
return 1;

}

cout << "You did it! You entered an int";
cout << " with value: " << x;

return 0;
}

17

Understanding Input Streams

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

cin.fail() is false

● User enters value “512” at 1st prompt, enters “123” at 2nd prompt

0

0

512

5 1 2 \n

\n

0

0

123

\n 1 2 3 \n

\n

\n

18

Understanding Input Streams

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

23

2 3 a b

0

0

xx

c \n

a b c \n

a b c \n

a b c \n

a b c \n

cin.fail() is true

19

Understanding Input Streams

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

● User enters value “23 99” at 1st prompt, 2nd prompt skipped

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

cin.fail() is false

0

0

23

2 3 9

0

0

99

9 \n

9 9 \n

9 9 \n

9 9 \n

\n

20

Understanding Input Streams

char x[80];

cout << “Enter X: “;

cin.getline(x, 80);

● User enters value “23 99” at 1st prompt, everything read as string

X =

cin =

X = cin =

X =

cin =

cin.fail() is
false

NOTE: \n character is
discarded!

23 99

2 3 9 9 \n

21

Pattern for File I/O or Streams

• Step 1: Try to read data (>> or getline)

• Step 2: Check if you succeeded or failed

• Step 3: Only use the data read from step 1 if
you succeeded

• If you read and then blindly use the data you
will likely get a bogus data value at the end

22

Getting the order right

• Be sure you CHECK whether
the input failed before you
USE the result!
– See top example

• If you don't CHECK and the
input fails, you will use a
garbage value
– See bottom example

int main ()
{

int x, sum = 0;
while(! cin.fail()) {

cout << "Enter an int: " << endl;
cin >> x; // What if the user enters: abc
sum += x; // May use BAD value

}
cout << "sum = " << sum << endl;
return 0;

}

int main ()
{

int x, sum = 0;
cout << "Enter an int: " << endl;
cin >> x; // What if the user enters abc

// Check if we successfully read an int
while(! cin.fail()) {

sum += x;
cin >> x;

}
cout << "sum = " << sum << endl;
return 0;

}

23

Recovering for Errors

• Use the fail() function to detect
errors when attempting to read
data

• If a call to fail() returns true then
subsequent calls to fail() will
continue to return true until you
call clear()

• Use ignore() to clean out any text
still in the input stream

• Try this code yourself and see
what happens with and with out
the check using fail()

#include <iostream>
using namespace std;

int main ()

{

int x;
cout << "Enter an int: " << endl;
cin >> x; // What if the user enters:

// "abc"

// Check if we successfully read an int
while(cin.fail()) {

cin.clear(); // turn off fail flag
cin.ignore(256, '\n'); // clear inputs
cout << "I said enter an int: ";
cin >> x;

}

cout << "You did it! You entered an int";
cout << " with value: " << x;

return 1;
}

24

Getting All The Inputs

• Notice another way to receive
all the numbers entered by a
user
while(cin >> val)

{ /* do stuff */ }

• In this approach cin does two
things
– It does receive input into the

variable 'val'

– It returns 'true' if it successfully
got input, 'false' otherwise

• Keeps grabbing values one at
a time until the user types
Ctrl-D

#include <iostream>
using namespace std;
int main()
{

int val;
// reads until user hits Ctrl-D
// which is known as End-of-File(EOF)

cout << "Enter an int or Ctrl-D ";
cout << " to quit: " << endl;

while(cin >> val){
cout << "Enter an int or Ctrl-D "
cout << " to quit" << endl;
if(val % 2 == 1){

cout << val << " is odd!" << endl;
}
else {

cout << val << " is even!" << endl;
}

}
return 0;

}

25

FILE STREAMS
How your program can directly access data in files

26

Computer Organization

• Processor can only talk
directly to RAM

– It needs “translation” to
access data on the hard
drive or other disk

• All code and data resides in
RAM

– All variables accessible in
your program

• How do we access files

– The OS provides routines to
perform the translation

Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

Data files:

.ppt

.txt

.docx

110010101001…

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=

27

Starting File I/O

• Just like Microsoft Word or any other
application that uses files you have two
options…

– Read info from the file (like 'Open' command)

• Use an 'ifstream' object to open the file

• Read data from the file

• Close it when you're done

– Write info to the file (like 'Save As' command)

• Use an 'ofstream' object

• Write the data to a file

• Close it when you're done

28

Important Fact

• For your program to operate on data in a file…

• …you must read it into a C variable

• Everything we will see subsequently is simply
how to get data into a variable
– After that we can just process it normally

– If we want to produce an output file we will just writing
the variable values to the file using some more techniques

– C/C++ provides functions that do the reading/writing for
you

29

Two Kinds of Files: Binary and Text

• We conceive of files as “streams” (linear arrays) of data

• Files are broken into two types based on how they represent
the given information:
– Text files: File is just a large sequence of ASCII characters (every piece

of data is just a byte)

– Binary files: Data in the file is just bits that can be retrieved in
different size chunks (4-byte int, 8-byte double, etc.)

• Example: Store the number 172 in a file:
– Text: Would store 3 ASCII char’s ‘1’,’7’,’2’ (ASCII 0x31,0x37,0x32)

requiring 3 bytes

– Binary: If 172 was in a ‘char’ var., we could store a 1-byte value
representing 172 in unsigned binary (0xAC) or if 172 was in an ‘int’ var.
we could store 4-bytes with value 0x000000AC

In this class we will only focus on Text files

30

TEXT FILE I/O

31

Activity

• Get the test files

– $ wget http://ee.usc.edu/~redekopp/cs103/file_io_ex.tar

– $ tar xvf file_io_ex.tar

• sum_from_file_exercise

http://ee.usc.edu/~redekopp/cs103/file_io_ex.tar

32

Text File I/O
• Use ifstream object/variable

for reading a file
– Can do anything 'cin' can do

• Use ofstream object/variable
for writing a file
– Can do anything 'cout' can do

• Must include <fstream>

• Use '<<' and '>>' operators on
the stream but realize
operations are happening on
data form the file

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

int x; double y;

ifstream ifile ("input.txt");

if(ifile.fail()){ // able to open file?
cout << "Couldn't open file" << endl;
return 1;

}

ifile >> x >> y;
if (ifile.fail()){

cout << "Didn't enter an int and double";
return 1;

}

ofstream ofile("output.txt");

ofile << "Int from file is " << x << endl;
ofile << "Double from file is " << y << endl;

ifile.close();
ofile.close();

return 0;
}5 -3.5

input.txt

Int from file is 5
Double from file is -3.5

output.txt

33

Getting Lines of Text
• Using the >> operator to get an input

string of text (char * or char [] variable
passed to cin) implicitly stops at the first
whitespace

• How can we get a whole line of text
(including spaces)

– cin.getline(char *buf, int bufsize);

– ifile.getline(char *buf, int bufsize);

– Reads max of bufsize-1 characters
(including newline)

• This program reads all the lines of text
from a file

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

char myline[100]; int i = 1;

ifstream ifile (“input.txt“);

if(ifile.fail()){ // can't open?
return 1;

}

ifile.getline(myline, 100);
while (! ifile.fail()) {
cout << i++ << “: “ << myline << endl;
ifile.getline(myline, 100);

}

ifile.close();
return 0;

}

The fox jumped over the log.\n

The bear ate some honey.\n

The CS student solved a hard problem.\n

1: The fox jumped over the log.

2: The bear ate some honey.

3: The CS student solved a hard problem.

input.txt

34

Activity

• reverse_it exercise

• search_and_count exercise

35

FILE LOCATION/POINTERS & INPUT
OPERATORS

36

File Access

• Your ifstream object (ifile)
implicitly keeps track of where you
are in the file

• EOF (end-of-file) or other error
means no more data can be read.
Use the fail() function to ensure
the file is okay for reading/writing

I t w a s t h e b e s t o f

...

fp

char c; ifile >> c;

a t f e r . T h e E n d ! EOF

fp

I t w a s t h e b e s t o f

fp

...

...

...

char c;
while(! ifile.fail()) {

ifile >> c;
if(! ifile.fail())
{ // process c }

}

Hard Drive

Hard Drive

37

>> Operator

• Recall that with cin the >> operator stops
getting a value when it encounters
whitespace and also skips whitespace to
get to the next value

– So do ifstream objects

• In the example on this slide, the spaces
will NOT be read in

– They will be skipped by the >> operator

• To get raw data from the file (including
whitespaces) use the get() function

I t 6 7 8

fp

char s[40]; ifile >> s;
// returns “It” and stops at space

...

ifstream ifile("data.txt");

File text

I t 6 7 8

fp

...

File text

char x; ifile >> x;
// skips space & gives x='6'

I t 6 7 8

fp

...

File text

38

>> Operator

• To get raw data from the file (including
whitespaces) use the ifstream::get()
function

– Returns the character at the ‘fp’ and moves ‘fp’
on by one

• To see what the next character is without
moving the ‘fp’ pointer on to the next
character, use ifstream::peek()
function

– Returns the character at the ‘fp’ but does NOT
move ‘fp’ on

I 1 6 7 8

fp

char c = ifile.get(); // returns ‘I’

C = ifile.get(); // returns ‘ ‘

...

ifstream ifile("data.txt");

File text

I 1 6 7 8 ...

char c;

ifile >> c; // returns ‘I’

ifile >> c; // skips space and

// returns ‘1’

fp

File text

39

Changing File Pointer Location (ifstream)

• Rather than read sequentially in
a file we often need to jump
around to particular byte
locations

• ifstream.seekg()

– Go to a particular byte location

– Pass an offset relative from
current position or absolute
byte from start or end of file

• ifstream.tellg()

– Return the current location’s
byte-offset from the beginning
of the file

int main(int argc, char *argv[])
{

int size; char c;
ifstream fstr("stuff.txt");

fstr.seekg(0,ios_base::end);
size = fstr.tellg();
cout << "File size (bytes)=" << size << endl;

fstr.seekg(1, ios_base::beg);
cout << "2nd byte in file is ";
fstr >> c;
cout << c << endl;
fstr.seekg(-2, ios_base::cur);
cout << "1st byte in file is ";
fstr >> c;
cout << c << endl;
fstr.close();
return 0;

}

2nd arg. to seekg()

ios_base::beg = pos. from beginning of file

ios_base::cur = pos. relative to current location

ios_base::end = pos. relative from end of file

(i.e. 0 or negative number)

40

Changing File Pointer Location (ifstream)

int main(int argc, char *argv[])
{

int size; char c;
ifstream fstr("stuff.txt");

fstr.seekg(0,ios_base::end);
size = fstr.tellg();
cout << "File size (bytes)=" << size << endl;

fstr.seekg(1, ios_base::beg);
cout << "2nd byte in file is ";
fstr >> c;
cout << c << endl;
fstr.seekg(-2, ios_base::cur);
cout << "1st byte in file is ";
fstr >> c;
cout << c << endl;
fstr.close();
return 0;

}

2nd arg. to seekg()

ios_base::beg = pos. from beginning of file

ios_base::cur = pos. relative to current location

ios_base::end = pos. relative from end of file

(i.e. 0 or negative number)

I t w a s t h e b e s t o f

fp

a t f e r . T h e E n d ! EOF...

...

Hard Drive

fp

fstr.seekg(0,ios_base::end);

I t w a s t h e b e s t o f

fp

...

fstr.seekg(1, ios_base::beg);
fstr >> c;

3123

0

1

ios_base::begin

ios_base::end

ios_base::cur

ios_base::begin

0

ios_base::cur

I t w a s t h e b e s t o f

fp

...

fstr.seekg(-2, ios_base::cur);

1

ios_base::begin

0

ios_base::cur

41

Changing File Pointer Location (ofstream)

• We can seek and tell in an ofstream

• ofstream.seekp()

– Go to a particular byte location

– Pass an offset relative from current
position or absolute byte from start or
end of file

• ofstream.tellp()

– Return the current location’s byte-
offset from the beginning of the file

2nd arg. to seekg()

ios_base::beg = pos. from beginning of file

ios_base::cur = pos. relative to current location

ios_base::end = pos. relative from end of file

(i.e. 0 or negative number)

42

FILE I/O LAB OVERVIEW

43

Lab 7 Overview

• Modify the word scramble game done in class
to allow for a word bank (choice of words to
use) to be read in from a file

44

Lab 7

• Open up the file and check if it succeeds

3

computer

trojan hello

wordbank.txt
Ifstream object

http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

45

Lab 7

• Open up the file and check if it succeeds

• Read the number of words expected, check if it
succeeds, and if so, allocate the wordBank array of
pointers

3

computer

trojan hello

wordbank.txt

wordBank[0]

wordBank[1]

wordBank[2]

Ifstream object

http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

46

Lab 7

• In a loop read in each word into a buffer and then
allocate some memory to hold that word and copy it
to that memory

3

computer

trojan hello

wordbank.txt

wordBank[0] 0x100

wordBank[1]

wordBank[2]

Ifstream object

computer

buf[41]

computer

0x100

http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

47

Lab 7

• In a loop read in each word into a buffer and then
allocate some memory to hold that word and copy it
to that memory

3

computer

trojan hello

wordbank.txt

wordBank[0] 0x100

wordBank[1] 0x240

wordBank[2]

Ifstream object

trojan

buf[41]

computer

0x100

trojan

0x240

http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

48

Lab 7

• In a loop read in each word into a buffer and then
allocate some memory to hold that word and copy it
to that memory

3

computer

trojan hello

wordbank.txt

hello

wordBank[0] 0x100

wordBank[1] 0x240

wordBank[2] 0x320

buf[41]

computer

trojan

hello

0x100

0x240

0x320

Ifstream object

http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

49

BINARY FILE I/O
You are not responsible for this material

50

Binary File I/O

• read() – member of ifstream
– Pass a pointer to where you want the data read from the file to be placed

in memory (e.g. &x if x is a single int or data if data is an array)…this
pointer should be cast to a char *

– Pass # of bytes you want to read = number_of_elements *
size_of_element

• write() – member
of ofstream
– Same argument

scheme as read()

int main(int argc, char *argv[])
{

int x;
double data[10];
ifstream ifile;

ifile.open(“stuff.dat”,ios::binary);
if (ifile.fail()){
cerr << “File doesn’t exist\n”;
return 1;

}
ifile.read(static_cast<char *>(&x), 1*sizeof(int));
ifile.read(static_cast<char *>(data), 10*sizeof(double));

ifile.close();
return 0;

}

51

stdin, stdout, stderr

• Most OS’es map console I/O
(keyboard and monitor I/O) to 3
predefined FILE pointers:
– stdin (input from keyboard) = cin

– stdout (output to monitor) = cout

• Normal output

– stderr (output to monitor) = cerr

• Exception / error information

– Unix/Linux can allow you to redirect
stdout vs. stderr separately

• > ./prog > log_of_stdout.txt

• > ./prog >& log_of_stderr.txt

int main(int argc, char *argv[])
{

char first_char;
char first_line[80];

// read char from keyboard
cin << first_char;

// read entire line of text from
// keyboard
cin.getline(first_line, 80);

// echo line back to stdout
cout << first_line;

// output to stderr
cerr << “I had an error.” << endl;

return 0;
}

52

BACKGROUND ON C FILE I/O
(NOT COVERED AFTER FALL 2013)

53

C STYLE I/O
You are not responsible for this material

54

FILE * variables

• To access files, C (with the help of the OS)
has a data type called ‘FILE’ which tracks all
information and is used to access a single file
from your program

• You declare a pointer to this FILE type (FILE
*)

• You “open” a file for access using fopen()
– Pass it a filename string (char *) and a string

indicating read vs. write, text vs. binary

– Returns an initialized file pointer or NULL if there
was an error opening file

• You “close” a file when finished with fclose()
– Pass the file pointer

• Both of these functions are defined in
stdio.h

int main(int argc, char *argv[])

{

char first_char;

char first_line[80];

FILE *fp;

fp = fopen(“stuff.txt”,”r”);

if (fp == NULL){

printf(“File doesn’t exist\n”);

exit(1)

}

// read first char. of file

first_char = fgetc(fp);

// read thru first ‘\n’ of file

fgets(first_line, 80 ,fp);

fclose(fp);

return 0;

}

Second arg. to fopen()

“r” / “rb” = read mode, text/bin file

“w” / “wb” = write mode, text/bin file

“a” / “ab” = append to end of text/bin file

“r+” / “r+b” = read/write text/bin file

others…

55

File Access

• Many file I/O functions
– Text file access:

• fprintf(), fscanf()

• fputc(), fgetc(), fputs(), fgets()

– Binary file access:

• fread(), fwrite()

• Your file pointer (FILE * var)
implicitly keeps track of where you
are in the file

• EOF constant is returned when
you hit the end of the file or you
can use feof() which will return
true or false.

I t w a s t h e b e s t o f

...

fp

c = fgetc(fp)

a t f e r . T h e E n d ! EOF

fp

I t w a s t h e b e s t o f

fp

...

...

...

while(! feof(fp))

// okay to access next

// byte of file

if((c = fgetc(fp) != EOF)

// process c

56

Text File Input

• fgetc()
– Get a single ASCII character

• fgets()
– Get a line of text or a certain number of characters (up to and

including ‘\n’)

– Stops at EOF…If EOF is first char read then the function returns NULL

– Will append the NULL char at the end of the characters read

• fscanf()
– Read ASCII char’s and convert to another variable type

– Returns number of successful items read or ‘EOF’ if that is the first
character read

57

Text File Output

• fputc()
– Write a single ASCII character to the file

• fputs()
– Write a text string to the file

• fprintf()
– Write the resulting text string to the file

58

Binary File I/O

• fread()
– Pass a pointer to where you want the

data read from the file to be placed in
memory (e.g. &x if x is an int or data if
data is an array)

– Pass the number of ‘elements’ to read
then pass the size of each ‘element’

– # of bytes read = number_of_elements
* size_of_element

– Pass the file pointer

• fwrite
– Same argument scheme as fread()

int main(int argc, char *argv[])

{

int x;

double data[10];

FILE *fp;

fp = fopen(“stuff.txt”,”r”);

if (fp == NULL){

printf(“File doesn’t exist\n”);

exit(1)

}

fread(&x, 1, sizeof(int), fp);

fread(data, 10, sizeof(double),fp);

fclose(fp);

return 0;

}

59

Changing File Pointer Location

• Rather than read/writing
sequentially in a file we often
need to jump around to
particular byte locations

• fseek()
– Go to a particular byte location

– Can be specified relative from
current position or absolute byte
from start or end of file

• ftell()
– Return the current location’s byte-

offset from the beginning of the
file

int main(int argc, char *argv[])

{

int size;

FILE *fp;

fp = fopen(“stuff.txt”,”r”);

if (fp == NULL){

printf(“File doesn’t exist\n”);

exit(1)

}

fseek(fp,0,SEEK_END);

size = ftell(fp);

printf(“File is %d bytes\n”, size);

fclose(fp);

return 0;

}

Third arg. to fseek()

SEEK_SET = pos. from beginning of file

SEEK_CUR = pos. relative to current location

SEEK_END = pos. relative from end of file

(i.e. negative number)

