
1

CS103 Unit 6 - Pointers

Mark Redekopp

2

Why Pointers

• Scenario: You write a paper and include a lot of large
images. You can send the document as an attachment
in the e-mail or upload it as a Google doc and simply e-
mail the URL. What are the pros and cons or sending
the URL?

• Pros

– Less info to send (send link, not all data)

– Reference to original
(i.e. if original changes, you’ll see it)

• Cons

– Can treat the copy as a scratch copy and modify freely

3

Why Use Pointers

• [All of these will be explained as we go…]

• To change a variable (or variables) local to one function in
some other function
– Requires pass-by-reference (i.e. passing a pointer to the other

function)

• When large data structures are being passed (i.e. arrays, class
objects, structs, etc.)
– So the computer doesn’t waste time and memory making a copy

• When we need to ask for more memory as the program is
running (i.e. dynamic memory allocation)

• To provide the ability to access a specific location in the
computer (i.e. hardware devices)
– Useful for embedded systems programming

4

Pointer Analogy

• Imagine a set of 18 safe deposit or PO
boxes each with a number

• There are 8 boxes with gold jewelry and
the other 10 do not contain gold but
hold a piece of paper with another box
number (i.e. a pointer to another box)

• Value of box 9 “points-to” box 7

• Value of box 17 “points-to” box 3

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 3

711

1 5 3

34

5

Pointers

• Pointers are references to other things

– Really pointers are the address of some other
variable in memory

– "things" can be data (i.e. int’s, char’s, double’s) or
other pointers

• The concept of a pointer is very common and used
in many places in everyday life

– Phone numbers, e-mail or mailing addresses are
references or “pointers” to you or where you live

– Excel workbook has cell names we can use to
reference the data (=A1 means get data in A1)

– URLs (www.usc.edu is a pointer to a physical HTML
file on some server) and can be used in any other
page to "point to" USC’s website

Memory

520

09 08 07 06 05 04

524 528 532 536 540

…

520 is a “pointer” to the integer 9

536 is a “pointer” to the integer 5

http://www.usc.edu/

6

POINTER BASICS
Prerequisites: Data Sizes, Computer Memory

7

Review Questions

• T/F: The elements of an array are stored
contiguously in memory

– ______________

• When an array is declared (i.e. int dat[10])
and its name is written by itself
(e.g. cout << dat;) in an expression, it
evaluates to what?

– __________________________

8

C++ Pointer Operators
• Two operators used to manipulate pointers (i.e.

addresses) in C/C++: & and *

– &variable evaluates to the "address-of" variable
• Essentially you get a pointer to something by writing &something

– *pointer evaluates to the data pointed to by pointer (data
at the address given by pointer)

– & and * are essentially inverse operations

• We say ‘&’ returns a reference/address of some value while ‘*’

dereferences the address and returns the value

• &value => address

• *address => value

• *(&value) => value

9

Pointers

• ‘&’ operator yields address of a variable in C
(Tip: Read ‘&foo’ as ‘address of foo’)

– int x = 30; char y='a';
float z = 5.375;
int dat[2] = {107,43};

– &x => ??,

– &y => ??,

– &z => ??,

– &dat[1] = ??;

– dat => ??

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

00

00

20bd8

20bdc

0020be0

…

x

dat[1]

…

y

z

dat[0]

10

Pointers

• ‘&’ operator yields address of a variable in C
(Tip: Read ‘&foo’ as ‘address of foo’)

– int x = 30; char y='a';
float z = 5.375;
int dat[2] = {107,43};

– &x => 0x20bc4,

– &y => 0x20bc8,
&z => 0x20bcc,

– &dat[1] = 0x20bd4;

– dat => 0x20bd0

• Number of bits used for an address depends on OS,
etc.

– 32-bit OS => 32-bit addresses

– 64-bit OS => 64-bit addresses

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

00

00

20bd8

20bdc

0020be0

…

x

dat[1]

…

y

z

dat[0]

11

Pointers
• Just as we declare variables to store int’s and double’s,

we can declare a pointer variable to store the "address-
of" (or "pointer-to") another variable

– Requires 4-bytes of storage in a 32-bit system or
8-bytes in a 64-bit systems

– Use a * after the type to indicate this a pointer variable to
that type of data

• More on why this syntax was chosen in a few slides…

• Declare variables:
– int x = 30; char y='a';

float z = 5.375;
int dat[2] = {107,43};

– int *ptr1;
ptr1 = &x; // ptr1 = ______________
ptr1 = &dat[0]; // Change ptr1 = ______________
// i.e. you can change what a pointer points to

– float *ptr2 = &z; // ptr2 = ___________

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

20bd8

20bdc

0020be0

…

x

dat[1]

…

y

z

dat[0]

prt2

ptr1

12

Pointers
• Just as we declare variables to store int’s and double’s,

we can declare a pointer variable to store the "address-
of" (or "pointer-to") another variable

– Requires 4-bytes of storage in a 32-bit system or
8-bytes in a 64-bit systems

– Use a * after the type to indicate this a pointer variable to
that type of data

• More on why this syntax was chosen in a few slides…

• Declare variables:
– int x = 30; char y='a';

float z = 5.375;
int dat[2] = {107,43};

– int *ptr1;
ptr1 = &x; // ptr1 = 0x20bc4
ptr1 = &dat[0]; // Change ptr1 = 0x20bd0
//(i.e. you can change what a pointer points to)

– float *ptr2 = &z; // ptr2 = 0x20bcc

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

20bcc

20bd8

20bdc

0020be0

…

x

dat[1]

…

y

z

dat[0]

prt2

ptr120bc4 20bd0

13

De-referencing / Indirection
• Once a pointer has been written with an address of some

other object, we can use it to access that object (i.e.
dereference the pointer) using the ‘*’ operator

• Read ‘*foo’ as…

– ‘value pointed to by foo’

– ‘value at the address given by foo’
(not ‘value of foo’ or ‘value of address of foo’)

• Using URL analogy, using the * operator on a pointer
is like “clicking on a URL” (follow the link)

• Examples:

– ptr1 = dat;
int a = *ptr1 + 5;

– *ptr1 += 1; // *ptr = *ptr + 1;

– *ptr2 = *ptr1 - *ptr2;

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

20bd8

20bdc

20be0

…

x

dat[1]

…

y

z

dat[0]

prt2

ptr120bd0

20bcc

a

14

De-referencing / Indirection

• Once a pointer has been written with an address of some
other object, we can use it to access that object (i.e.
dereference the pointer) using the ‘*’ operator

• Read ‘*foo’ as…

– ‘value pointed to by foo’

– ‘value at the address stored in foo’
(not ‘value of foo’ or ‘value of address of foo’)

• By the URL analogy, using the * operator on a
pointer is like “clicking on a URL” (follow the link)

• Examples:

– ptr1 = dat;
int a = *ptr1 + 5; // a = 112 after exec.

– *ptr1 += 1; // dat[0] = 108

– *ptr2 = *ptr1 - *ptr2; // z=108–5.375=102.625

• '*' in a type declaration = declare/allocate a pointer

• '*' in an expression/assignment = dereference

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107 108

43

…

20bd8

20bdc

11220be0

…

x

dat[1]

…

y

z

dat[0]

prt2

ptr120bd0

20bcc

a

15

Cutting through the Syntax

• ‘*’ in a type declaration = declare/allocate a pointer

• ‘*’ in an expression/assignment = dereference

Declaring a pointer De-referencing a
pointer

char *p

*p + 1

int *ptr

*ptr = 5

*ptr++

char *p1[10];

Yes

Yes

Yes

Yes

Yes

Yes

Helpful tip to understand syntax: We declare an int pointer as:

• int *p because when we dereference it as *p we get an int

• char *x is a declaration of a pointer and thus *x in code yields a char

16

Pointer Questions

• Chapter 13, Question 6

int x, y;

int* p = &x;

int* q = &y;

x = 35; y = 46;

p = q;

*p = 78;

cout << x << " " << y << endl;

cout << *p << " " << *q << endl;

17

POINTER ARITHMETIC
Prerequisites: Pointer Basics, Data Sizes

18

Review Questions

• The size of an 'int' is how many bytes?

– ____

• The size of a 'double' is how many bytes?

– ____

• What does the name of an array evaluate to?

– _________________

– Given the declaration int dat[10], dat is an _____

– Given the declaration char str[6], str is a _____

• In an array of integers, if dat[0] lived at address
0x200, dat[1] would live at…?

– ____________

19

Pointer Arithmetic
• Pointers are variables storing addresses and addresses

are just numbers

• We can perform addition or subtraction on those
pointer variables (i.e. addresses) just like any other
variable

• The number added/subtracted is implicitly multiplied
by the size of the object so the pointer will point to a
valid data item

– int *ptr1 = dat; ptr1 = ptr1 + 1;

// address in ptr was incremented by 4

• Examples:

– ptr1 = dat;

– x = x + *ptr1; // x = 137

– ptr1 = ptr1 + 1; // ptr1 now points at dat[1]

– x = x + *ptr1++; // x = dat[1] = 137+43 then
// inc. ptr1 to 0x20bd8

– ptr1 = ptr1-2; // ptr1 now points back at dat[0]

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

30

'a'

5.375

107

43

…

20bd8

20bdc

20be0

…

x

dat[1]

…

y

z

dat[0]

prt2

ptr120bd0

20bcc

a

20

Pointer Arithmetic and Array Indexing
• Array indexing and pointer arithmetic are very much related

• Array syntax: data[i]
– Says get the i-th value from the start of the data array

• Pointer syntax: *(data + i) <=> data[i]
– Both of these get the i-th value in an array

• We can use pointers and array names interchangeably:
– int data[10]; // data = 520;

– *(data + 4) = 50; // data[4] = 50;

– int* ptr = data; // ptr now points at 520 too

– ptr[1] = ptr[2] + ptr[3]; // same as data[1] = data[2] + data[3]

Memory

520

09 08 07 06 50 04

524 528 532 536 540

…

data = 520

int data[10]

520ptr

21

Arrays & Pointers

• Array names and
pointers have a unique
relationship

• Array name evaluates
to start address of
array
– Thus, the name of an

integer array has type:
int*

– The name of character
array / text string has
type: char*

• Array indexing is same
as pointer arithmetic

int main(int argc, char *argv[])
{

int data[10] = {9,8,7,6,5,4,3,2,1,0};

int* ptr, *another; // * needed for each
// ptr var. you declare

ptr = data; // ptr = start address
// of data

another = data; // another = start addr.

for(int i=0; i < 10; i++){
data[i] = 99;
ptr[i] = 99; // same as line above
*another = 99; // same as line above
another++;

}

int x = data[5];
x = *(ptr+5); // same as line above
return 0;

}

22

PASS BY REFERENCE
Prerequisites: Pointer Basics

23

Code for all functions

Pass by Value

• Notice that actual arguments are different
memory locations/variables than the formal
arguments

• When arguments are passed a copy of the
actual argument value (e.g. 3) is placed in the
formal parameter (x)

• The value of y cannot be changed by any other
function (remember it is local)

Data for main (a, y=3) and

return link

Data for decrement_it
(y=3 then 2) and return link

System stack area
0xffff ffff

0x0000000

System

Memory

(RAM)

Address Code for all functions

void decrement_it(int);

int main()
{

int a, y = 3;
decrement_it(y);
cout << "y = " << y << endl;

}

void decrement_it(int y)
{

y--;
}

Data for main (a, y=3) and return
link

24

Code for all functions

Pass by Reference

• Pointer value (i.e. the address) is still passed-by-
value (i.e. a copy is made)

• However, the value of the pointer is a reference
to y (i.e. y’s address) and it is really the value of
y that doit() operates on

• Thus we say we are passing-by-reference

• The value of y is CHANGED by doit() and that
change is visible when we return.

Data for main (a=??, y=3,

ptr=0x20bd4) and return link

System stack area
0xffff ffff

0x0000000

System

Memory

(RAM)

Address Code for all functions

int main()
{
int a, y = 3;
// assume y @ 0x20bd4
// assume ptr
a = y;
decrement_it(&y);
cout << "a=" << a;
cout << "y=" << y << endl;
return 0;

}

// Remember * in a type
// declaration means "pointer"
// variable
void decrement_it(int* x)
{

*x = *x - 1;
}

Data for main (a=3, y=3) and

return link

Resulting Output:

a=3, y=2

Data for doit
(x=0x20bd4) and return link

Data for main (a=3, y=2) and
return link

25

Swap Two Variables

• Classic example of issues with local
variables:
– Write a function to swap two variables

• Pass-by-value doesn’t work
– Copy is made of x,y from main and

passed to x,y of swapit…Swap is
performed on the copies

• Pass-by-reference (pointers) does
work
– Addresses of the actual x,y variables in

main are passed

– Use those address to change those
physical memory locations

int main()
{
int x=5,y=7;
swapit(x,y);
cout << "x=" << x << " y=";
cout << y << endl;

}

void swapit(int x, int y)
{ int temp;

temp = x;
x = y;
y = temp;

}

int main()
{ int x=5,y=7;

swapit(&x,&y);
cout << "x=" << x << "y=";
cout << y << endl;

}

void swapit(int *x, int *y)
{ int temp;

temp = *x;
*x = *y;
*y = temp;

}

program output: x=5,y=7

program output: x=7,y=5

26

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs

– We'll use a simple 'multiply' function for now even
though we can easily compute this without a function

– We could use the return value from the function but
let's practice with pointers

• Can use a pointer to have a function modify the
variable of another

// Computes the product of in1 & in2
int mul1(int in1, int in2);
void mul2(int in1, int in2, int* out);

int main()
{

int wid = 8, len = 5, a;
mul2(wid,len,&a);
cout << "Ans. is " << a << endl;
return 0;

}

int mul1(int in1, int in2)
{

return in1 * in2;
}

void mul(int in1, int in2, int* out)
{

*out = in1 * in2;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

mul 5 in20xbe4

0xbf8 out0xbe8

004000ca0
Return

link
0xbec

8 in10xbe0

40

27

Misuse of Pointers/References
• Make sure you don't return a pointer to a

dead variable

• You might get lucky and find that old value
still there, but likely you won't

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);
int& badmul2(int in1, int in2);

int main()
{

int wid = 8, len = 5;
int *a = badmul1(wid,len);
cout << "Ans. is " << *a << endl;
return 0;

}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{

int out = in1 * in2;
return &out;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

badmul1 8 in10xbe4

5 in20xbe8

004000ca0
Return

link
0xbec

40 out0xbe0

0xbe0

28

Passing Arrays as Arguments
• In function declaration / prototype for

the formal parameter use

– type [] or type * to indicate an array is
being passed

• When calling the function, simply
provide the name of the array as the
actual argument

– In C/C++ using an array name without
any index evaluates to the starting
address of the array

• C does NOT implicitly keep track of the
size of the array

– Thus either need to have the function
only accept arrays of a certain size

– Or need to pass the size (length) of the
array as another argument

void add_1_to_array_v1(int [], int);

void add_1_to_array_v2(int *, int);

int main(int argc, char *argv[])
{

int data[10] = {9,8,7,6,5,4,3,2,1,0};
add_1_to_array_v1(data);
cout << “data[0]” << data[0] << endl;
add_1_to_array_v2(data);
cout << “data[0]” << data[0] << endl;
return 0;

}

void add_1_to_array_v1(int my_array[], int size)
{

int i=0;
for(i=0; i < 10; i++){

my_array[i]++;
}

}

void add_1_to_array_v2(int *my_array, int size)
{
int i=0;
for(i=0; i < size; i++){

my_array[i]++;
}

}
Memory

520

09 08 07 06 05 04

524 528 532 536 540

…

520

520

520

520

29

Memory (RAM)

main:

(len = 0

data[0] = ?

data[1] = ?

data[2] = ?

…

)

Argument Passing Example

…

Code

Globals

0

…

Heap

fffffffc

Address#include <iostream>
using namespace std;

int main()
{

int len=0;
int data[100];

len = fill_data(data, 100);

for(int i=0; i < len; i++)
cout << data[i] << " ";

cout << endl;
return 0;

}

// fills in integer array w/ int’s
// from user until -1 is entered
int fill_data(int *array, int max)
{

int val = 0;
int i = 0;
while(i < max){
cin >> val;
if (val != -1)

array[i++] = val;
else

break;
}
return i;

}

…

fill_data

(array=0xbf008,

max = 100

val=0, i = 0)

0xbf004

0xbf008

0xbf00c

Memory (RAM)

main:

(len = 2

data[0] = 4

data[1] = 3

data[2] = ?

…

)

…

Code

Globals

0

…

Heap

fffffffc

Address

…

fill_data

(array=0xbf008,

max = 100

val = -1, i = 2)

0xbf004

0xbf008

0xbf00c

30

Exercises

• In class exercises

– Roll2

– Product

31

POINTERS TO POINTERS
Prerequisites: Pointer Basics

32

Pointers to Pointers Analogy

• We can actually have multiple levels of
indirection (de-referencing)

• Using C/C++ pointer terminology:
– *9 = gold in box 7 (9 => 7)

– **16 = gold in box 3 (16 => 5 => 3)

– ***0 = gold in box 3 (0 => 8 => 5 => 3)

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 3

711

1 5 3

35

33

Pointer Analogy

• What if now rather than holding gold, those
boxes simply held other numbers

• How would you differentiate whether the
number in the box was a "pointer" to
another box or a simple data value?

– You can’t really. Context is needed

• This is why we have to declare something as
a pointer and give a type as well:

– int *p; // pointer to an integer one hop
(one level of indirection) away

– double **q; // pointer to a double two
hops (two levels of indirection) away 0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 3

711

1 5 3

34

9 12 2

9

11 18 10

34

Pointers to Pointers to…

• Pointers can point to other
pointers

– Essentially a chain of “links”

• Example
– int k, x[3] = {5, 7, 9};

– int *myptr, **ourptr;

– myptr = x;

– ourptr = &myptr;

– k = *myptr; // k=?

– k = (**ourptr) + 1; // k=?

– k = *(*ourptr + 1); // k+?

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

5

7

9

…

00

00

20bd8

20bdc

0020be0

…

x[0]

ourptr

x[1]

x[2]

myptr

k

k 5 7 9

x=20bc420bc0

myptr

20bd0

ourptr

20bd4

35

Pointers to Pointers to…

• Pointers can point to other
pointers

– Essentially a chain of “links”

• Example
– int k, x[3] = {5, 7, 9};

– int *myptr, **ourptr;

– myptr = x;

– ourptr = &myptr;

– k = *myptr; //k=5

– k = (**ourptr) + 1; //k=6

– k = *(*ourptr + 1); //k=7

To figure out the type a pointer expression will

yield…Take the type of pointer in the declaration

and let each * in the expression 'cancel' one of

the *'s in the declaration

Type Decl. Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

Memory

20bc4

20bc8

20bcc

20bd0

20bd4

20bc0 00

5

7

9

20bc4

20bd0

…

00

00

20bd8

20bdc

0020be0

…

x[0]

ourptr

x[1]

x[2]

myptr

k

36

Check Yourself
• Consider these declarations:

– int k, x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

&x[0]

x

&k

myptr

*myptr

(*ourptr) + 1

myptr + 2

&ourptr

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type.
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

myptr = int* *myptr int

ourptr = int** **ourptr int

ourptr int

k = int &k int*

&myptr int**

k 5 7 9

x=20bc420bc0

myptr

20bd0

ourptr

20bd4

37

Check Yourself

• Consider these declarations:
– int k,x[3] = {5, 7, 9};

– int *myptr = x;

– int **ourptr = &myptr;

• Indicate the formal type that each expression evaluates to (i.e. int,
int *, int **)

Expression Type

x[0] int

x int*

&k int*

myptr int*

*myptr int

&myptr int**

ourptr int**

ourptr int

myptr + 1 int*

• * in an expression yields a type with 1 less *
• & yields a type with 1 more *

38

ARRAYS OF POINTERS AND
C-STRINGS

39

Review: String Function/Library
(#include <cstring>)

• int strlen(char *dest)

• int strcmp(char *str1, char *str2);
– Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically

larger, <0 otherwise

• char *strcpy(char *dest, char *src);
– strncpy(char *dest, char *src, int n);

– Maximum of n characters copied

• char *strcat(char *dest, char *src);
– strncat(char *dest, char *src, int n);

– Maximum of n characters concatenated plus a NULL

• char *strchr(char *str, char c);
– Finds first occurrence of character ‘c’ in str returning a pointer to that

character or NULL if the character is not found

40

C-String Constants

• C-String constants are the things
we type in "…" and are stored
somewhere in memory (chosen
by the compiler)

• When you pass a C-string
constant to a function it passes
the start address and it's type is
known as a const char *

– char* because you are passing the
address

– const because you cannot/should not
change this array's contents

int main(int argc, char *argv[])
{
// These are examples of C-String constants
cout << "Hello" << endl;
cout << "Bye!" << endl;
...

}

B y e ! \0

240 244

H e l l \0o

300 305

#include <cstring>
//cstring library includes
//void strcpy (char * dest, const char* src);
int main(int argc, char *argv[])
{

char name[40];
strcpy(name, "Tommy");

}

name = 240 279

T o m m \0y

300 305

300

300

240

41

Arrays of pointers

• We often want to have
several arrays to store
data
– Store several text strings

• Those arrays may be related
(i.e. all names of students in
a class)

int main(int argc, char *argv[])
{
int i;
char str1[] = “Bill”;
char str2[] = “Suzy”;
char str3[] = “Pedro”;
char str4[] = “Ann”;

// I would like to print out each name
cout << str1 << endl;
cout << str2 << endl;
...

}

Painful

B i l l \0

str1=240 244

S u z y \0

P e d r \0o

A n n \0

str2=288 292

str3=300 305

str4=196 199

42

Arrays of pointers

• We often want to have
several arrays to store
data
– Store several text strings

• Those arrays may be related
(i.e. all names of students in
a class)

• What type is 'names'?
– The address of the 0-th char*

in the array

– The address of a char* is
really just a char**

int main(int argc, char *argv[])
{

int i;
char str1[] = “Bill”;
char str2[] = “Suzy”;
char str3[] = “Pedro”;
char str4[] = “Ann”;
char *names[4];

names[0] = str1; ...; names[3] = str4;

for(i=0; i < 4; i++){
cout << names[i] << endl;

}
...

}
Still painful

B i l l \0

240 244

S u z y \0

P e d r \0o

A n n \0

288 292

300 305

196 199

names = 520

524

528

532

names[0]

names[1]

names[2]

names[3]

240

288

300

196

43

Arrays of pointers

• We can have arrays of
pointers just like we
have arrays of other
data types

• Usually each value of
the array is a pointer to
a collection of “related”
data

– Could be to another
array

char *names[4] ={“Bill”,
“Suzy”,
“Pedro”,
“Ann”};

int main(int argc, char *argv[])
{

int i;

for(i=0; i < 4; i++){
cout << names[i] << endl;

}
return 0;

}

B i l l \0

240 244

S u z y \0

P e d r \0o

A n n \0

288 292

300 305

196 199

names = 520 240

524

528

532

288

300

196

names[0]

names[1]

names[2]

names[3]

Painless?!?

44

Command Line Arguments

• Now we can understand the arguments
passed to the main function (int argc, char
*argv[])

• At the command prompt we can give
inputs to our program rather than making
querying the user interactively:

– $./prog1 4 0.5 100000

– $ cp broke.c broke2.c

• Command line string is broken at
whitespaces and copied into individual
strings and then packaged into an array
(argv)

– Each entry is a pointer to a string (char *)

• Argc indicates how long that arrays is
(argv[0] is always the executable name)

p r o g 1 4 0 . 5 1 0 0 0 0 0

p r o g 1 \0

4

0 . 5

1 0 0 0 0 0

\0

\0

\0

argv[0]

argv[1]

argv[2]

argv[3]

Command line:

240
240

288

300

196

288

300

196

Linux shell command line

./prog1 Executable

int main(int argc, char *argv[])

argc = 4 argv = 5a0

5a0

45

Command Line Arguments

• Recommended usage:
– Upon startup check argc to make sure the

user has input the desired number of
args (remember the executable counts as
one of the args.)

• Problem:
– Each argument is a text string…for

numbers we want its numeric
representation not its ASCII
representation

– cstdlib defines:
atoi() [ASCII to Integer] and
atof() [ASCII to float/double]

– Each of these functions expects a
pointer to the string to convert

#include <iostream>
#include <cstdlib>
using namespace std;

// char **argv is the same as char *argv[]
int main(int argc, char **argv)
{

int init, num_sims;
double p;
if(argc < 4){

cout << "usage: prog1 init p sims" << endl;
return 1;

}

init = atoi(argv[1]);
p = atof(argv[2]);
num_sims = atoi(argv[3]);

...

p r o g 1 \0

4

0 . 5

1 0 0 0 0 0

\0

\0

\0

argv[0]

argv[1]

argv[2]

argv[3]

46

cin/cout & char*s
• cin/cout determine everything they do

based on the type of data passed

• cin/cout have a unique relationship with
char*s

• When cout is given a variable of any type it
will print the value stored in that exact
variable

– Exception: When cout is given a char* it
will assume it is pointing at a C-string, go to
that address, and loop through each
character, printing them out

• When cin is given a variable it will store
the input data in that exact variable

– Exception: When cin is given a char* it will
assume it is pointing at a C-string, go to
that address, and place the typed
characters in that memory

#include <iostream>
using namespace std;
int main()
{

int x = 5, dat[10]; // dat is like an int*
char word[10] = "Hello";
char *name = word;

cout << x << endl; /* 5 */
cout << dat << endl; /* 400 */
cout << word << endl; /* Hello */
cout << name << endl; /* Hello */
cout << name[0] << endl; /* H */
cout << (void*) name << endl; /* 440 */

cin >> x; /* Store into x (@396) */
cin >> name; /* Store string starting

at 440 */
return 0;

}

H e l l \0o

word=440

name 300

x 5 5 5 5 5 5 5

dat=400396

448

47

Exercises

• Cmdargs_sum

• Cmdargs_smartsum

• Cmdargs_smartsum_str

• toi

http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum

48

Recap: Why Use Pointers

• To change a variable (or variables) local to one function in
some other function
– Requires pass-by-reference (i.e. passing a pointer to the other

function)

• When large data structures are being passed (i.e. arrays, class
objects, structs, etc.)
– So the computer doesn’t waste time and memory making a copy

• To provide the ability to access specific location in the
computer (i.e. hardware devices)
– Useful for embedded systems programming

• When we need a variable address (i.e. we don’t or could not
know the address of some desired memory location BEFORE
runtime)

49

DYNAMIC MEMORY ALLOCATION
Pointer Basics

50

Dynamic Memory Allocation
• I want an array for student scores but I don’t know how many

students we have until the user tells me

• What size should I use to declare my array?
– int scores[??]

• Doing the following is not supported by all C/C++ compilers:
int num;

cin >> num;

int scores[num]; // Some compilers require the array size
// to be statically known

• Also, recall local variables die when a function returns

• We can allocate memory dynamically (i.e. at run-time)
– If we want memory to live beyond the end of a functions (i.e. we want

to control when memory is allocated and deallocated)
• This is the primary reason we use dynamic allocation

– If we don't know how much we'll need until run-time

51

Dynamic Memory Analogy

• Dynamic Memory is “ON-Demand Memory”

• Analogy: Public storage rentals
– Need extra space, just ask for some storage and indicate how much

you need (‘new’ statement
with space allocated from the
heap)

– You get back the
“address”/storage room number
(‘new’ returns a pointer to the
allocated storage)

– Use the storage/memory until you
are done with it

– Need to return it when done or else no one
else will ever be able to re-use it

52

Dynamic Memory & the Heap

• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

• Heap grows downward, stack grows upward…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error Memory

…

…

…

Code

Stack

(area for

data local to

a function)

Globals

0

…

Heap

fffffffc

53

C Dynamic Memory Allocation

• malloc(int num_bytes) function in stdlib.h

– Allocates the number of bytes requested and returns a pointer to the block of
memory

• free(void * ptr) function
– Given the pointer to the (starting location of the) block of memory, free returns it to the

system for re-use by subsequent malloc calls

54

C++ new & delete operators

• new allocates memory from heap

– replaces “malloc”

– followed with the type of the variable you want or an array type declaration
• double *dptr = new double;

• int *myarray = new int[100];

– can obviously use a variable to indicate array size

– returns a pointer of the appropriate type
• if you ask for a new int, you get an int * in return

• if you ask for an new array (new int[10]), you get an int * in return]

• delete returns memory to heap

– Replaces “free”

– followed by the pointer to the data you want to de-allocate
• delete dptr;

– use delete [] for arrays
• delete [] myarray;

55

Dynamic Memory Analogy

• Dynamic Memory is “ON-Demand Memory”

• Analogy: Public storage rentals
– Need extra space, just ask for some storage and indicate how much

you need (‘new’ statement
with space allocated from the
heap)

– You get back the
“address”/storage room number
(‘new’ returns a pointer to the
allocated storage)

– Use the storage/memory until you
are done with it

– Need to return it when done or else no one
else will ever be able to re-use it

56

Dynamic Memory Allocation
int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
return 0;

}

Memory

20bc4

20bc8

20bcc

20bd0

20bc0 00

00

00

00

00

…

…

…

Code

local vars

Globals

0

…

Heap

fffffffc

scores[0]

new

allocates:

scores[4]

scores[1]

scores[2]

scores[3]

int main(int argc, char *argv[])
{
int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
delete [] scores
return 0;

}

57

Fill in the Blanks

• ________ data = new int;

• ________ data = new char;

• ________ data = new char[100];

• ________ data = new char*[20];

• ________ data = new string;

58

Fill in the Blanks

• ________ data = new int;
– int*

• ________ data = new char;
– char*

• ________ data = new char[100];
– char*

• ________ data = new char*[20];
– char**

• ________ data = new string;
– string*

59

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• This code fails to save a pointer to the new int once
area() finishes

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{

int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

This Photo by Unknown Author is licensed under CC BY-SA

http://en.wikipedia.org/wiki/File:RedX.svg
https://creativecommons.org/licenses/by-sa/3.0/

60

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• This code fails to save a pointer to the new int once
area() finishes

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{

int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

This Photo by Unknown Author is licensed under CC BY-SA

MEMORY LEAK

No one saved a pointer
to this data

http://en.wikipedia.org/wiki/File:RedX.svg
https://creativecommons.org/licenses/by-sa/3.0/

61

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• I must keep at least 1 pointer to dynamic
memory at all times until I delete it

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);
int main()
{

int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl; // 40

}

int* area(int w, int l)
{

int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c
area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

62

Pointer Mistake
• Never return a pointer to a local

variable

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl;

}

int* area(int w, int l)
{

int ans;
ans = w * l;
return &ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 ans0xbe0

Heap Area of RAM

63

Pointer Mistake
• Never return a pointer to a local variable

• Pointer will now point to dead memory and
the value it was pointing at will be soon
corrupted/overwritten

• We call this a dangling pointer (i.e. a pointer to
bad or dead memory)

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl;

}

int* area(int w, int l)
{

int ans;
ans = w * l;
return &ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0xbe0 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

64

Exercises

• In-class-exercises
– ordered_array

65

SHALLOW VS. DEEP COPY

66

Dealing with Text Strings

• What’s the best way to store text
strings for data that we will not
know until run time and that
could be short or long?

• Statically:
– Bad! Either wastes space or some

user will enter a string just a little
too long

#include <iostream>
using namespace std;

int main()
{

// store 10 user names of up to
// 40 chars
char names[10][40];

}

names[0] “Tim”

names[1] “Christopher”

…

67

Jagged 2D-Arrays

• What we want is just enough
storage for each text string

• This is known as a jagged
2D-array since each array is a
different length

• To achieve this we will need an
array of pointers
– Each pointer will point to an array

of different length

#include <iostream>
using namespace std;

int main()
{

// store 10 user names
char *names[10];

for(int i=0; i < 10; i++){
/* read in and store each name */

}
}

names[0] “Tim”

names[1] “Christopher”

… "Jennifer"

68

More Dealing with Text Strings

• Will this code work to store 10
names?

– Exercise: deepnames

• No!! You must allocate storage (i.e. an
actual array) before you have pointers
pointing to things…

– Just because I make up a URL like:
http://docs.google.com/uR45y781
doesn't mean there's a document
there…

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still ______
char* names[10];

for(int i=0; i < 10; i++){
cin >> names[i];

}

// Do stuff with names

return 0;
}

names[0] ???

…

names[1] ???

???

???

http://docs.google.com/uR45y781

69

More Dealing with Text Strings

• Will this code work to store 10
names?

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

// One "scratchpad" array to read in a name
char temp_buf[40];

for(int i=0; i < 10; i++){
cin >> temp_buf;
names[i] = temp_buf;

}
// Do stuff with names

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

names[0] ???

…

“Timothy” temp_buf

names[1] ???

???

???

0x1c0:

70

More Dealing with Text Strings

• What’s the best way to store text
strings for data that we will not
know until run time and that could
be short or long?

• Dynamically:

– Better memory usage

– Requires a bit more coding

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
// Find length of strings
int len = strlen(temp_buf);
names[i] = new char[len + 1];
strcpy(names[i], temp_buf);

}

// Do stuff with names

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;
}

names[0] “Timothy”

0x8a4

0x8a4

…

“Timothy” temp_buf

strcpy()

names[1] ???

???

???

0x1c0: i=0

71

More Dealing with Text Strings

• What’s the best way to store text
strings for data that we will not
know until run time and that could
be short or long?

• Dynamically:

– Better memory usage

– Requires a bit more coding

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0x8a4

names[1] 0x980

…

“Christopher” temp_buf

strcpy()
???

???

0x1c0: i=1

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
// Find length of strings
int len = strlen(temp_buf);
names[i] = new char[len + 1];
strcpy(names[i], temp_buf);

}

// Do stuff with names

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;
}

72

Shallow Copy vs. Deep Copy

• If we want to change the name,
what do we have to do?

• Can we just use the assignment
operator, ‘=‘?

“Allison”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0x8a4

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
names[0] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”
names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

73

Shallow Copy vs. Deep Copy

• If we want to change the name,
what do we have to do?

• Can we just use the assignment
operator, ‘=‘?

“Allison”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
names[0] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”
names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?

74

Shallow Copy vs. Deep Copy

• If we want to change the name,
what do we have to do?

• Can we just use the assignment
operator, ‘=‘?

“Allison”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
names[0] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”
names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?

temp_buf evaluates to address of array.
So names[0] = temp_buf simply copies address
of array into names[0]…It does not make a copy

of the array

75

Shallow Copy vs. Deep Copy
• Pointers are references… assigning

a pointer doesn’t make a copy of
what its pointing at it makes a
copy of the pointer (a.k.a.
“shallow copy”)

– Shallow copy = copy of pointers to
data rather than copy of actual data

“Jennifer”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
names[0] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”
names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?

Same problem with assignment of temp_buf to
names[1]. Now we have two things pointing at

one array and we have lost track of memory
allocated for Timothy and Christopher…memory leak!

76

Shallow Copy vs. Deep Copy
• Pointers are references… assigning

a pointer doesn’t make a copy of
what its pointing at

• Deleting the same memory twice
will cause the program to crash

“Jennifer”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
names[0] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”
names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?

When we try to “delete” or free the memory pointed
to by names[i], it will now try to return memory it

didn’t even allocate (i.e. temp_buf) and cause
the program to crash!

77

Shallow Copy vs. Deep Copy

• Can we use strcpy() instead?

“Allison”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
strcpy(names[0],temp_buf);
cin >> temp_buf; // user enters “Jennifer”
strcpy(names[1], temp_buf);

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?

78

Shallow Copy vs. Deep Copy

• Can we use strcpy() instead?

• No! Because what if the new
name is longer than the array
allocated for the old name…we'd
write off the end of the array and
corrupt memory

“Tommy T Trojan”temp_buf:

0x1c0:

names[0] “Timothy”

0x8a4

“Christopher”

0x980

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
strcpy(names[0],temp_buf);
cin >> temp_buf; // user enters “Jennifer”
strcpy(names[1], temp_buf);

for(int i=0; i < 10; i++){
delete [] names[i];

}
return 0;

}

?
strcpy():

79

Deep Copies

• If we want to change the name, what
do we have to do?

• Must allocate new storage and copy
original data into new memory (a.k.a.
deep copy)

– Deep copy = allocate new memory AND then copy
the original data (1 by 1) to the new memory

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

// store 10 user names
// names type is still char **
char *names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}

// What if I want to change names[0] & [1]

cin >> temp_buf; // user enters “Allison”
delete [] names[0];
names[0] = new char[strlen(temp_buf)+1];
strcpy(names[0], temp_buf);
cin >> temp_buf; // user enters “Jennifer”
delete [] names[1];
names[1] = new char[strlen(temp_buf)+1];
strcpy(names[1], temp_buf);
...

names[0] “Timothy”

0x8a4

“Christopher”

0x980

0xbf0

names[1] 0xd4c

“Allison”

“Jennifer”

0xbf0

0xd4c

80

Exercise

• In-class-exercises
– nxmboard

