
1

CS103 Unit 5 - Arrays

Mark Redekopp

2

ARRAY BASICS

3

Motivating Example
• Suppose I need to store the

grades for all students so I can
then compute statistics, sort
them, print them, etc.

• I would need to store them in
variables that I could access and
use
– This is easy if I have 3 or 4 students

– This is painful if I have many
students

• Enter arrays
– Collection of many variables

referenced by one name

– Individual elements can be
accessed with an integer index

int main()
{

int score1, score2, score3;
cin >> score1 >> score2 >> score3;

// output scores in sorted order
if(score1 < score2 &&

score1 < score3)
{ /* score 1 is smallest */ }

/* more */
}

int main()
{

int score1, score2, score3,
score4, score5, score6,
score7, score8, score9,
score10, score11, score12,
score13, score14, score15,
/* ... */
score139, score140;

cin >> score1 >> score2 >> score3
>> score4 >> score5 >> score6
/* ... */

4

Arrays: Informal Overview

• Informal Definition:
– Ordered collection of variables of the same type

• Collection is referred to with one name

• Individual elements referred to by an
offset/index from the start of the array [in C,
first element is at index 0]

char A[3] = "hi";

Memory

860

‘h’ ‘i’ 00 09 05 04

861 862 863

…

A[0] A[1] A[2]

Memory

120

103 -1 104

124 128

…

data[0] data[1] data[2]
…

int data[20];
data[0] = 103;
data[1] = -1;
data[2] = data[0]+1;

404

196

data[19]

This Photo by Unknown Author is licensed under CC BY-SA

Just as an apartment

building is known by 1

address but many

apartment numbers, an

array has one name but

can use integer indices

to access individual

elements

http://en.wikipedia.org/wiki/File:Apartment_Building.JPG
https://creativecommons.org/licenses/by-sa/3.0/

5

Memory

Arrays

• Formal Def: A statically-sized, contiguously allocated
collection of homogenous data elements

• Collection of homogenous data elements

– Multiple variables of the same data type

• Contiguously allocated in memory

– One right after the next

• Statically-sized

– Size of the collection must be a constant and can’t be
changed after initial declaration/allocation

• Collection is referred to with one name

• Individual elements referred to by an offset/index from
the start of the array [in C, first element is at index 0]

Memory

1

2

3

0 ‘h’

‘i’

00

…

char A[3] = “hi”;

char c = A[0]; // ’h’

int D[20];

D[1] = 5;

A[0]

A[1]

A[2]

204

208

212

200 AB

??

??

D[0]

…

D[1]

ABABAB

ABABABAB

ABABABAB

??ABABABAB

Memory

204

200 AB

??

D[0]

…

D[1]

ABABAB

00 00 00 05

6

Example: Arrays

• Track the score of 3 players

• Homogenous data set (amount) for
multiple people…perfect for an array

– int score[3];

• Recall, memory has garbage values by
default. You will need to initialized each
element in the array

Memory

204

208

212

216

220

200 AB

??

??

236

224

228

232

score[0]

int score[3];

score[2]

score[1]

……

ABABAB

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??ABABABAB

7

Example: Arrays

• Track the score of 3 players

• Homogenous data set (amount) for
multiple people…perfect for an array

– int score[3];

• Must initialize elements of an array

– for(int i=0; i < 3; i++)
score[i] = 0;

Memory

204

208

212

216

220

200 00

??

??

236

224

228

232

score[0]

int score[3];

……

00 00 00

00 00 00 00

00 00 00 00

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??ABABABAB

score[1]

score[2]

8

Arrays

• Track the score of 3 players

• Homogenous data set (amount) for
multiple people…perfect for an array

– int score[3];

• Must initialize elements of an array

– for(int i=0; i < 3; i++)
score[i] = 0;

• Can access each persons amount and
perform ops on that value
– score[0] = 5;

score[1] = 8;
score[2] = score[1] - score[0]

Memory

204

208

212

216

220

200 00

??

??

236

224

228

232

score[0]

int score[3];

……

00 00 05

00 00 00 08

00 00 00 03

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??ABABABAB

score[1]

score[2]

9

ARRAY ODDS AND ENDS

10

Static Size/Allocation

• For now, arrays must be declared as fixed size (i.e. a
constant known at compile time)

– Good:
• int x[10];

• #define MAX_ELEMENTS 100
int x[MAX_ELEMENTS];

• const int MAX_ELEMENTS = 100;
int x[MAX_ELEMENTS];

– Bad:
• int mysize;

cin >> mysize;
int x[mysize];

• int mysize = 10;
int x[mysize]; Compiler must be able to

figure out how much memory

to allocate at compile-time

Memory

204

208

212

216

220

200 AB

??

??

236

224

228

232

X[0]

int X[10];

……

ABABAB

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??

??

ABABABAB

ABABABAB

??ABABABAB

X[1]

X[2]

X[9]

…

11

Initializing Arrays

• Integers or floating point types can be initialized by placing a
comma separated list of values in curly braces {…}
– int data[5] = {4,3,9,6,14};

– char vals[8] = {64,33,18,4,91,76,55,21};

– int vals[100] = {1,2,3};
• If not enough values provided, the remaining elements will be

initialized to 0

• If accompanied w/ initialization list, size doesn’t have to be
indicated (empty [])
– double stuff[] = {3.5, 14.22, 9.57}; // = stuff[3]

• However the list must be of constants, not variables:
– BAD: double z = 3.5; double stuff[] = {z, z, z};

12

ACCESSING DATA IN AN ARRAY
Understanding array addressing and indexing

13

Exercise
• Consider a train of box cars

– The initial car starts at point A on the number line

– Each car is 5 meters long

• Write an expression of where the i-th car is located (at what
meter does it start?)

• Suppose a set of integers start at memory address A, write an
expression for where the i-th integer starts?

• Suppose a set of doubles start at memory address A, write an
expression for where the i-th double starts?

A

0th car 1st car 2nd car

14

Memory

More on Accessing Elements
• Assume a 5-element int array

– int x[5] = {8,5,3,9,6};

• When you access x[2], the CPU calculates where that
item is in memory by taking the start address of x (i.e.
100) and adding the product of the index, 2, times the
size of the data type (i.e. int = 4 bytes)

– x[2] => int. @ address 100 + 2*4 = 108

– x[3] => int. @ address 100 + 3*4 = 112

– x[i] @ start address of array + i * (size of array type)

• C does not stop you from attempting to access an
element beyond the end of the array

– x[6] => int. @ address 100 + 6*4 = 124 (Garbage!!)

Compiler must be

able to figure out how

much memory to

allocate at compile-

time

00 00 00 08100

00 00 00 05104

00 00 00 03108

00 00 00 09112

00 00 00 06116

a4 34 7c f7

d2 19 2d 81

…

120

124

x[0]

x[1]

x[2]

x[3]

x[4]

Fun Fact 1: If you use the name of an array w/o square brackets it will evaluate to

the starting address in memory of the array (i.e. address of 0th entry)

Fun Fact 2: Fun Fact 1 usually appears as one of the first few questions on the

midterm.

15

Intermediate-Level Array Topics

16

ARRAYS AS ARGUMENTS
Passing arrays to other functions

17

Passing Arrays As Arguments

• Syntax:

– Step 1: In the prototype/signature:
Put empty square brackets after
the formal parameter name if it is
an array (e.g. int data[])

– Step 2: When you call the
function, just provide the name of
the array as the actual parameter
• In C/C++ using an array name

without any index evaluates to the
starting address of the array

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{

int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{

int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

1

2

18

Pass-by-Value & Pass-by-Reference

• What are the pros and cons of emailing a
document by:

– Attaching it to the email

– Sending a link (URL) to the document on
some cloud service (etc. Google Docs)

• Pass-by-value is like emailing an
attachment

– A copy is made and sent

• Pass-by-reference means emailing a link
to the original

– No copy is made and any modifications by
the other party are seen by the originator

19

Arrays And Pass-by-Reference

• Single (scalar) variables are
passed-by-value in C/C++

– Copies are passed

• Arrays are

• passed-by-reference

– Links are passed

– This means any change to the
array by the function is visible
upon return to the caller

void dec(int);
int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}
void dec(int y)
{ y--; }

Single variables (aka scalars) are

passed-by-value but arrays are

passed-by-reference

void init(int x[], int size);
int main()
{

int data[10];
init(data, 10);
cout << data[9] << endl;

// prints 0
return 0;

}
void init(int x[], int size)
{ // x is really a link to data

for(int i=0; i < size; i++){
x[i] = 0; // changing data[i]

}
}

20

main()

But Why?

• If we used pass-by-value then we'd have to
make a copy of a potentially HUGE amount
of data (what if the array had a million
elements)

• To avoid copying vast amounts of data, we
pass a link

vals data

sum()

520

[0]

? … ?

916

[99]
520

[0]

? … ?

916

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

520

520

21

So What Is Actually Passed?

• The "link" that is passed is just the
starting address (e.g. 520) of the
array in memory

• The called function can now use 520
to access the original array (read it
or write new values to it)

vals

data

sum()

520

[0]

? … ?

916

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

520

main()
520

520

22

Arrays in C/C++ vs. Other Languages

• Notice that if sum() only has the start address it
would not know how big the array is

• Unlike Java or other languages where you can
call some function to give the size of an array,
C/C++ require you to track the size yourself in a
separate variable and pass it as a secondary
argument

vals

data

sum()

520

[0]

? … ?

916

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

520

main()

100

100

size

23

C-STRINGS
Null terminated character arrays

24

C Strings
• Character arrays (i.e. C strings)

– Enclosed in double quotes " "

– Strings of text are simply arrays of chars

– Can be initialized with a normal C string (in
double quotes)

– C strings have one-byte (char) per character

– End with a "null" character = 00 dec. = '\0' ASCII

– cout "knows" that if a char array is provided as
an argument it will print the 0th character and
keep printing characters until a ‘\0’ (null)
character [really just a value of 0] is
encountered

– cin "knows" how to take in a string and fill in a
char array (stops at whitepace)
• Careful it will write beyond the end of an array if the

user enters a string that is too long

H e l l o \0

#include<iostream>
using namespace std;
int main()
{

char stra[6] = "Hello";
char strb[] = "Hi\n";
char strc[] = {'H','i','\0'};
cout << stra << strb;
cout << strc << endl;
cout << "Now enter a string: ";
cin >> stra;
cout << "You typed: " << stra;
cout << endl;

}

H i \n \0

stra[0]

strb[0]

[5]

[3]

Addr:180

Addr:200

H i \0

strc[0] [2]

Addr:240

25

Example: C String Functions

• Write a function to determine the length (number of
characters) in a C string

• Write a function to copy the characters in a source
string/character array to a destination character array

• Edit and test your program and complete the functions:
– int strlen(char str[])

– strcpy(char dst[], char src[])

• Compile and test your functions
– main() is complete and will call your functions to test them

26

LOOKUP TABLES
Using arrays as a lookup table

27

Arrays as Look-Up Tables

• Use the value of one array as the
index of another

• Suppose you are given some
integers as data [in the range of 0
to 5]

• Suppose computing squares of
integers was difficult (no built-in
function for it)

• Could compute them yourself,
record answer in another array
and use data to “look-up” the
square

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

for(int i=0; i < 8; i++){
int x = data[i]
int x_sq = squares[x];
cout << i << “,” << sq[i] << endl;

}

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

for(int i=0; i < 8; i++){
int x_sq = squares[data[i]];
cout << i << “,” << sq[i] << endl;

}

28

Example

• Using an array as a Look-Up Table

– wget http://ee.usc.edu/~redekopp/cs103/cipher.cpp

– Let’s create a cipher code to encrypt text

– abcdefghijklmnopqrstuvwxyz =>

ghijklmaefnzyqbcdrstuopvwx

– char orig_string[] = “helloworld”;

– char new_string[11];

– After encryption:
• new_string = “akzzbpbrzj”

– Define another array
• char cipher[27] = “ghijklmaefnzyqbcdrstuopvwx”;

• How could we use the original character to index (“look-up” a
value in) the cipher array

29

MULTIDIMENSIONAL ARRAYS

30

Multidimensional Arrays

• Thus far arrays can be thought of
1-dimensional (linear) sets
– only indexed with 1 value (coordinate)

– char x[6] = {1,2,3,4,5,6};

• We often want to view our data as
2-D, 3-D or higher dimensional data
– Matrix data

– Images (2-D)

– Index w/ 2 coordinates
(row,col)

Memory

0

01 02 03 04 05 06

1 2 3 4 5

…

Image taken f rom the photo "Robin Jef fers at Ton

House" (1927) by Edward Weston

0 0 0 0

64 64 64 0

128 192 192 0

192 192 128 64Individual

Pixels

Column Index

Row Index

31

Multidimension Array Declaration

• 2D: Provide size along both dimensions
(normally rows first then columns)
– Access w/ 2 indices

– Declaration: int my_matrix[2][3];

– Access elements with appropriate indices

• my_matrix[0][1] evals to 3, my_matrix [1][2] evals to 2

• 3D: Access data w/ 3 indices
– Declaration: unsigned char image[2][4][3];

– Up to human to interpret
meaning of dimensions
• Planes x Rows x Cols

• Rows x Cols x Planes

5 3 1

6 4 2

Col. 0 Col. 1 Col. 2

Row 0

Row 1

35 3 12

6 14 49

10 81 65

39 21 7

35 3 1

6 14 72

10 81 63

40 75 18

or 35 3 44 16

6 14 72 91

35 3 44 51

72 61 53 84

7 32 44 23

10 59 18 88

Plane 0

Plane 1
Plane 0

Plane 1

Plane 2

32

Passing Multi-Dimensional Arrays

• Formal Parameter: Must give
dimensions of all but first
dimension

• Actual Parameter: Still just
the array name (i.e. starting
address)

• Why do we have to provide all
but the first dimension?

• So that the computer can
determine where element:
data[i][j][k] is actually located
in memory

void doit(int my_array[][4][3])
{

my_array[1][3][2] = 5;
}

int main(int argc, char *argv[])
{

int data[2][4][3];

doit(data);
...
return 0;

}

42 8 12

67 25 49

14 48 65

74 21 7

35 3 1

6 14 72

10 81 63

40 75 18

Memory

1

2

3

4

11

0 35

03

01

06

14

18

…

42

08

12

13

1214

…

33

Linearization of Multidimensional Arrays

• Analogy: Hotel room layout => 3D

– Access location w/ 3 indices:
• Floors, Aisles, Rooms

• But they don’t give you 3 indices, they give you one
room number

– Room #’s are a linearization of the 3 dimensions
• Room 218 => Floor=2, Aisle 1, Room 8

• When “linear”-izing we keep proximity for one
dimension
– Room 218 is next to 217 and 219

• But we lose some proximity info for higher
dimensions
– Presumably room 218 is right below room 318

– But in the linearization 218 seems very far from 318

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

200

201

202

203

204

205

206

207

208

209

220

211

212

213

214

215

216

217

218

219

1
s
t
F

lo
o

r

2
n

d
F

lo
o

r

Analogy: Hotel Rooms

1st Digit = Floor

2nd Digit = Aisle

3rd Digit = Room

34

Linearization of Multidimensional Arrays

• In a computer, multidimensional arrays must still be stored in memory
which is addressed linearly
(1-Dimensional)

• C/C++ use a policy that lower dimensions are placed next to each
other followed by each higher level dimension

5 3 1

6 4 2

Col. 0 Col. 1 Col. 2

Row 0

Row 1

int x[2][3];

Memory

00 00 00 05100

00 00 00 03104

00 00 00 01108

00 00 00 06112

00 00 00 04116

00 00 00 02

d2 19 2d 81

…

120

124

x[0][0]

x[0][1]

x[0][2]

x[1][0]

x[1][1]

x[1][2]

35

Linearization of Multidimensional Arrays

• In a computer, multidimensional arrays must still be stored in
memory which is addressed linearly
(1-Dimensional)

• C/C++ use a policy that lower dimensions are placed next to each
other followed by each higher level dimension

char y[2][4][3];

42 8 12

67 25 49

14 48 65

74 21 7

35 3 1

6 14 72

10 81 63

40 75 18

Memory

1

2

3

4

11

0 35

03

01

06

14

18

…

42

08

12

13

1214

…

36

Linearization of Multidimensional Arrays

• We could re-organize the memory layout (i.e. linearization) while still
keeping the same view of the data by changing the order of the
dimensions

char y[4][3][2];

42 8 12

67 25 49

14 48 65

74 21 7

35 3 1

6 14 72

10 81 63

40 75 18

Memory

1

2

3

4

5

0 35

42

03

08

01

12

…

06

67

6

7

148

…

37

Linearization of Multidimensional Arrays

• Formula for location of item at row i, column j in
an array with NUMR rows and NUMC columns:

5 3 1

6 4 2

8 9 7

15 3 6

Col. 0 Col. 1 Col. 2

Row 0

Row 1

int x[4][3]; // NUMR=4, NUMC = 3;

Memory

00 00 00 05100

00 00 00 03104

00 00 00 01108

00 00 00 06112

00 00 00 04116

00 00 00 02

…

120

124

x[0][0]

x[0][1]

x[0][2]

x[1][0]

x[1][1]

x[1][2]

Declaration:

Access: x[i][j]:

00 00 00 08

00 00 00 09

00 00 00 07

00 00 00 0f

00 00 00 03

00 00 00 06

x[2][0]

x[2][1]

x[2][2]

x[3][0]

x[3][1]

x[3][2]

128

132

136

140

144

Row 2

Row 3

38

Linearization of Multidimensional Arrays

42 8 12

67 25 49

14 48 65

74 21 7

35 3 1

6 14 72

10 81 63

40 75 18
Memory

104

108

116

120

100 35

03

01

06

14

… …

int x[2][4][3]; // NUMP=2, NUMR=4, NUMC=3Declaration:

Access: x[p][i][j]:

• Formula for location of item at plane p, row i, column j in array
with NUMP planes, NUMR rows, and NUMC columns

39

Revisited: Passing Multi-Dimensional Arrays

• Must give dimensions of all
but first dimension

• This is so that when you use
‘myarray[p][i][j]’ the computer
and determine where in the
linear addresses that
individual index is located in
the array
– [p][i][j] = startAddr +

(p*NUMR*NUMC +
i*NUMC + j)*sizeof(int)

– [1][3][2] in an array of nx4x3
becomes: 1*(4*3) + 3(3) + 2 = 23
ints = 23*4 = 92 bytes into the
array = address 192

void doit(int my_array[][4][3])

{

my_array[1][3][2] = 5;

}

int main(int argc, char *argv[])

{

int data[2][4][3];

doit(data);

...

return 0;

}

42 8 12

67 25 49

14 48 65

74 21 7

35 3 1

6 14 72

10 81 63

40 75 18

Memory

104

108

112

116

144

100 35

03

01

06

14

18

…

42

08

148

152

12156

…

40

IMAGE PROCESSING
Using 2- and 3-D arrays to create and process images

41

Practice: Drawing

• See Vocareum instructions
– Code to read (open) and write (save) .BMP files is provided in bmplib.h and

bmplib.cpp

– Look at bmplib.h for the prototype of the functions you can use in your
main() program in gradient.cpp

• To download the code on your own Linux machine or VM
• $ wget http://bytes.usc.edu/files/cs103/demo-bmplib.tar

• $ tar -xvf demo-bmplib.tar

• $ cd demo-bmplib

• $ make

• $./demo

• $ eog cross.bmp &

42

Multi-File Programs
• We need a way to split our code into many separate

files so that we can partition our code

– We often are given code libraries from other developers or
companies

– It can also help to put groups of related functions into a file

• bmplib.h has prototypes for functions to read, write,
and show .BMP files as well as constant declarations

• bmplib.cpp has the implementation of each function

• cross.cpp has the main application code

– It #include's the .h file so as to have prototypes and
constants available

Key Idea: The .h file tells you what library functions are available;
The .cpp file tells you how it does it

43

Multi-file Compilation

• Three techniques to compile multiple files into
a single application

– Use 'make' with a 'Makefile' script

• We will provide you a 'Makefile' whenever possible and
it contains directions for how to compile all the files
into a single program

• To use it just type 'make' at the command prompt

– Compile all the .cpp files together like:

$ compile gradient.cpp bmplib.cpp -o gradient

• Note: NEVER compile .h files

44

Multi-file Compilation

• Three techniques to compile multiple files into a single
application

– Compile each .cpp files separately into an "object file" (w/ the
–c option) and then link them altogether into one program:

$ compile -c bmplib.cpp -o bmplib.o

$ compile -c gradient.cpp -o gradient.o

$ compile gradient.o bmplib.o -o gradient

– The first two command produce .o (object) files which are
non-executable files of 1's and 0's representing the code

– The last command produces an executable program by
putting all the .o files together

– Don't do this approach in 103, but it is approach 'Makefiles'
use and the way most real programs are compiled

45

Practice: Drawing

• Draw an X on the image

– Try to do it with only a single loop, not
two in sequence

• Draw a single period of a sine wave

– Hint: enumerate each column, x, with
a loop and figure out the appropriate
row (y-coordinate)

46

Scratch Workspace

• Identify patterns in indices of what you want to draw

47

Practice: Drawing

• Modify gradient.cpp to draw a black cross on a
white background and save it as 'output1.bmp'

• Modify gradient.cpp to draw a black X down the
diagonals on a white background and save it as
'output2.bmp'

• Modify gradient.cpp to draw a gradient down
the rows (top row = black through last row =
white with shades of gray in between

• Modify gradient.cpp to draw a diagonal
gradient with black in the upper left through
white down the diagonal and then back to black
in the lower right

48

Image Processing

• Go to your gradient directory
– $ wget http://bits.usc.edu/files/cs103/graphics/elephant.bmp

• Here is a first exercise…produce the "negative"

#include "bmplib.h"

int main() {

unsigned char image[SIZE][SIZE];

readGSBMP("elephant.bmp", image);

for (int i=0; i<SIZE; i++) {

for (int j=0; j<SIZE; j++) {

image[i][j] = 255-image[i][j];

// invert color

}

}

showGSBMP(image);

}

Original Inverted

49

Practice: Image Processing

• Perform a diagonal flip

• Tile

• Zoom

50

Selected Grayscale Solutions

• X

– http://bits.usc.edu/files/cs103/graphics/x.cpp

• Sin

– http://bits.usc.edu/files/cs103/graphics/sin.cpp

• Diagonal Gradient

– http://bits.usc.edu/files/cs103/graphics/gradient_diag.cpp

• Elephant-flip

– http://bits.usc.edu/files/cs103/graphics/eg3-4.cpp

• Elephant-tile

– http://bits.usc.edu/files/cs103/graphics/eg3-5.cpp

• Elephant-zoom

– http://bits.usc.edu/files/cs103/graphics/zoom.cpp

http://bits.usc.edu/files/cs103/graphics/x.cpp
http://cs103.usc.edu/files/graphics/sin.cpp
http://cs103.usc.edu/files/graphics/gradient_diag.cpp
http://bits.usc.edu/files/cs103/graphics/eg3-4.cpp
http://bits.usc.edu/files/cs103/graphics/eg3-5.cpp
http://bits.usc.edu/files/cs103/graphics/zoom.cpp

51

Color Images

• Color images are represented as 3D
arrays (256x256x3)

– The lower dimension are Red, Green,
Blue values

• Base Image

• Each color plane inverted

• Grayscaled

– Using NTSC formula:
.299R + .587G + .114B

52

Color Images

• Glass filter

– Each destination pixel is from
a random nearby source pixel
• http://bits.usc.edu/files/cs103/graphics/glass.c

pp

• Edge detection

– Each destination pixel is the
difference of a source pixel
with its south-west neighbor

http://bits.usc.edu/files/cs103/graphics/glass.cpp

53

Color Images

• Smooth

– Each destination pixel is average
of 8 neighbors
• http://bits.usc.edu/files/cs103/graphics/smooth.c

pp

Original

Smoothed

http://bits.usc.edu/files/cs103/graphics/smooth.cpp

54

Selected Color Solutions

• Color fruit – Inverted
– http://bits.usc.edu/files/cs103/graphics/eg4-1.cpp

• Color fruit – Grayscale
– http://bits.usc.edu/files/cs103/graphics/eg4-3.cpp

• Color fruit – Glass Effect
– http://bits.usc.edu/files/cs103/graphics/glass.cpp

• Color fruit – Edge Detection
– http://bits.usc.edu/files/cs103/graphics/eg5-4.cpp

• Color fruit – Smooth
– http://bits.usc.edu/files/cs103/graphics/smooth.cpp

http://bits.usc.edu/files/cs103/graphics/eg4-1.cpp
http://bits.usc.edu/files/cs103/graphics/eg4-3.cpp
http://bits.usc.edu/files/cs103/graphics/glass.cpp
http://bits.usc.edu/files/cs103/graphics/eg5-4.cpp
http://bits.usc.edu/files/cs103/graphics/smooth.cpp

