CS 103 Lecture 4 Slides

Algorithms

Mark Redekopp
ARRAYS
Need for Arrays

• If I want to keep the score of 100 players in a game I could declare a separate variable to track each one’s score:
 – `int player1 = N; int player2 = N; int player3 = N; ...`
 – PAINFUL!!

• Enter arrays
 – Ordered collection of variables of the same type
 – Collection is referred to with **one name**
 – Individual elements referred to by an **offset/index** from the start of the array [in C, first element is at index 0]

• Example:
 – `int player[100];`
Arrays: Informal Overview

- Informal Definition:
 - Ordered collection of variables of the same type

- Collection is referred to with **one name**

- Individual elements referred to by an **offset/index** from the start of the array [in C, first element is at index 0]

```c
int data[20];
data[0] = 357;
data[1] = -1;
data[2] = 1035;
int x = data[0];
```

```c
```

Memory

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>424</td>
<td>428</td>
<td>496</td>
</tr>
<tr>
<td>357</td>
<td>-1</td>
<td>1035</td>
<td>...</td>
</tr>
</tbody>
</table>

Memory

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>421</td>
<td>422</td>
</tr>
<tr>
<td>‘h’</td>
<td>‘i’</td>
<td>00</td>
</tr>
</tbody>
</table>

Memory
Arrays – A First Look

- **Formal Def:** A *statically-sized, contiguously allocated collection of homogenous data elements*
- **Collection of homogenous data elements**
 - Multiple variables of the same data type
- **Contiguously allocated in memory**
 - One right after the next
- **Statically-sized**
 - Size of the collection can’t be changed after initial declaration/allocation
- **Collection is referred to with one name**
- **Individual elements referred to by an offset/index from the start of the array** [in C, first element is at index 0]
Example: Arrays

- Track amount of money (# of coins) 3 people have.
- Homogenous data set (number of coins) for multiple people...perfect for an array
 - int num_coins[3];
- Recall, memory has garbage values by default. You will need to initialized each element in the array

```c
int num_coins[3];
```
Example: Arrays

- Track amount of money (# of coins) 3 people have.
- Homogenous data set (number of coins) for multiple people...perfect for an array
 - int num_coins[3];
- Must initialize elements of an array
 - for(int i=0; i < 3; i++)
 num_coins[i] = 0;
Arrays

• Track amount of money (# of coins) 3 people have.
• Homogenous data set (number of coins) for multiple people...perfect for an array
 – int num_coins[3];
• Must initialize elements of an array
 – for(int i=0; i < 3; i++)
 num_coins[i] = 0;
• Can access each persons amount and perform ops on that value
 – num_coins[0] = 5;
 num_coins[1] = 8;
Accessing elements

• While the size is fixed, index into array can be a variable (and usually is)

• If I have 100 players in my game I could declare a separate variable to track each one’s score:
 – int player1 = N; int player2 = N; int player3 = N; ...
 – PAINFUL!!

• Better idea: Use an array where the index to the desired element can be a variable:
 – int player[100];
 – for(i=0; i < 100; i++){
 player[i] = N;
 }

• Can still refer to individual items if desired: player[2]
ALGORITHMS
How Do You Find a Word in a Dictionary

• Describe an “efficient” method

• Assumptions / Guidelines
 – Let target_word = word to lookup
 – N pages in the dictionary
 – Each page has the start and last word on that page listed at the top of the page
 – Assume the user understands how to perform alphabetical (“lexicographic”) comparison (e.g. “abc” is smaller than “acb” or “abcd”)
Algorithms

- Algorithms are at the heart of computer systems, both in HW and SW
 - They are fundamental to Computer Science and Computer Engineering
- Informal definition
 - An algorithm is a precise way to accomplish a task or solve a problem
- Software programs are collections of algorithms to perform desired tasks
- Hardware components also implement algorithms from simple to complex
Humans and Computers

• Humans understand algorithms differently than computers
• Humans easily tolerate ambiguity and abstract concepts using context to help.
 – “Add a pinch of salt.” How much is a pinch?
 – “Michael Jordan could soar like an eagle.”
 – “It’s a bear market”
• Computers only execute well-defined instructions (no ambiguity) and operate on digital information which is definite and discrete (everything is exact and not “close to”)
Formal Definition

• For a computer, “algorithm” is defined as...
 – …an ordered set of unambiguous, executable steps that defines a terminating process

• Explanation:
 – **Ordered Steps**: the steps of an algorithm have a particular order, not just any order
 – **Unambiguous**: each step is completely clear as to what is to be done
 – **Executable**: Each step can actually be performed
 – **Terminating Process**: Algorithm will stop, eventually. (sometimes this requirement is relaxed)
Algorithm Representation

• An algorithm is not a program or programming language

• Just as a story may be represented as a book, movie, or spoken by a story-teller, an algorithm may be represented in many ways
 – Flow chart
 – Pseudocode (English-like syntax using primitives that most programming languages would have)
 – A specific program implementation in a given programming language
Pseudocode Primitives

• **Assignment:**

 name ← expression

 – *name* is a descriptive name/variable and *expression* describes the value to be associated with name

• **Select one of two possible choices (conditionals):**

 if (condition) then (activity) else (activity)

 if (condition) then (activity)

• **Repeated execution of statements (loops):**

 while (condition) do (activity)

 repeat (activity) until (condition)

 foreach name in (set / collection) do (activity)
Syntax and Semantics

- **Syntax**: refers to the primitive’s symbolic representation – the “proper” way to write the primitive
- **Semantics**: the “meaning” of the primitive
- Example: ‘air’
 - The syntax consists of the 3 symbols ‘a’, ‘i’, and ‘r’. The semantics of this word is “a gaseous substance that surrounds the earth”
- Code Example
 - **if (condition) then (activity)** is the syntax.
 - The semantics (meaning) is “the activity will only be performed if condition is true”
Indentation

• Pseudocode (and programs in real programming languages) are usually indented to enhance readability by humans

1. if (not raining) then (if (temperature == hot) then (go swimming) else (play golf)) else (watch television)

2. if (not raining) then
 (if (temperature == hot) then (go swimming)
 else (play golf))
 else (watch television)

Which is easier to read?
Algorithm Example 1

• List/print all factors of a natural number, n
 – How would you check if a number is a factor of n?
 – What is the range of possible factors?

 $i \leftarrow 1$

 while ($i \leq n$) do
 if (remainder of n/i is zero) then
 List i as a factor of n

 $i \leftarrow i+1$

• An improvement
 $i \leftarrow 1$

 while ($i \leq \sqrt{n}$) do
 if (remainder of n/i is zero) then
 List i and n/i as a factor of n

 $i \leftarrow i+1$
Algorithm Time Complexity

• We often judge algorithms by how long they take to run for a given input size

• Algorithms often have different run-times based on the input size [e.g. # of elements in a list to search or sort]
 – Different input patterns can lead to best and worst case times
 – Average-case times can be helpful, but we usually use worst case times for comparison purposes
Big-O Notation

• Given an input to an algorithm of size n, we can derive an expression in terms of n for its worst case run time (i.e. the number of steps it must perform to complete)
• From the expression we look for the dominant term and say that is the big-O (worst-case or upper-bound) run-time
 – If an algorithm with input size of n runs in \(n^2 + 10n + 1000 \) steps, we say that it runs in \(O(n^2) \) because if n is large \(n^2 \) will dominate the other terms
Big-O Notation

• Given an input to an algorithm of size n, we can derive an expression in terms of n for its worst case run time (i.e. the number of steps it must perform to complete)
• From the expression we look for the dominant term and say that is the big-O (worst-case or upper-bound) run-time
 – If an algorithm with input size of n runs in \(n^2 + 10n + 1000\) steps, we say that it runs in \(O(n^2)\) because if n is large \(n^2\) will dominate the other terms
• Main sources of run-time: Loops
 – Even worse: Loops within loops (i.e. execute all of loop 2 w/in a single iteration of loop 1, and repeat for all iterations of loop 1, etc.)

```
i ← 1
while(i <= n) do
    if (remainder of n/i is zero) then
        List i as a factor of n
    i ← i+1
```

\[
\begin{align*}
1 & \quad 1 \\
1*n & \quad 1*n \\
2*n & \quad 5n+1 \\
1*n & \quad = O(n)
\end{align*}
\]
Algorithm Example 1

• List/print all factors of a natural number, \(n \)
 – What is a factor?
 – What is the range of possible factors?
 \[i \leftarrow 1 \]
 \[\text{while}(i \leq n) \text{ do} \]
 \[\text{if (remainder of } n/i \text{ is zero) then} \]
 \[\text{List } i \text{ as a factor of } n \]
 \[i \leftarrow i+1 \]
 \[\text{O(n)} \]

• An improvement
 \[i \leftarrow 1 \]
 \[\text{while}(i \leq \sqrt{n}) \text{ do} \]
 \[\text{if (remainder of } n/i \text{ is zero) then} \]
 \[\text{List } i \text{ and } n/i \text{ as a factor of } n \]
 \[i \leftarrow i+1 \]
 \[\text{O}(\sqrt{n}) \]
Algorithm Example 2a

• Searching an ordered list (array) for a specific value, k, and return its index or -1 if it is not in the list

• Sequential Search
 – Start at first item, check if it is equal to k, repeat for second, third, fourth item, etc.

```plaintext
i ← 0
while ( i < length(myList) ) do
  if (myList[i] equal to k) then return i
  else i ← i+1
return -1
```
Algorithm Example 2b

- Sequential search does not take advantage of the ordered nature of the list
 - Would work the same (equally well) on an ordered or unordered list
- Binary Search
 - Take advantage of ordered list by comparing k with middle element and based on the result, rule out all numbers greater or smaller, repeat with middle element of remaining list, etc.
Algorithm Example 2b

- Binary Search
 - Compare k with middle element of list and if not equal, rule out $\frac{1}{2}$ of the list and repeat on the other half
 - Implementation:
 - Define range of searchable elements = $[\text{start, end})$
 - (i.e. start is inclusive, end is exclusive)

```
start ← 0; end ← length(List);
while (start index not equal to end index) do
  i ← (start + end) /2;
  if ( $k == \text{List}[i]$ ) then return $i$;
  else if ( $k > \text{List}[i]$ ) then start ← $i+1$;
  else end ← $i$;
return -1;
```
Sorting

• If we have an unordered list, sequential search becomes our only choice
• If we will perform a lot of searches it may be beneficial to sort the list, then use binary search
• Many sorting algorithms of differing complexity (i.e. faster or slower)
• Bubble Sort (simple though not terribly efficient)
 – On each pass through thru the list, pick up the maximum element and place it at the end of the list. Then repeat using a list of size n-1 (i.e. w/o the newly placed maximum value)
Bubble Sort Algorithm

void bsort(int* mylist, int n) {
 int i;
 for(i=n-1; i > 0; i--){
 for(j=0; j < i; j++){
 if(mylist[j] > mylist[j+1]) {
 swap(j, j+1)
 }
 }
 }
}

Pass 1

7 3 8 6 5 1

j i

3 7 8 6 5 1

swap

3 7 8 6 5 1

no swap

Pass 2

3 7 6 5 1 8

j i

3 7 6 5 1 8

no swap

3 6 7 5 1 8

swap

Pass n-2

3 1 5 6 7 8

j i

1 3 5 6 7 8

swap
Complexity of Search Algorithms

- **Sequential Search**: List of length n
 - Worst case: Search through entire list
 - Time complexity = $an + k$
 - a is some constant for number of operations we perform in the loop as we iterate
 - k is some constant representing startup/finish work (outside the loop)
 - Sequential Search = $O(n)$

- **Binary Search**: List of length n
 - Worst case: Continually divide list in two until we reach sublist of size 1
 - Time = $a \cdot \log_2 n + k = O(\log_2 n)$

- As n gets large, binary search is far more efficient than sequential search

\[\text{Multiplying by 2} \]
\[k \text{-times yields:} \]
\[2 \cdot 2 \cdot 2 \cdots 2 = 2^k \]

\[\text{Dividing by 2} \]
\[k \text{-times yields:} \]
\[n / 2^k = 1 \]
\[k = \log_2 n \]
Complexity of Sort Algorithms

• Bubble Sort
 – 2 Nested Loops
 – Execute outer loop n-1 times
 – For each outer loop iteration, inner loop runs i times.
 – Time complexity is proportional to:
 \[n-1 + n-2 + n-3 + \ldots + 1 = (n^2 + n)/2 = O(n^2) \]
• Other sort algorithms can run in \(O(n \log_2 n) \)
Importance of Time Complexity

- It makes the difference between effective and impossible
- Many important problems currently can only be solved with exponential run-time algorithms (e.g. $O(2^n)$ time)...we call these NP = Non-deterministic polynomial time algorithms) [No known polynomial-time algorithm exists]
- Usually algorithms are only practical if they run in $P = \text{polynomial time}$ (e.g. $O(n)$ or $O(n^2)$ etc.)
- One of the most pressing open problems in CS: “Is NP = P?”
 - Do P algorithms exist for the problems that we currently only have an NP solution for?

<table>
<thead>
<tr>
<th>N</th>
<th>$O(1)$</th>
<th>$O(\log_2 n)$</th>
<th>$O(n)$</th>
<th>$O(n \times \log_2 n)$</th>
<th>$O(n^2)$</th>
<th>$O(2^n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4.3</td>
<td>20</td>
<td>86.4</td>
<td>400</td>
<td>1,048,576</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>7.6</td>
<td>200</td>
<td>1,528.8</td>
<td>40,000</td>
<td>1.60694E+60</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>11.0</td>
<td>2000</td>
<td>21,931.6</td>
<td>4,000,000</td>
<td>#NUM!</td>
</tr>
</tbody>
</table>