
1

CS 103 Lecture 3 Slides

Control Structures

Mark Redekopp

2

Announcements

• Lab 2 – Due Friday

• HW 2 – Due next Thursday

3

Review
• Write a program to ask the user to enter two integers

representing hours then minutes. Output the
equivalent number of seconds.

• To get started…

– Go to http://bytes.usc.edu/cs103/in-class-exercises
• printseconds

– We've started the program for you…look at the
• General template for a program with the #includes, using

namespace std; and int main() function which returns 0

– We've declared variables where you can store the input
and computation results

– Now you add code to
• Get input from the user

• And compute the answer and place it in the 'sec' variable

http://bytes.usc.edu/cs103/in-class-exercises

4

CONTROL STRUCTURES

5

Comparison/Logical Operators
• Loops & conditional statements require a condition to be

evaluated resulting in a True or False determination.

• In C/C++…
– 0 means False

– Non-Zero means True

– bool type available in C++ => ‘true’ and ‘false’ keywords can be used
but internally ‘true’ = non-zero (usually 1) and ‘false’ = 0

• Example 1
int x = 100;

while(x)

{ x--;}

• Usually conditions results from comparisons
==, !=, >, <, >=, <=

6

Logical AND, OR, NOT
• Often want to combine several conditions to make a decision

• Logical AND => expr_a && expr_b

• Logical OR => expr_a || expr_b

• Logical NOT => ! expr_a

• Precedence (order of ops.) => ! then && then ||

– !x || y && !z

– ((!x) || (y && (!z)))

• Write a condition that eats a sandwich if it has neither tomato nor lettuce

– if (!tomtato && !lettuce) { eat_sandwich(); }

– if (!(tomato || lettuce)) { eat_sandwich(); }

A B AND

False False False

False True False

True False False

True True True

A B OR

False False False

False True True

True False True

True True True

A NOT

False True

True False

7

Exercise

• Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]

– x >= -1 && x <= 5

– -1 <= x <= 5

– ! (x < -1 || x > 5)

– x > -2 && x < 6

• Consider (!x || (y && !z))
If x=100, y= -3, z=0 then this expression is…

– true

– false

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

8

If..Else Flow Chart

condition

if (condition1)
{

// executed if condition1 is true
}
else
{

// executed if condition1
// above is false

}

// following statements
If Block

Statements
Else

Block Statements

True False

Following
statements

9

If…Else If…Else

• Use to execute only
certain portions of code

• Else If is optional

– Can have any number of
else if statements

• Else is optional

• { … } indicate code
associated with the if,
else if, else block

if (condition1)
{

// executed if condition1 is true
}
else if (condition2)
{

// executed if condition2 is true
// but condition1 was false

}
else if (condition3)
{

// executed if condition3 is true
// but condition1 and condition2
// were false

}
else
{

// executed if neither condition
// above is true

}

10

Flow Chart

condition
1

if (condition1)
{
// executed if condition1 is True

}
else if (condition2)
{
// executed if condition2 is True
// but condition1 was False

}
else
{
// executed if neither condition
// above is True

}

If Block
Statements

True False

Following
Statements

condition

If Block
Statements

Else
Block Statements

True False

Following
statements

Else If

Statements

cond2

Else

Statements

if (condition1)
{

// executed if condition1 is True
}
else
{

if (condition2){
// executed if condition2 is True
// but condition1 was False

}
else
{

// executed if neither condition
// above is True

}
}

T
h
e
s
e
 2

 a
re

 e
q
u
iv

a
le

n
t

11

Single Statement Bodies

• The Rule: Place code for an
if, else if, or else contruct in
curly braces { … }

• The Exception:
– An if or else construct with a

single statement body does not
require { … }

– Another if counts as a single
statement

• Prefer { … } even in single
statement bodies so that
editing later does not
introduce bugs

if (x == 5)
y += 2;

else
y -= 3;

if (x == 5)
y += 2;

else
if(x < 5)

y = 6;
else

y = 0;

12

The Right Style

• Is there a difference
between the following
two code snippets

• Both are equivalent
but the bottom is
preferred because it
makes clear to other
programmers that
only one or the other
case will execute

int x;
cin >> x;

if(x >= 0) { cout << "Positive"; }
if(x < 0) { cout << "Negative"; }

int x;
cin >> x;

if(x >= 0) { cout << "Positive"; }
else { cout << "Negative"; }

13

Find the bug

• What's the problem
in this code…

// What’s the problem below
int x;
cin >> x;
if (x = 1)

{ cout << "X is 1" << endl;}
else

{ cout << "X is not 1" << endl; }

14

Find the bug

• Common mistake is to use
assignment '=' rather than
equality comparison '=='
operator

• Assignment puts 1 into x
and then uses that value of
x as the "condition"
– 1 = true so we will always

execute the if portion

// What’s the problem below
int x;
cin >> x;
if (x = 1) // should be (x == 1)

{ cout << "X is 1" << endl;}
else

{ cout << "X is not 1" << endl; }

15

Exercises

• Conditionals In-Class Exercises

– Discount

– Weekday

– N-th

16

Switch (Study on own)

• Again used to execute only
certain blocks of code

• Best used to select an action
when an expression could be 1
of a set of values

• { … } around entire set of cases
and not individual case

• Computer will execute code
until a break statement is
encountered
– Allows multiple cases to be

combined

• Default statement is like an else
statement

switch(expr) // expr must eval to an int
{

case 0:
// code executed when expr == 0
break;

case 1:
// code executed when expr == 1
break;

case 2:
case 3:
case 4:

// code executed when expr is
// 2, 3, or 4
break;

default:
// code executed when no other
// case is executed
break;

}

17

Switch (Study on own)

• What if a break is forgotten?
– All code underneath will be

executed until another break is
encountered

switch(expr) // expr must eval to an int
{

case 0:
// code executed when expr == 0
break;

case 1:
// code executed when expr == 1
// what if break was commented
// break;

case 2:
case 3:
case 4:

// code executed when expr is
// 3, 4 or 5
break;

default:
// code executed when no other
// case is executed
break;

}

18

? Operator

• A simple if..else statement can be expressed with the
? operator
– int x = (y > z) ? 2 : 1;

– Same as:
if(y > z) x = 2;

else x = 1;

• Syntax: (condition) ? expr_if_true: expr_if_false;

• Meaning: the expression will result/return
expr_if_trueif conditionevaluates to true or
expr_if_falseif conditionevaluates to false

19

LOOPS
Performing repetitive operations

20

Need for Repetition

• We often want to repeat a
task but do so in a concise
way

– Print out all numbers 1-100

– Keep taking turns until a
game is over

• Imagine the game of 'war'…it
never ends!!

• We could try to achieve
these without loops, but…

#include <iostream>
using namespace std;

int main()
{

cout << 1 << endl;
cout << 2 << endl;
...
cout << 100 << endl;
return 0;

}

#include <iostream>
using namespace std;

int main()
{

bool gameOver;
gameOver = take_turn();
if(! gameOver){

gameOver = take_turn();
if(! gameOver) {

...
{

}
}

Assume this produces

a true/false result

indicating if the game

is over after

performing a turn

21

while Loop
• While

– Cond is evaluated first

– Body only executed if cond. is
true (maybe 0 times)

• Do..while
– Body is executed at least once

– Cond is evaluated

– Body is repeated if cond is true

// While Type 1:
while (condition)
{

// code to be repeated
// (should update condition)

}

// While Type 2:
do {

// code to be repeated
// (should update condition)

} while (condition);

22

while Loop

• One way to think of a
while loop is as a
repeating 'if' statement

• When you describe a
problem/solution you
use the words 'until
some condition is true'
that is the same as
saying 'while some
condition is not true'

// guessing game
bool guessedCorrect = false;
if(!guessedCorrect)
{

guessedCorrect = guessAgain();
}
// want to repeat if cond. check again
if(!guessedCorrect)
{

guessedCorrect = guessAgain();
} // want to repeat if cond. check again

// guessing game
bool guessedCorrect = false;

while(!guessedCorrect)
{

guessedCorrect = guessAgain();
}

An if-statement will only execute once

A 'while' loop acts as a repeating 'if'

statement

23

Accept Guess

Correct

Draw out a flow chart of the

desired sequence and look

for the repetitive sequence

Post-Loop
Code

True

False

W
h
ile

 l
o
o
p

Finding the ‘while’ Structure

Accept Guess

Not
Correct

True

Accept Guess

But a while loop

checks at the

beginning of the

loop, so we must

accept one guess

before starting:

accept_guess

while(! correct)

{ accept_guess }

Post-Loop
Code

Accept Guess

Correct

False

Accept Guess

Correct

False

False

D
o
..

W
h
ile

L
o
o
p

Here we check at the end

to see if we should

repeat…perfect for a

do..while loop

do

{ accept_guess }

while (! correct)

24

While Loop Exercise

• In-Class Exercises
– countodd

25

for Loop

• Initialization stmt executed first

• Cond is evaluated next

• Body only executed if cond. is true

• Update stmt executed

• Cond is re-evaluated and execution
continues until it is false

• Multiple statements can be in the
init and update statements

for(init stmt; cond; update stmt)
{

// body of loop
}

// Outputs 0 1 2 3 4 (on separate lines)
for(i=0; i < 5; i++){

cout << i << endl;
}

ƳƳ /ÕÔÐÕÔÓ ʣ ʪ ʦʣ ʦʪ ƛ ʮʪ ƽÏÎ sep. lines)
for(i=0; i < 20; i++){

cout << 5*i << " is a multiple of 5";
cout << endl;

}
// Same output as previous for loop
for(i=0; i < 100; i++){

if(i % 5 == 0){
cout << i << " is a multiple of 5";
cout << endl;

}
}

// compound init and update stmts.
for(i=0, j=0; i < 20; i++,j+=5){

cout << j << " is a multiple of 5";
cout << endl;

}

26

for vs. while Loop

• 'while' Rule of thumb: Use
when exact number of
iterations is unknown when
loop is started (i.e. condition
updating inside the loop
body)

• 'for' Rule of thumb: Use
when number of iterations is
known when loop is started
(independent of loop body)

• Both can be converted to
the other…try it on the right

for(init stmt ; cond; update stmt)
{

// body of loop
}
// Equivalent while structure

// guessing game
bool guessedCorrect = false;
while(!guessedCorrect)
{

guessedCorrect = guessAgain();
}

int x;
cin >> x;
for(i=0; i < x; i++){

cout << 5*i << " ";
}
cout << endl;

Notice we
cannot predict
how many
times this will
run.

Though we
don't know x we
can say the loop
will run exactly
x times.

27

Loop Practice
• Write a for loop to compute the first 10 terms of

the Liebniz approximation of π/4:
• π/4 = 1/1 – 1/3 + 1/5 – 1/7 + 1/9 …

• Tip: write a table of the loop counter variable vs. desired
value and then derive the general formula

• http://bytes.usc.edu/websheets/?folder=cpp/control

– liebnizapprox

Counter (i) Desired Pattern Counter (i) Desired Pattern

0 +1/1 for(i=0;i<10;i++)
Fraction:

+/- =>

1 +1/1 for(i=1; i<=19; i+=2)
Fraction:

+/- =>

1 -1/3 3 -1/3

2 +1/5 5 +1/5

… … … …

9 -1/19 19 -1/19

http://bytes.usc.edu/websheets/?folder=cpp/control

28

Loop Practice
• Write a for loop to compute the first 10 terms of

the Liebniz approximation of π/4:
• π/4 = 1/1 – 1/3 + 1/5 – 1/7 + 1/9 …

• Tip: write a table of the loop counter variable vs. desired
value and then derive the general formula

Counter (i) Desired Pattern Counter (i) Desired Pattern

0 +1/1 for(i=0; I <10; i++)
Fraction:

1/(2*i+1)

+/- =>
pow(-1,i)
if(i is odd)

neg.

1 +1/1 for(i=1; i <=19; i+=2)
Fraction:

1/i

+/- =>
if(i%4==3)

neg.

1 -1/3 3 -1/3

2 +1/5 5 +1/5

… … … …

9 -1/19 19 -1/19

29

Loop Practice
• Write for loops to compute the first 10 terms of

the following approximations:

– ex: 1 + x + x2/2! + x3/3! + x4/4! …

• Assume 1 is the 1st term and assume functions
– fact(int n) // returns n!

– pow(double x, double n) // returns xn

– Wallis:

• π/2 = 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 …

• http://bytes.usc.edu/websheets/?folder=cpp/control
– wallisapprox

http://bytes.usc.edu/websheets/?folder=cpp/control

30

TRACING EXECUTION 1
On your own time, practice tracing the following loops

31

Tracing Exercises (Individually)

• To understand a loop's execution
make a table of relevant variable
values and show their values at
the time the condition is checked

• If the condition is true perform
the body code on your own (i.e.
perform specified actions), do
the update statement, & repeat

int i;
cout << "For 1: " << endl;
for(i =0; i < 5; i ++){

cout << i << " ";
}
cout << i << endl;

i (at condition check) Actions of body

0 "0 "

1 "1 "

2 "2 "

3 "3 "

4 "4 "

5 -

Done "0 1 2 3 4 \n"

32

Tracing Exercises (for 2-4)
• Perform hand tracing on the

following loops to find what will
be printed:

int i;

cout << "For 2: " << endl;
for(i=0; i < 5; i++){

cout << 2*i+1 << " ";
}
cout << endl;

int j=1;
cout << "For 3: " << endl;
for(i=0; i < 20; i+=j){

cout << i << " ";
j++;

}
cout << endl;

j = 1;
cout << "For 4: " << endl;
for(i=10; i > 0; i--){

cout << i+j << " ";
i = i/2; j = j*2;

}
cout << endl;

Answers at end of slide packet

33

Tracing Exercises (for 5-6)
• Perform hand tracing on the

following loops to find what will
be printed:

int i;

char c = 'a';
i = 3;
cout << "For 5: " << endl;
for(; c <= 'j'; c+=i){

cout << c << " ";
}
cout << endl;

double T = 8;
cout << "For 6: " << endl;
for(i=0; i <= T; i++){
// Force rounding to 3 decimal places
cout << fixed << setprecision(3);
// Now print the number
cout << sin(2*M_PI*i/T) << endl;

}

Answers at end of slide packet

34

Tracing Exercises (while 1-2)
• Perform hand tracing on the

following loops to find what will
be printed:

int i=15, j=4;
cout << "While loop 1: " << endl;
while(i > 5 && j >= 1){

cout << i << " " << j << endl;
i = i-j;
j--;

}

i=1; j=1;
cout << "While loop 2: " << endl;
while(i || j){

if(i && j){
j = !j;

}
else if(!j){
i = !i;

}
cout << i << " " << j << endl;

}

Answers at end of slide packet

35

Tracing Exercises (while 3)
• Perform hand tracing on the

following loops to find what will
be printed:

cout << "While loop 3: " << endl;
bool found = false;
int x = 7;
while(!found){

if((x%4 == 3) &&
(x%3 == 2) &&
(x%2 == 1))

{
found = true;

}
else {
x++;

}
}
cout << "Found x = " << x << endl;

Answers at end of slide packet

36

IN-CLASS CODING EXAMPLES

37

The Loops That Keep On Giving
• There's a problem with the loop below

• We all write "infinite" loops at one time or another

• Infinite loops never quit

• When you do write such a program, just type "Ctrl-C" at the
terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;

bool again = true;
while(again = true){

cout << "Enter an int or -1 to quit";
cin >> val;
if(val == -1) {

again = false;
}

}
return 0;

}

#include <iostream>
using namespace std;
int main()
{

int i=0;
while(i < 10) {

cout << i << endl;
i + 1;

}
return 0;

}

http://blog.codinghorror.com/rubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/

38

The Loops That Keep On Giving
• There's a problem with the loop below

• We all write "infinite" loops at one time or another

• Infinite loops never quit

• When you do write such a program, just type "Ctrl-C" at the
terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;

bool again = true;
while(again == true){

cout << "Enter an int or -1to quit";
cin >> val;
if(val == -1) {

again = false;
}

}
return 0;

}

#include <iostream>
using namespace std;
int main()
{

int i=0;
while(i < 10) {

cout << i << endl;
i = i + 1;

}
return 0;

}

http://blog.codinghorror.com/rubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/

39

break and continue

• Break
– Ends the current loop [not if

statement] immediately and continues
execution after its last statement

• Continue
– Begins the next iteration of the nearest

loop (performing the update
statements if it is a for loop)

– Can usually be accomplished with
some kind of if..else structure

– Can be useful when many nested if
statements…

bool done = 0;
while (!done) {

cout << "Enter guess: " << endl;
cin >> guess;
if(guess < 0)

break ;
}
// ... Process guess

}

// Guess an int >= 0
while(!done) {

cin >> guess;
if(guess < 0){

continue ;
}
// Can only be here if guess >= 0

}
// Equivalent w/o using continue
while(!done) {

cin >> guess;
if(guess >= 0){

// Process
}

}

40

Single Statement Bodies

• An if, while, or for construct
with a single statement body
does not require { … }

• Another if, while, or for
counts as a single statement

if (x == 5)
y += 2;

else
y -= 3;

for(i = 0; i < 5; i++)
sum += i;

while(sum > 0)
sum = sum/2;

for(i = 1 ; i <= 5; i++)
if(i % 2 == 0)

j++;

41

Getting All The Inputs

• Notice another way to receive
all the numbers entered by a
user
while(cin >> val)

{ // do stuff }

• In this approach cin does two
things
– It does receive input into the

variable 'val'

– It returns 'true' if it successfully
got input, 'false' otherwise

• Keeps grabbing values one at
a time until the user types
Ctrl-D

#include <iostream>
using namespace std;
int main()
{ int val;

// reads until user hits Ctrl-D
// which is known as End-of-File(EOF)

cout << "Enter an int or Ctrl-D ";
cout << " to quit: " << endl;

while(cin >> val){
cout << "Enter an int or Ctrl-D "
cout << " to quit" << endl;
if(val % 2 == 1){

cout << val << " is odd!" << endl;
}
else {

cout << val << " is even!" << endl;
}

}
return 0;

}

42

More Exercises

• Determine if a user-supplied positive integer > 1 is
prime or not

– How do we determine if a number is a factor of another?

– What numbers could be factors?

– How soon can we determine a number is not-prime?

• Reverse the digits of an integer1

– User enters 123 => Output 321

– User enters -5293 => -3925

– In-class-exercises:
• revdigits

1Taken from D.S. Malik, C++ Programming, 6th Ed.

43

20-second Timeout: Chunking

• Right now you may feel overwhelmed with all the little details
(all the parts of a for loop, where do you need semicolons,
etc.)

• As you practice these
concepts they will
start to "chunk"
together where you can
just hear "for loop" and
will immediately know
the syntax and meaning

• Chunking occurs where
something more abstract
takes the place of many
smaller pieces

https://designbyben.wordpress.com/tag/chunking/

44

NESTED LOOPS

45

Nested Loops

• Inner loops execute fully (go through every iteration before the
next iteration of the outer loop starts)

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

for(int i=0; i < 2; i++){

for(int j=0; j < 3; j++){
// Do something based
// on i and j
cout << i << “ “ << j;
cout << endl;

}
}
return 0;

}

0 0

0 1

0 2

1 0

1 1

1 2

Output:

46

Nested Loops
• Write a program using nested

loops to print a multiplication
table of 1..12

• Tip: Decide what abstract
“thing” your iterating through
and “read” the for loop as “for
each “thing” …
– For each “row” …

• For each column…
print the product

#include <iostream>

using namespace std;

int main()
{

for(int r=1; r <= 12; r++){
for(int c=1; c <= 12; c++){

cout << r*c;
}

}
return 0;

}

1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

This code will print some not so

nice output:

1234567891011122468101214161

8202224…

47

Nested Loops
• Tip: Decide what abstract “thing”

your iterating through and “read”
the for loop as “for each “thing” …
– For each “row” …

• For each column…
print the product followed by a space

• Print a newline

#include <iostream>

using namespace std;

int main()
{

for(int r=1; r <= 12; r++){
for(int c=1; c <= 12; c++){

cout << “ “ << r*c;
}
cout << endl;

}
return 0;

}

1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

This code will still print some not

so nice output:

1 2 3 4 5 6 7 8 9 10 11 12

2 4 6 8 10 12 14 16 18 20 22 24

48

Nested Loops
• Tip: Decide what abstract

“thing” your iterating through
and “read” the for loop as “for
each “thing” …
– For each “row” …

• For each column…
print the product

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

for(int r=1; r <= 12; r++){
for(int c=1; c <= 12; c++){

cout << setw(4) << r*c;
}
cout << endl;

}
return 0;

}

1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

49

Nested Loop Practice

• 5PerLine series

– In-class-exercises:
• 5perlineA

• 5perlineB

• 5perlineC

– Each exercise wants you to print out the integers from 100
to 200, five per line, as in:

100 101 102 103 104

105 106 107 108 109

...

195 196 197 198 199

200

50

break and continue

• Break and continue apply only to
the inner most loop (not all loops
being nested)

– Break ends the current (inner-most)
loop immediately

– Continue starts next iteration of inner-
most loop immediately

• Consider problem of checking if a
'!' exists anywhere in some lines of
text

– Use a while loop to iterate through
each line

– Use a for loop to iterate through each
character on a particular line

– Once we find first '!' we can stop

bool flag = false;
while(more_lines == true){

// get line of text from user
length = get_line_length(...);

for(j=0; j < length; j++){
if(text[j] == '!'){

flag = true;
break ; // only quits the for loop

}
}

}

bool flag = false;
while(more_lines == true && ! flag){

// get line of text from user
length = get_line_length(...);

for(j=0; j < length; j++){
if(text[j] == '!'){

flag = true;
break ; // only quits the for loop

}
}

}

51

C LIBRARIES & RAND()

52

Preprocessor & Directives

• Somewhat unique to C/C++

• Compiler will scan through C code looking for directives (e.g.
#include, #define, anything else that starts with '#')

• Performs textual changes, substitutions, insertions, etc.

• #include <filename> or #include "filename"
– Inserts the entire contents of "filename" into the given C text file

• #define find_pattern replace_pattern
– Replaces any occurrence of find_patternwith replace_pattern

– #define PI 3.14159

Now in your code:
x = PI;

is replaced by the preprocessor with
x = 3.14159;

53

#include Directive
• Common usage: To include “header files” that allow us to

access functions defined in a separate file or library

• For pure C compilers, we include a C header file with its
filename: #include <stdlib.h>

• For C++ compilers, we include a C header file without the .h
extension and prepend a ‘c’: #include <cstdlib>

C Description C++ Description

stdio.h
cstdio

Old C Input/Output/File access iostream I/O and File streams

stdlib.h
cstdlib

rand(), Memory allocation, etc. fstream File I/O

string.h
cstring

C-string library functions that operate
on character arrays

string C++ string class that defines the ‘string’
object

math.h
cmath

Math functions: sin(), pow(), etc. vector Array-like container class

54

rand() and RAND_MAX

• (Pseudo)random number generation in C is accomplished with
the rand() function declared/prototyped in cstdlib

• rand() returns an integer between 0 and RAND_MAX
– RAND_MAX is an integer constant defined in <cstdlib>

• How could you generate a flip of a coin [i.e. 0 or 1 w/ equal prob.]?

int r;

r = rand() ;
if(r < RAND_MAX/2){ cout << "Heads"; }

• How could you generate a decimal with uniform probability of being
between [0,1]

double r;

r = staic_cast<double>(rand()) / RAND_MAX;

55

Seeding Random # Generator

• Re-running a program that calls rand() will generate the same sequence of
random numbers (i.e. each run will be exactly the same)

• If we want each execution of the program to be different then we need to
seed the RNG with a different value

• srand(int seed) is a function in <cstdlib> to seed the RNG with the value of
seed

– Unless seed changes from execution to execution, we’ll still have the same
problem

• Solution: Seed it with the day and time [returned by the time() function
defined in ctime]

– srand(time(0)); // only do this once at the start of the program

– int r = rand(); // now call rand() as many times as you want

– int r2 = rand(); // another random number

– // sequence of random #’s will be different for each execution of program

Only call srand() ONCE at the start of the program, not each
time you want to call rand()!!!

Approximate rand() function:

val = ((val * 1103515245) + 12345) % RAND_MAX;

56

Common Loop Tasks

• Aggregation / Reduction
– Sum or combine information from many

pieces to a single value

– E.g. Sum first 10 positive integers

– Declare aggregation variable and initialize
it outside the loop and update it in each
iteration

• Search for occurrence
– Find a particular occurrence of some

value or determine it does not exist

– Declare a variable to save the desired
occurrence or status, then on each
iteration check for what you are looking
for, and set the variable if you find it and
break the loop

// aggregation example
int sum = 0;
for(int i=1; i <= 10; i++){

sum += i;
}

// search for first perfect square
// between m and n
int square = -1; // default
for(int i=m; i <= n; i++){

if(sqrt(i)*sqrt(i) ==
(double)i){

square = i;
break;

}
}
if(square != -1){

// we have found such an int
}

57

Tracing Answers
For 1:
0 1 2 3 4 5

For 2:
1 3 5 7 9

For 3:
0 2 5 9 14

For 4:
11 6 5

For 5:
a d g j

For 6:
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
-0.000

While loop 1:
15 4
11 3
8 2
6 1

While loop 2:
1 0
0 0

While loop 3:
Found x = 11

