
1

CS 103 Lecture 2 Slides

C/C++ Basics

Mark Redekopp

2

Announcements
• Ensure you can gain access to Vocareum.com

• Lab 1 review answers must be submitted on our website
– Attend lab to meet your TAs and mentors and get help with lab 1

3

PROGRAM STRUCTURE AND
COMPILATION PROCESS

A quick high-level view before we dive into the details…

4

C/C++ Program Format/Structure
• Comments

– Anywhere in the code

– C-Style => "/*" and "*/"

– C++ Style => "//"

• Compiler Directives

– #includes tell compiler what other library
functions you plan on using

– 'using namespace std;' -- Just do it for now!

• main() function

– Starting point of execution for the program

– All code/statements in C must be inside a
function

– Statements execute one after the next and
end with a semicolon (;)

– Ends with a 'return 0;' statement

• Other functions

– printName() is a function that can be
"called"/"invoked" from main or any other
function

/* Anything between slash-star and
star-slash is ignored even across
multiple lines of text or code */

// Anything after "//" is ignored on a line

// #includes allow access to library functions
#include <iostream>
#include <cmath>
using namespace std;

void printName()
{

cout << "Tommy Trojan" << endl;
}

// Execution always starts at the main() function
int main()
{

cout << "Hello: " << endl;
printName();
printName();
return 0;

}

Hello:
Tommy Trojan
Tommy Trojan

5

Software Process

Executable

Binary Image

("test")

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

C++ file(s)

(test.cpp)

Compiler

#include <iostream>

using namespace std;

int main()

{ int x = 5;

cout << "Hello"

<< endl;

cout << "x=" << x;

return 0;

}

g++
Load &

Execute

2 Compile & fix compiler

errors
1 Edit & write

code
3 Load & run the

executable program

Std C++ & Other

Libraries

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

6

Software Process

Executable

Binary Image

("test")

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

C++ file(s)

(test.cpp)

Compiler

#include <iostream>

using namespace std;

int main()

{ int x = 5;

cout << "Hello"

<< endl;

cout << "x=" << x;

return 0;

}

g++
Load &

Execute

$ g++ –g –Wall –o test test.cpp
or
$ make test

$ g++ –g –Wall –o test test.cpp

$./test

2 Compile & fix compiler

errors
1 Edit & write

code
3 Load & run the

executable program

-g = Enable Debugging

-Wall =Show all warnings

-o test = Specify Output executable name

Std C++ & Other

Libraries

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

7

MODULE 1:
DATA REPRESENTATION AND TYPES

8

Memory

• Recall all information in a computer is
stored in memory

• Memory consists of cells that each store a
group of bits (usually, 1 byte = 8 bits)

• Unique address assigned to each cell
– Used to reference the value in that location

• We first need to understand the various
ways our program can represent data and
allocate memory

• When programming
it is necessary to
understand how data is
stored

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

Address Data

Memory

Device

S 2

5

5

5

3 F

4

4

4

4 3

5

4

1

2

F

55

9

Starting With Numbers

• A single bit can only represent 1 and 0

• To represent more than just 2 values
we need to use
combinations/sequences of many bits

– A byte is defined as a group 8-bits

– A word varies in size but is usually 32-bits

• So how do we interpret those
sequences of bits?

– Let's learn about number systems

01000001

1
A bit

A byte

0101110 11010001 10110101 01110111

A word

10

Binary Number System

• Humans use the decimal number system

– Based on number 10

– 10 digits: [0-9]

• Because computer hardware uses digital
signals with 2 values, computers use the
binary number system

– Based on number 2

– 2 binary digits (a.k.a bits): [0,1]

11

Binary Numbers

128 64 32 16 8 4 2 1

• To represent numbers, there is an implicit weight or
place value for each 1 or 0

• The weights are the powers of 2

– 20, 21, 22, 23, …

• The value of the number is the sum of the weights in
which there is a 1

128 64 32 16 8 4 2 1

0 1 1 0 0 1 1 1 = ______

1 0 0 1 1 0 0 1 = ______

12

Combinations

• Because we have a finite
number of bits, we can only
make a finite set of numbers

• How many numbers
(combinations) can we make
with n bits?
– ________

– Use the examples on the right to
induce the relationship of how
many #s can be formed with n-bits

0
1

00
01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1-bit

(2 #s)
2-bits

(4 #s)

3-bits

(8 #s)

4-bit

(16 #s)

13

Sign

512 256 128 64 32 16 8 4 2 11024

• Is there any limitation if we only use the powers of
some base as our weights?

– Can't make negative numbers

• What if we change things

– How do humans represent negative numbers?

– Can we do something similar?

512 256 128 64 32 16 8 4 2 1

14

C Integer Data Types

• In C/C++ constants & variables can be of different types
and sizes

– A Type indicates how to interpret the bits and how much
memory to allocate

– Integer Types (signed by default… unsigned with optional
leading keyword)

C Type
(Signed)

C Type (Unsigned) Bytes Bits Signed Range Unsigned
Range

char unsigned char 1 8 -128 to +127 0 to 255

short unsigned short 2 16 -32768 to +32767 0 to 65535

int unsigned int 4 32 -2 billion to
+2 billion

0 to 4 billion

long long unsigned long long 8 64 -8*1018 to +8*1018 0 to 16*1018

15

C Floating Point Types

• float and double types:
– Allow decimal representation (e.g. 6.125) as well as very large integers

(+6.023E23)

C Type Bytes Bits Range

float 4 32 ±7 significant digits * 10+/-38

double 8 64 ±16 significant digits * 10+/-308

• Prefer double over float
– Many compilers will upgrade floats to doubles anyhow

• Don't use floating-point if you don't need to
– It suffers from rounding error

– Some additional time overhead to perform arithmetic operations

16

Text

• Text characters are usually represented with
some kind of binary code (mapping of
character to a binary number such as 'a' =
01100001 bin = 97 dec)

• ASCII = Traditionally an 8-bit code
– How many combinations (i.e. characters)?

– English only

• UNICODE = 16-bit code
– How many combinations?

– Most languages w/ an alphabet

• In C/C++ a single printing/text character
must appear between single-quotes (')
– Example: 'a', '!', 'Z'

http://www.theasciicode.com.ar/

17

Interpreting Binary Strings

• Given a string of 1’s and 0’s, you need to know the
representation system being used, before you can
understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

– Types provide the context (system)

01000001 = ?

6510 ‘A’ASCII

Unsigned

Binary system ASCII

system

18

MODULE 2:
CONSTANTS, VARIABLES, AND
EXPRESSIONS

19

Constants
• Integer: 496, 10005, -234

• Double: 12.0, -16., 0.23, -2.5E-1, 4e-2

• Characters (char type): enclosed in single quotes
– Printing characters: 'a', '5', 'B', '!'

– Non-printing special characters use "escape" sequence (i.e. preceded by a \):
'\n' (newline/enter), '\t' (tab) , '\\' (slash), '\'' (apostrophe)

• C-Strings
– 0 or more characters between double quotes

"hi1\n", "12345", "b", "\tAns. is %d"

– Ends with a '\0'=NULL character added as the last
byte/character to allow code to delimit the end of the string

• Boolean (C++ only): true, false
– Physical representation: 0 = false, (Non-zero) = true

104

105

49

10

00

17

…

0

1

2

3

4

5

59

c3

6

7

‘h’

‘i’

‘1’

‘\n’

Null

String Example

(Memory Layout)

20

You're Just My Type

• Indicate which constants are matched with
the correct type.

Constant Type Right / Wrong

4.0 int

5 int

'a' string

"abc" string

5. double

5 char

"5.0" double

'5' int

Solutions are provided at the end of the slide packet.

21

What's Your Type

What am I storing?

Text/Character(s)

for displayNumber

What kind of number is it? Is it a single char or many (i.e.

a string of chars)?

Contains a

decimal/fractional

value

Logical

(true/false) value

Single Many

Use a…

bool

Use a…

double char string

Use a…Use a…

3.0,
3.14159,
6.27e23

'a', '1',
'.'

"Hi",
"2020"

true,
false

Integer

What range of values

might it use?

unsigned
int

Positive

only

Possibly

negative

int

Use an…Use an…

0,
2147682,

…

0,
-2147682,
2147682

22

EXPRESSIONS & VARIABLES

23

Arithmetic Operators

• Addition, subtraction, multiplication work as expected for
both integer and floating point types

• Division works ‘differently’ for integer vs. doubles/floats

• Modulus is only defined for integers

Operator Name Example

+ Addition 2 + 5

- Subtraction 41 - 32

* Multiplication 4.23 * 3.1e-2

/ Division
(Integer vs. Double division)

10 / 3 (=3)
10.0 / 3 (=3.3333)

% Modulus (remainder)
[for integers only]

17 % 5
(result will be 2)

17 % 10 = __
4 % 7 = __

24

Precedence
• Order of operations/

evaluation of an expression

• Top Priority = highest
(done first)

• Notice operations with the
same level or precedence
usually are evaluated left to
right (explained at bottom)

• Evaluate:
– 2*-4-3+5/2;

• Tips:
– Use parenthesis to add clarity

– Add a space between literals
(2 * -4) – 3 + (5 / 2)

January 2007 v2.2. Copyright °c 2007 Joseph H. Silverman

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

Send comments and corrections to J.H. Silverman, Math. Dept., Brown

Univ., Providence, RI 02912 USA. hjhs@math.brown.edui

25

Division

• Computers perform division differently based on the
type of values used as inputs

• Integer Division:

– When dividing two integral values, the result will also be
an integer (any remainder/fraction will be dropped)

– 10 / 4 = 2 52 / 10 = 5 6 / 7 = 0

• Floating-point (Double) & Mixed Division

– 10.0 / 4.0 = 2.5 52.0 / 10 = 5.2 6 / 7.0 = 0.8571

– Note: If one input is a double, the other will be promoted
temporarily to compute the result as a double

26

Exercise Review

• Evaluate the following:

– 25 / 3

– 17 + 5 % 2 – 3

– 28 - 5 / 2.0

Exercises from: D.S. Malik, C++ Programming, 5th Ed., Ch. 2, Q6.

27

C/C++ Variables

• Variables allow us to
– Store a value until it is needed and change its

value potentially many times

– Associate a descriptive name with a value

• Variables are just memory locations that are
reserved to store one piece of data of
specific size and type

• Programmer indicates what variables they
want when they write their code
– Difference: C requires declaring all variables at

the beginning of a function before any operations.
C++ relaxes this requirement.

• The computer will allocate memory for
those variables as the program runs

• We can provide initial values via '=' or leave
them uninitialized

01000001

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

char c = 'A';

A single-byte

variable

01101000

11010001

6

7

int x;

A four-byte

variable

#include <iostream>
using namespace std;

int main()
{ // Sample variable declarations

char c = 'A';
int x; // uninitialized variables

// will have a (random) garbage
// value until we initialize it

x = 1; // Initialize x's value to 1
c = 'B'; // Change c's value to 'B'

}

Variables are actually allocated in

RAM when the program is run

A picture of computer memory

(aka RAM)

28

C/C++ Variables

• Variables have a:

– type [int, char, unsigned int, float, double, etc.]

– name/identifier that the programmer will use to
reference the value in that memory location [e.g. x,
myVariable, num_dozens, etc.]
• Identifiers must start with [A-Z, a-z, or an underscore ‘_’] and can

then contain any alphanumeric character [0-9, A-Z, a-z, _] (but no
punctuation other than underscores)

• Use descriptive names (e.g. numStudents, doneFlag)

• Avoid cryptic names (myvar1, a_thing)

– location [the address in memory where it is allocated]

– Value

• Reminder: You must declare a variable before using it

int quantity = 4;
double cost = 5.75;
cout << quantity*cost << endl;

4

quantity

1008412

cost

287144 5.75

Code

What's in a name?
To give descriptive names we often
need to use more than 1 word/term.
But we can't use spaces in our
identifier names. Thus, most
programmers use either camel-case or
snake-case to write compound names
Camel case: Capitalize the first letter
of each word (with the possible
exception of the first word)

myVariable, isHighEnough
Snake case: Separate each word with
an underscore '_'

my_variable, is_high_enough

Address

name

value

29

When To Introduce a Variable

• When a value will be supplied
and/or change at run-time (as the
program executes)

• When a value is computed/updated
at one time and used (many times)
later

• To make the code more readable by
another human

double a = (56+34) * (81*6.25);

// readability of above vs. below

double height = 56 + 34;
double width = 81 * 6.25;
double area = height * width;

30

Assignment operator ‘=‘
• Syntax:

variable = expression;

(LHS) (RHS)
– LHS = Left Hand-Side, RHS = Right Hand Side

• Should be read: Place the value of expression into memory location of
variable

– z = x + y – (2*z);

– Evaluate RHS first, then place the result into the variable on the LHS

– If variable is on both sides, we use the old/current value of the variable on the RHS

• Note: Without assignment values are computed and then forgotten
– x + 5; // will take x's value add 5 but NOT update x (just throws the result away)

– x = x + 5; // will actually updated x (i.e. requires an assignment)

• Shorthand assignment operators for updating a variable based on its
current value: +=, -=, *=, /=, &=, …
– x += 5; (x = x+5)

– y *= x; (y = y*x)

int x = 0;
x = x + 3;

current-value of x

(0)

new-value of x

(3)

31

Evaluate 5 + 3/2

• The answer is 6.5 ??

32

Casting
• To achieve the correct answer for 5 + 3 / 2

• Could make everything a double
– Write 5.0 + 3.0 / 2.0 [explicitly use doubles]

• Could use implicit casting (mixed expression)
– Could just write 5 + 3.0 / 2

• If operator is applied to mixed type inputs, less expressive type is automatically promoted
to more expressive (int is promoted to double)

• Could use C or C++ syntax for explicit casting
– 5 + (double) 3 / (double) 2 (C-Style cast)

– 5 + static_cast<double>(3) / static_cast<double>(2) (C++-Style)

– 5 + static_cast<double>(3) / 2 (cast one & rely on implicit cast of the other)

– This looks like a lot of typing compared to just writing 5 + 3.0 / 2…but
what if instead of constants we have variables

– int x=5, y=3, z=2; x + y/z;

– x + static_cast<double>(y) / z

33

MODULE 3:
C++ I/O (INPUT/OUTPUT)

cout and cin

34

I/O Streams
• I/O is placed in temporary buffers/streams by the OS/C++ libraries

• cin goes and gets data from the input stream (skipping over preceding
whitespace then stopping at following whitespace)

• cout puts data into the output stream for display by the OS (a flush forces
the OS to display the contents immediately)

7 5 y ... input stream:

#include<iostream>
using namespace std;
int main()
{
int x;
cin >> x;
return 0;

}

I t w a s t h e

output stream:

#include<iostream>
using namespace std;
int main()
{
cout << "It was the" << endl;
cout << "best of times.";

}

y ...input stream:

4

output stream:

b\n

It was the

35

C++ Output
• Include <iostream> (not iostream.h)

• Add using namespace std; at top of file

• Use an appropriate cout statement

• 'cout' requires appropriate use of
separators << between consecutive values
or different types of values

• 'cout' does not add spaces between
consecutive values; you must do so
explicitly

– Since text strings are a different value we

must separate it with the '<<' operator

• Generally good practice to give some
descriptive text with your numeric output
– Note: You may divide up output over multiple

'cout' statements. Unless an 'endl' or '\n' is
used the next 'cout' statement will resume where
the last one left off

#include<iostream>
using namespace std;

int main(int argc, char *argv[])
{

int x = 5;
char c = 'Y';
double y = 4.5;

cout << "Hello world" << endl;
cout << "x = " << x;
cout << " c = " << c << "\ny is "

<< y << endl;
return 0;

}

Output from program:
Hello world

x = 5 c = Y

y is 4.5

36

C++ Input

• cin (character input) object used to
accept input from the user and write
the value into a variable
– Use the '>>' operator to separate any number

of variables or constants you want to read in

– Every '>>' will skip over any leading
whitespace looking for text it can convert to
the variable form, then stop at the trailing
whitespace

#include <iostream>
#include <string>
using namespace std;
int main(int argc, char *argv[])
{

int x;
char c;
string mystr;
double y;

cout << "Enter an integer, character,
string, and double separated by
spaces:" << endl;

cin >> x >> c >> mystr >> y;

cout << "x = " << x << " c = ";
cout << c << "mystr is " << mystr;
cout << "y is " << y << endl;
return 0;

}

Output from program:

Enter an integer, character, string, and double separated by spaces:
5 Y hi 4.5
x = 5 c = Y mystr is hi y is 4.5

37

cin

• If the user types in

#include<iostream>
using namespace std;

int main()
{

char c = 0;
double y = 0.0;

cin >> myc;
cin >> y;
// use the variables somehow...
return 0;

}

a \t 3 . 5

y =c = 0 0.0

y =c = 'a' 0.0

y =c = 'a' 3.5

• After the first '>>'

3 . 5

\n

\n

• After the second '>>'

\n

\t cin will:

• skip leading whitespace
• stop at trailing whitespace

assume these are spaces

38

Understanding ASCII and chars

• Characters can still be treated as
numbers

char c = 'a'; // same as char c = 97;
char d = 'a' + 1; // c now contains 'b' = 98;
cout << d << endl; // I will see 'b' on the screen

char c = '1'; // c contains decimal 49, not 1
// i.e. '1' not equal to 1

c >= 'a' && c <= 'z'; // && means AND
// here we are checking if c is
// storing a lower case letter

97

char c

39

In-Class Exercises

• Checkpoint 1

40

MODULE 4: ODDS & ENDS
(LIBRARY FUNCTIONS,
ASSIGNMENT, AND CASTING)

41

Assignment Means Copy
• Assigning a variable makes a copy

• Challenge: Swap the value of 2
variables

int main()
{

int x = 5, y = 3;
x = y; // copy y into x

return 0;
}

3

y

5

x

7

a

9

b

9

a

9

b

int main()
{

int a = 7, b = 9;

// now consider swapping
// the value of 2 variables
a = b;
b = a;

return 0;
}

42

More Assignments
• Assigning a variable makes a copy

• Challenge: Swap the value of 2
variables
– Easiest method: Use a 3rd temporary

variable to save one value and then replace
that variable int main()

{
int a = 7, b = 9, temp;

// let's try again
temp = a;
a = b;
b = temp;

return 0;
}

7

a

9

b

9

a

9

b

7

temp

9

a

7

b

1

2

3

43

Problem Solving Idioms

• An idiom is a colloquial or common
mode of expression

– Example: "raining cats and dogs"

• Programming has common modes of
expression that are used quite often to
solve problems algorithmically

• We have developed a repository of these
common programming idioms. We
STRONGLY suggest you

– Reference them when attempting to
solve programming problems

– Familiarize yourself with them and their
structure until you feel comfortable
identifying them

http://bytes.usc.edu/cs102/idioms.html

44

Assignment Idioms: Shifting and Rotation

• The shifting idiom shifts data among variables usually
replacing/dropping some elements to make room for
new ones

– The key pattern is some elements get dropped/overwritten
and other elements are reassigned/moved

– It is important to start by assigning the variable to be
replaced/dropped and then move in order to variables
receiving newer data

– Examples: Top k items (high score list)

• The rotation idiom reorders or rearranges data among
variables without replacing/dropping elements

– The key pattern is all elements are kept but just reordered

– It is usually necessary to declare and maintain some
temporary variable to avoid elements getting
dropped/overwritten

10 20 50

40
x1 x2 x3

10 20 50

x1 x2 x3

20 50 40

20 50 10

Shifting Idiom

Rotation Idiom

45

A Few Odds and Ends

• Variable Initialization

– When declared they will have
"garbage" (random or unknown)
values unless you initialize them

– Each variable must be initialized
separately

• Scope

– Global variables are visible to all
the code/functions in the program
and are declared outside of any
function

– Local variables are declared inside
of a function and are only visible in
that function and die when the
function ends

/*----Section 1: Compiler Directives ----*/
#include <iostream>
#include <cmath>
using namespace std;

// Global Variables
int x; // Anything after "//" is ignored

int add_1(int input)
{

// y and z not visible here, but x is
return (input + 1);

}

int main(int argc, char *argv[])
{

// y and z are "local" variables
int y, z=5; // y is garbage, z is five

z = add_1(z);
y = z+1; // an assignment stmt
cout << y << endl;
return 0;

}

46

Math & Other Library Functions

• C++ predefines a variety of functions for you. Here are
a few of them:

– sqrt(x): returns the square root of x (in <cmath>)

– pow(x, y): returns xy, or x to the power y
(in <cmath>)

– sin(x)/cos(x)/tan(s): returns the trig. Function's
value for x if x is in radians (in <cmath>)

– abs(x): returns the absolute value of x (in <cstdlib>)

– max(x, y) and min(x,y): returns the
maximum/minimum of x and y (in <algorithm>)

• You call these by writing them similarly to how you
would use a function in mathematics [using
parentheses for the inputs (aka) arguments]

• Result is replaced into bigger expression

• Must #include the correct library
– #includes tell the compiler about the various pre-defined

functions that your program may choose to call

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
{

// can call functions
// in an assignment
double res = cos(0); // res = 1.0

// can call functions in an
// expression
res = sqrt(2) / 2; // res = 1.414/2

cout << max(34, 56) << endl;
// outputs 56

return 0;
}

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

47

Statements
• C/C++ programs are composed of statements

• Most common kinds of statements end with a semicolon

• Declarations (e.g. int x=3;)

• Assignment + Expression (suppose int x=3; int y;)
– x = x * 5 / 9; // compute the expression & place result in x

// x = (3*5)/9 = 15/9 = 1

• Assignment + Function Call (+ Expression)
– x = cos(0.0) + 1.5;

– sin(3.14); // Must save or print out the result (x = sin(3.14), etc.)

• cin, cout statements
– cout << cos(0.0) + 1.5 << " is the answer." << endl;

• Return statement (immediately ends a function)
– return value;

48

Pre- and Post-Increment Operators

• ++ and -- operators can be used to "increment-by-1" or "decrement-by-1"
– If ++ comes before a variable it is call pre-increment; if after, it is called post-increment

– x++; // If x was 2 it will be updated to 3 (x = x + 1)

– ++x; // Same as above (no difference when not in a larger expression)

– x--; // If x was 2 it will be updated to 1 (x = x – 1)

– --x; // Same as above (no difference when not in a larger expression)

• Difference between pre- and post- is only evident when used in a larger
expression

• Meaning:
– Pre: Update (inc./dec.) the variable before using it in the expression

– Post: Use the old value of the variable in the expression then update (inc./dec.) it

• Examples [suppose we start each example with: int y; int x = 3;]
– y = x++ + 5; // Post-inc.; Use x=3 in expr. then inc. [y=8, x=4]

– y = ++x + 5; // Pre-inc.; Inc. x=4 first, then use in expr. [y=9, x=4]

– y = x-- + 5; // Post-dec.; Use x=3 in expr. then dec. [y=8, x=2]

49

In-Class Exercises

• Checkpoint 2

50

SOLUTIONS

51

You're Just My Type

• Indicate which constants are matched with
the correct type.

Constant Type Right / Wrong

4.0 int double (.0)

5 int int

'a' string char

"abc" string C-string

5. double float/double (. = non-integer)

5 char Int…but if you store 5 in a char
variable it'd be okay (char = some
number that fits in 8-bits/1-byte

"5.0" double C-string

'5' int char

