
1

CSCI 103
More Recursion, Linked List

Recursion, and
Generating All Combinations

Mark Redekopp

2

Tracing Recursive Algorithms

3

Tracing Recommendations

• Show the call tree

– Draw each instance of a recursive function as a
box and list the inputs passed to it

– When you hit a recursive call draw a new box with
an arrow to it and label the arrow with the line
number of where you left off in the caller

4

Analyze These!

• What does this function
print? Show the call tree?

• What is the runtime in
terms of n?

00: void rfunc(int n, int t) {
01: if (n == 0) {
02: cout << t << " ";
03: return;
04: }
05: rfunc(n-1, 3*t);
06: rfunc(n-1, 3*t+2);
07: rfunc(n-1, 3*t+1);
08: }
09: int main() {
10: rfunc(2, 0);
11: }

rfunc(2,0)

rfunc(1,0)

5

5

Analyze These!

• What does this function
return for g(3122013)

int g(int n)
{

if (n % 2 == 0)
return n/10;

return g(g(n/10));
}

6

Get The Code

• If you have not already performed the recursive
floodfill exercise on Vocareum or your own machine,
please get the code:

• Vocareum Assignment: Sandbox – Recursion

• Download code to your own machine

– Create a folder and at the terminal 'cd' to that folder
– wget http://ee.usc.edu/~redekopp/cs103/floodfill.tar

– tar xvf floodfill.tar

7

Flood Fill

• Imagine you are given an image with
outlines of shapes (boxes and circles)
and you had to write a program to
shade (make black) the inside of one
of the shapes. How would you do it?

• Flood fill is a recursive approach

• Given a pixel
– Base case: If it is black already, stop!

– Recursive case: Call floodfill on each
neighbor pixel

– Hidden base case: If pixel out of bounds,
stop!

8

Recursive Flood Fill

• Recall the recursive
algorithm for flood fill?

– Base case: black pixel, out-of-
bounds

– Recursive case: Mark current
pixel black and then recurse
on your neighbors

void flood_fill(int r, int c)
{

if(r < 0 || r > 255)
return;

else if (c < 0 || c > 255) {
return;

}
else if(image[r][c] == 0) {

return;
}
else {

// set to black
image[r][c] = 0;
flood_fill(r-1,c); // north
flood_fill(r,c-1); // west
flood_fill(r+1,c); // south
flood_fill(r,c+1); // east

}
}

9

Recursive Ordering
• Give the recursive ordering of all calls for recursive flood fill

assuming N, W, S, E exploration order starting at 4,4
– From what square will you first explore to the west?

– From what square will you first explore south?

– From what square will you first explore east?

– What is the maximum number of recursive calls that will be alive at any
point in time?

0,0 0,1 0,2 0,3 0,4 0,5

1,0

2,0

3,0

4,0 4,4

5,0

6,0

7,0

10

Recursive Ordering
• Give the recursive ordering of all calls for recursive flood fill

assuming N, W, S, E exploration order starting at 4,4
– From what square will you first explore to the west?

– From what square will you first explore south?

– From what square will you first explore east?

– What is the maximum number of recursive calls that will be alive at any
point in time?

– Notice recursive flood fill goes
deep before it goes broad

– Also notice that each call that is
not a base case will make 4 other
recursive calls

0,0 0,1 0,2 0,3 0,4 0,5

1,0

2,0

3,0

4,0 4,4

5,0

6,0

7,0

11

Developing Recursive Algorithms

12

Recursive Approach

Steps to developing recursive algorithms & then coding them

• Identify the recursive structure
– How can a large version of the problem be solved with solutions to

smaller versions of the problem

– What do we need to do BEFORE recursing (i.e. what am I responsible
for, what information do I need to extract, how to I create the smaller
problem, etc.)?

– What do we need to do AFTER we return from recursing (i.e. how do I
take the smaller solution I get and combine it with the information I
extracted to generate the bigger solution)?

• Identify base cases (i.e. when to stop)

• Ensure each recursive call makes progress toward one base
case (i.e. avoid infinite recursions)

13

TOWERS OF HANOI

14

Towers of Hanoi Problem
• Problem Statements: Move n discs from source pole to

destination pole (with help of a 3rd alternate pole)
– Can only move one disc at a time

– CANNOT place a LARGER disc on top of a SMALLER disc

3
2
1

A

(src)

B

(dst)

C

(alt)

A

(src)

B

(dst)

C

(alt)

Start (n=3) Goal (n=3)

3
2
1

A B C

Not allowed

3
2
1

15

Finding Recursive Structure (1)

• Moving n discs to the destination starts with
the task of moving n-1 discs to the alternate

3
2
1

A

(src)

B

(dst)

C

(alt) A B C

Start (n=4)

A B C

Solved

4 3
2
1

4

3
2
1

4 3
2
1

4

A B C

16

Defining Recursive Case

3
2
1

A

(src)

B

(dst)

C

(alt) A B C

Start (n=4)

A B C

Solved

4 3
2
1

4

3
2
1

4 3
2
1

4

A B C

Recursive case:
1. Move n-1 discs from SRC to ALT <-- recursive call
2. Move disc n from SRC to DST <-- work on disc you are responsible for

3. Move n-1 discs from ALT to SRC <-- recursive call

17

Defining Base Case

A

(src)

B

(dst)

C

(alt)

Disc 1

A B C

Solved

3
2
1

4

Base case:
1. Smallest disc (n=1) can always be moved from SRC to DST

1
3
2

4

18

Finding Recursive Function Signature

• What changes per call

– Number of discs to move

– Pole locations: SRC, DST, ALT

• Signature
– void towers(int n, char src, char dst, char alt);

• Base case: when n is 1
– Print "Move disc 1 from src to dst"

• Recursive case
– Recurse: towers(n-1, src, alt, dst);

– Print "Move disc n from src to dst"

– Recurse: towers(n-1, alt, dst, src);

19

Exercise

• Implement the Towers of Hanoi code

– Vocareum: Recursion-2

– Or on your VM
• $ wget http://ee.usc.edu/~redekopp/cs103/hanoi.cpp

– Just print out "move disc=x from y to z" rather than
trying to "move" data values
• Move disc 1 from a to b

• Move disc 2 from a to c

• Move disc 1 from b to c

• Move disc 3 from a to b

• Move disc 1 from c to a

• Move disc 2 from c to b

• Move disc 1 from a to b

20

Recursive Box Diagram

Towers(3,a,b,c)

Towers(2,a,c,b)

Towers(1,a,b,c) Move D=1 a to b

Move D=2 a to c

Towers(1,b,c,a) Move D=1 b to c

Move D=3 a to b

Towers(2,c,b,a)

Towers(1,c,a,b) Move D=1 c to a

Move D=2 c to b

Towers(1,a,b,c) Move D=1 a to b

towers(disc,src,dst,alt)

Towers Function Prototype

21

INT TO DIGITS
Convert a single integer to a queue (deque) of individual integer digits

22

Problem Statement and Approach

• Write a recursive function to convert a single positive
integer into a deque of the individual integer digits.

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

1265 8

0

1265 5 8

0 1

result

result

Input

Step 1

Step 2

… …

Approach
Finding Recursive Solutions
• Identify the recursive structure

• How can a large version of the
problem be solved with
solutions to smaller versions of
the problem?

• What 1 thing is each recursive
call responsible for

• What do we need to do BEFORE
recursing?

• What do we need to do AFTER
we return from recursing?

• Identify base cases (i.e. when to
stop)

• Ensure each recursive call makes
progress toward one base case

23

Deriving a Solution
• Identify the base case

– What trivial version of the problem can be easily solved?

• Recursive case:

– What 1 thing is each recursion responsible for?

– How do I extract one digit? Which digit?

– Where do I put that digit? Front or back of result?

– How do I make the problem smaller?

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

1265 8

0

result

Input

Step 1

Approach

24

Deriving a Solution
• Identify the base case

– What trivial version of the problem can be
easily solved? ___________________

• Recursive case:

– What 1 thing is each recursion responsible for?

– How do I extract one digit? Which digit? _____

– Where do I put that digit? Front or back of
result? __________________

– How do I make the problem smaller?

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

Input

void digits(
unsigned int n,
deque<int>& res)

{

}

25

Discussion (1)
• What if we recursed first and isolated the

digit after returning from the recursion.

• Update the code using this approach

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

Input

void digits(
unsigned int n,
deque<int>& res)

{

}

26

Discussion (2)

• How would main() be written to use digits()

• Why did we pass by the result deque by
reference?
– Challenge: Recode the solution using the signature,

deque<int> digits(unsigned int n);
thinking carefully about where copies of the deque
are made

deque<int> digits(
unsigned int n)

{
if(n < 10) {
deque<int> x;
x.push_front(n);
return x;

}
else {
deque<int> x =
digits(n);

x.push_back(n%10);
return x;

}

}

void digits(unsigned int n,
deque<int>& res);

int main()
{
int x; cin >> x;

// call digits

}

27

SORTING
Recursive Bubblesort and Mergesort

28

Sorting

• How can sorting be formulated
recursively?
– Actually many ways! Can you think of an easy

way?

• Many sorting algorithms of differing
complexity (i.e. faster or slower)

• Bubble Sort – O(n2) runtime
– On each pass through thru the list, move the

maximum element to the end of the list.

– Then _________ using a list of size _____

7 3 8 6 5 1List

index

Original

1 2 3 4 50

1 3 5 6 7 8List

index

Final answer

1 2 3 4 50

29

Iterative Bubble Sort Algorithm
n ← length(List);

for(i=n-2; i >= 1; i--)

for(j=1; j <= i; j++)

if (List[j] > List[j+1]) then

swap List[j] and List[j+1]

7 3 8 6 5 1

j i

Pass 1

3 7 8 6 5 1

j i

3 7 8 6 5 1

j i

3 7 6 8 5 1

j i

3 7 6 5 8 1

i,j

3 7 6 5 1 8

swap

no swap

swap

swap

swap

j i

Pass 2

3 7 6 5 1 8

j i

3 6 7 5 1 8

j i

3 6 5 7 1 8

3 6 5 1 7 8

i,j

no swap

swap

swap

swap

3 7 6 5 1 8

i

Pass n-1

1 3 5 6 7 8

i,j

1 3 5 6 7 8 swap

…

Bubblesort requires O(n2) time!

30

Sorting

• Bubble Sort – O(n2) runtime
– On each pass through thru the list, move the

maximum element to the end of the list.

– Then repeat/recurse on a list of size (n-1)

7 3 8 6 5 1List

index

Original

1 2 3 4 50

3 7 6 5 1 8List

index

After Pass 1

1 2 3 4 50

3 6 5 1 7 8List

index

After Pass 2

1 2 3 4 50

3 5 1 6 7 8List

index

After Pass 3

1 2 3 4 50

3 1 5 6 7 8List

index

After Pass 4

1 2 3 4 50

1 3 5 6 7 8List

index

After Pass 5

1 2 3 4 50

31

Recursive Sort (MergeSort)

• Break sorting problem into
smaller sorting problems and
merge the results at the end

• mergesort(start,end)

– if remaining list is size 1
• return

– else
• mergesort(start, (start+end)/2)

• mergesort(1+(start+end)/2, end)

• Merge each sorted list of n/2
elements into a sorted n-element list

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,7)

Mergesort(0,3) Mergesort(4,7)

Mergesort(0,1)
Mergesort(2,3)
Mergesort(4,5)
Mergesort(6,7)

32

Recursive Sort (MergeSort)

• Run-time analysis
– # of recursion levels =

• ___________

– Total operations to merge each level =

• ___ operations total to merge
two lists over all recursive
calls

• mergesort = O(___________)

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,7)

Mergesort(0,3) Mergesort(4,7)

Mergesort(0,1)
Mergesort(2,3)
Mergesort(4,5)
Mergesort(6,7)

33

FINDING THE SQUARE ROOT

34

Square Root Finder
• Suppose we did not have the sqrt(x) function available in

the math library

• How could we develop an algorithm to find the square root

• What is the range of possible answers to sqrt(x)?
– Is the square root of x always smaller than x?

– We can certainly bound sqrt(x) by _____________

• How can we find the sqrt(x)?
– We could just start guessing by picking values, n, and squaring them to

see if they are close to x (within some ε)

4 +∞0
Sqrt(4)

35

Square Root Finder
• Suppose we did not have the sqrt(x) function available in

the math library

• How could we develop an algorithm to find the square root

• What is the range of possible answers to sqrt(x)?
– Is the square root of x always smaller than x?

– We can certainly bound sqrt(x) by [0, x+1]

• How can we find the sqrt(x)?
– We could just start guessing by picking values, n, and squaring them to

see if they are close to x (within some ε)

– To be more efficient we could use a binary search of the number line

4 +∞0
Sqrt(4)

52.51.25

1.87

123

4

36

Recursive Helper Functions
• Sometimes we want to provide a user with a simple interface

(arguments, etc.), but to implement it recursively we need
additional arguments to our function

• In that case, we often let the top-level, simple function call a
recursive "helper" function that provides the additional
arguments needed to do the work
– double sqrt(double x); // User Interface

– double sqrt(double x, double lo, double hi); // Helper

• In-class-exercise: sqrt
– Find the square root of, x, without using sqrt function…

– Pick a number, square it and see if it is equal to x

– Use a binary search to narrow down the value you pick to square

4 +∞0
Sqrt(4)

52.51.25

1.87

37

RECURSION & LINKED LISTS

38

Linked Lists and Recursion

• Consider a linked list with a head pointer

• If you were given the pointer at head->next, isn't
that a "head" pointer to the n-1 other items in the list?

val next

3 0x1c0

val next

9 0x1680x148

head 0x148 0x1c0

val next

2
0x0

(Null)

0x168

"head"

0x1c0

val next

9 0x168

0x1c0

val next

2
0x0

(Null)

0x168

"head"

0x168

val next

2
0x0

(Null)

0x168

val next

3 0x1c0

val next

9 0x1680x148

head 0x148 0x1c0

val next

2
0x0

(Null)

0x168

39

Exercises

• In-Class exercises

– Monkey_recurse

– Monkey_recback

– List_max

– Monkey_reverse

Childs toy "Barrel of Monkeys" let's

children build a chain of monkeys that

can be linked arm in arm

http://www.toysrus.com/graphics/tru_prod_images/Barrel-of-Monkeys-Game----pTRU1-2907042dt.jpg

40

Recursive Operations on Linked List

• Many linked list operations can be recursively defined

• Can we make a recursive iteration function to print items?

– Recursive case: Print one item then the problem becomes to print the n-1 other items.

• Notice that any 'next' pointer can be though of as a 'head' pointer to the remaining sublist

– Base case: Empty list
(i.e. Null pointer)

void print(Item* ptr)
{

if(ptr == NULL) return;
else {
cout << ptr->val << endl;
print(ptr->next);

}
}
int main()
{ Item* head;

...
print(head);

}

val next

3 0x1c0

val next

9
0x0

NULL

0x148head 0x148 0x1c0

main
0x148 head0xbf8

00400120
Return

link
0xbfc

0x148 ptr0xbf0

004001844
Return

link
0xbf4

print

0x1c0 ptr0xbe8

004001844
Return

link
0xbec

print

0x0 ptr0xbe8

004001844
Return

link
0xbec

print

41

Generating All Combinations
Using Recursion

Making multiple recursive calls

42

Recursion's Power

• The power of recursion often
comes when each function
instance makes multiple
recursive calls

• As you will see this often
leads to exponential number
of "combinations" being
generated/explored in an
easy fashion

void rfunc1(int n)
{

...

rfunc1(n-1);

...

}

void rfunc2(int n)
{

...

t = rfunc2(n-1);

s = rfunc2(n-2);

...

}

1 Recursive Call

Multiple Recursive Calls

43

Binary Combinations

• If you are given the value, n,
and a string with n
characters could you
generate all the
combinations of n-bit
binary?

• Do so recursively!

0
1

00
01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1-bit

Bin.
2-bit

Bin.

3-bit

Bin.

4-bit

Bin.

Exercise: bin_combo_str

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

44

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{

binCombos(_____________);
}
// helper-function
void binCombos(string prefix,

int len)
{

}

45

Generating All Combinations
• Recursion offers a simple way to generate all combinations of N

items from a set of options, S
– Example: Generate all 2-digit decimal numbers (N=2, S={0,1,…,9})

void TwoDigCombos(string data,
int curr)

{
if(curr == 2)

cout << data;
else {

for(int i=0; i < 10; i++){
// set to i
data += '0' + (char)i;
// recurse
TwoDigCombos(data, curr+1);

}
}

}

TDC(data,0)

TDC(data,1) TDC(data,1)…

TDC(2) TDC(2) TDC(2) TDC(2) TDC(2)

…

0 0 '\0' 9 9 '\0'

1 - '\0' 2 - '\0'0 - '\0'

TDC(data,1)

0 9 '\0' 9 0 '\0'

…

…

…

46

Recursion and Combinations
• Consider the problem of generating all

2-length combinations of a set of values, S.

– Ex. Generate all length-n combinations of
the letters in the set S={'U','S','C'} (i.e. UU,
US, UC, SU, SS, SC, CU, CS, CC)

– How could you do it with loops (how many
loops would you need)?

• Consider the problem of generating all
3-length combinations of a set of values, S.

– Ex. Generate all length-n combinations of
the letters in the set S={'U','S','C'} (i.e. UUU,
UUS, UUC, USU, USS, USC, etc.)

– How many loops would you need?

• Consider the problem of generating all
n-length combinations of a set of values, S.

– How many loops would you need? Is that
even possible?

void usccombos2()
{

char str[3] = "--";
char vals[3] = {'U','S','C'};
for(int i=0; i != 3; i++){

str[0] = vals[i];
for(int j=0; j != 3; j++){

str[1] = vals[j];
cout << str << endl;

}
}

}

void usccombos3()
{

char str[4] = "---";
char vals[3] = {'U','S','C'};
for(int i=0; i != 3; i++){

str[0] = vals[i];
for(int j=0; j != 3; j++){

str[1] = vals[j];
for(int k=0; k != 3; k++){

str[2] = vals[k];
}

}

- -

0 1

\0

- - -

0 1 2

\0

47

Recursion and Combinations

• Consider the problem of
generating all n-length
combinations of a set of
values, S.

– How many loops would you
need?

– Is that even possible?

void usccombos2()
{

char str[3] = "--";
char vals[3] = {'U','S','C'};
for(int i=0; i != 3; i++){

str[0] = vals[i];
for(int j=0; j != 3; j++){

str[1] = vals[j];
cout << str << endl;

}
}

}

void usccombos3()
{

char str[4] = "---";
char vals[3] = {'U','S','C'};
for(int i=0; i != 3; i++){

str[0] = vals[i];
for(int j=0; j != 3; j++){

str[1] = vals[j];
for(int k=0; k != 3; k++){

str[2] = vals[k];
}

}

- -

0 1

\0

- - -

0 1 2

\0

48

Finding the Recursive Structure

• Where do you see the recursive structure?

U
S
C

n=1

n=2

n=3

U - -

S - -

C - -

U U -

U S -

U C -

S U -

S S -

S C -

C U -

C S -

C C -

49

Recursion and Combinations

• Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
– Ex. Generate all length-n combinations of the letters in the set S={'U','S','C'}

– You would need n loops. But we don't have a way of executing a "variable"
number of loops…Oh wait! We can use recursion!

• General approach:
– Need some kind of array/vector/string to store partial answer as it is being

built

– Each recursive call is only responsible for one of the n "places" (say location, i)

– The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

• Remember you are responsible for only one location

– Upon return, try another option value and recurse again

– Base case can stop when all n locations are set (i.e. recurse off the end)

– Recursive case returns after trying all options

50

Coding a Solution

• Generate all string
combinations of
length n from a
given list (vector)
of characters

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all_combos(vector<char>& letters,
int n)

{

}

int main() {
vector<char> letters;
letters.push_back('U');
letters.push_back('S');
letters.push_back('C');

all_combos(letters, 2);

all_combos(letters, 4);

return 0;
}

__ __ __ __

U

S

C

Options

N = length

Use recursion to walk down the 'places'

At each 'place' iterate through & try all options

51

Exercises

• bin_combos_str

• basen_combos

• all_letter_combos

• zero_sum

52

Knapsack Problem

• Knapsack problem
– You are a traveling salesperson. You have a set of objects with given

weights and values. Suppose you have a knapsack that can hold N
pounds, which subset of objects can you pack that maximizes the
value.

– Example:

• Knapsack can hold 35 pounds

• Object A: 7 pounds, $12.50 ea. Object B: 10 pounds, $18 ea.

• Object C: 4 pounds, $7 ea. Object D: 2.4 pounds, $4 ea.

• Let's solve a simpler version of generating all the
combinations of objects that would fit in a given weight.

• Get the code:
– Vocareum: Sandbox - Recursion 2

– VM/Laptop: $ wget http://ee.usc.edu/~redekopp/cs103/knapsack.cpp

53

BACKUP
Ignore unless told otherwise.

54

Recursion Analysis

• What would this
code print for
– X=3, y=2

– X=10, y=1

– X=2, y=3

#include <iostream>
#include <string>
using namespace std;

void mystery(int r, string pre, int n) {
if(pre.length() == n){

cout << pre << endl;
}
else {

for(int i=0; i < r; i++){
char c = static_cast<char>('0'+i);
mystery(r, pre + c, n);

}
}

}

int main() {
int x, y;
cin >> x >> y;

string pre;

mystery(x, pre, y);

return 0;
}

55

Recursion and DFS (w/ C-Strings)

• Recursion forms a kind of Depth-First Search

binCombos(2,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(3,3)

Base case

binCombos(1,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(0,3)

Set to 0; recurse;

Set to 1; recurse; 0

0

0

1

1 0 1

1 0 1 0 1 0 1

void binCombos(char* data,
int curr,
int len)

{
if(curr == len)

data[curr] = '\0';
else {

// set to 0
data[curr] = '0';
// recurse
binCombos(data, curr+1, len);
// set to 1
data[curr] = '1';
// recurse
binCombos(data, curr+1, len);

}
}

56

Recursion and DFS (w/ C-Strings)

• Answer: All combinations
of base x with y digits

bCombos(2,3)

Set to 0; recurse;

Set to 1; recurse;

bCombos(3,3)

Base case

bCombos(1,3)

Set to 0; recurse;

Set to 1; recurse;

bCombos(0,3)

Set to 0; recurse;

Set to 1; recurse; 0

0

0

1

1 0 1

1 0 1 0 1 0 1

#include <iostream>
#include <string>
using namespace std;

void basen_combos(int r, string pre, int n) {
if(prefix.length() == n){

cout << pre << endl;
}
else {

for(int i=0; i < r; i++){
char c = static_cast<char>('0'+i);
basen_combos(r, prefix + c, n);

}
}

}

int main() {
int base, numDigits;
cin >> x >> y;

string pre;

basen_combos(x, pre, y);

return 0;
}

57

SOLUTIONS

58

Deriving a Solution
• Identify the base case

– What trivial version of the problem can be easily solved? 1 digit num.

• Recursive case:

– What 1 thing is each recursion responsible for? 1 digit of the number

– How do I extract one digit? Which digit? Easiest to find 1's digit using mod
operator

– Where do I put that digit? Front or back of result? Front of deque

– How do I make the problem smaller? Divide by 10

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

1265 8

0

result

Input

Step 1

Approach

59

Deriving a Solution
• Identify the base case

– What trivial version of the problem can be
easily solved? 1 digit num.

• Recursive case:

– What 1 thing is each recursion responsible for?
1 digit of the number

– How do I extract one digit? Which digit? Easiest
to find 1's digit using mod operator

– Where do I put that digit? Front or back of
result? Front of deque

– How do I make the problem smaller? Divide by
10

12658 Desired
result

1 2 6 5 8

0 1 2 3 4

Input

void digits(
unsigned int n,
deque<int>& res)

{
if(n < 10){
res.push_front(n);

}
else {
int d = n % 10;
res.push_front(d);
digits(n/10, res);

}
}

60

Recursive Sort (MergeSort)

• Run-time analysis
– # of recursion levels =

• log2(n)

– Total operations to merge each level =

• n operations total to merge
two lists over all recursive
calls

• mergesort = O(n * log2(n))

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,7)

Mergesort(0,3) Mergesort(4,7)

Mergesort(0,1)
Mergesort(2,3)
Mergesort(4,5)
Mergesort(6,7)

61

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{

binCombos("", len);
}
// helper-function
void binCombos(string prefix,

int len)
{

if(prefix.length() == len)
cout << prefix << endl;

else {
// recurse
binCombos(data+"0", len);
// recurse
binCombos(data+"1", len);

}
}

62

Finding the Recursive Structure

• Where do you see the recursive structure?

UU
US
UC
SU
SS
SC
CU
CS
CC

U
S
C

UUU
UUS
UUC
USU
USS
USC
UCU
UCS
UCC
SUU
SUS
...
CCC

n=1

n=2

n=3

U - -

S - -

C - -

U U -

U S -

U C -

S U -

S S -

S C -

C U -

C S -

C C -

