
1

CS 103 Unit 15

Doubly-Linked Lists and Deques

Mark Redekopp

2

Singly-Linked List Review

• Used structures/classes and
pointers to make ‘linked’ data
structures

• Singly-Linked Lists dynamically
allocates each item when the user
decides to add it.

• Each item includes a 'next' pointer
holding the address of the
following Item object

• Traversal and iteration is only easily
achieved in one direction

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2
0x0

(Null)

0x168

#include<iostream>

using namespace std;

struct Item {
int val;
Item* next;

};

class List
{

public:
List();
~List();
void push_back(int v); ...
private:
Item* head;

};

int

val

Item *

next

struct Item blueprint:

0x1c0

temp

Given temp…could you ever
recover the address of the
previous item?

No!!!

3

Doubly-Linked Lists

• Includes a previous
pointer in each item so
that we can
traverse/iterate
backwards or forward

• First item's previous field
should be NULL

• Last item's next field
should be NULL

#include<iostream>

using namespace std;
struct DLItem {

int val;
DLItem* prev;
DLItem* next;

};

class DLList
{
public:
DLList();
~DLList();
void push_back(int v); ...
private:
DLItem* head;

};

int

val

DLItem *

next

struct Item blueprint:

DLItem *

prev

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

4

Doubly-Linked List Add Front

• Adding to the front requires you to update…

• …Answer
– Head

– New front's next & previous

– Old front's previous

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

5

Doubly-Linked List Add Front

• Adding to the front requires you to update…
– Head

– New front's next & previous

– Old front's previous

0x148

head

3 0x1c00x190

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12 0x148NULL

val nextprev

0x190

6

Doubly-Linked List Add Middle

• Adding to the middle requires you to update…
– Previous item's next field

– Next item's previous field

– New item's next field

– New item's previous field

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

7

Doubly-Linked List Add Middle

• Adding to the middle requires you to update…
– Previous item's next field

– Next item's previous field

– New item's next field

– New item's previous field

0x148

head

3 0x1c0NULL

val nextprev

9 0x1900x148

val nextprev

0x148 0x1c0

6 NULL0x190

val nextprev

0x210

12 0x2100x1c0

val nextprev

0x190

8

Doubly-Linked List Remove Middle

• Removing from the middle requires you to update…
– Previous item's next field

– Next item's previous field

– Delete the item object

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

9

Doubly-Linked List Remove Middle

• Removing from the middle requires you to update…
– Previous item's next field

– Next item's previous field

– Delete the item object

0x148

head

3 0x210NULL

val nextprev

9 0x2100x148

val nextprev

0x148

0x1c0

6 NULL0x148

val nextprev

0x210

10

DEQUES AND THEIR
IMPLEMENTATION

Using a Doubly-Linked List to Implement a Deque

11

Understanding Performance

• Recall vectors are good at some things and worse at others in terms of
performance

• The Good:

– Fast access for random access (i.e. indexed access such as myvec[6])

– Allows for ‘fast’ addition or removal of items at the back of the vector

• The Bad:

– Erasing / removing item at the front or in the middle (it will have to copy all
items behind the removed item to the previous slot)

– Adding too many items (vector allocates more memory that needed to be
used for additional push_back()’s…but when you exceed that size it will be
forced to allocate a whole new block of memory and copy over every item

30 51 52 53 54

0 1 2 3 4 5

10

30 51 5253 54 10

30 51 5253 54 10
12 18

30 51 5253 54 10 12 18

After deleting we

have to move

everyone up

Vector may have 1

extra slot, but when

we add 2 items a

whole new block of

memory must be

allocated and items

copied over

12

Deque Class

• Double-ended queues (like their name
sounds) allow for efficient (fast) additions and
removals from either 'end' (front or back) of
the list/queue

• Performance:

– Slightly slower at random access (i.e. array style
indexing access such as: data[3]) than vector

– Fast at adding or removing items at front or back

13

Deque Class
• Similar to vector but allows for

push_front() and pop_front()
options

• Useful when we want to put
things in one end of the list and
take them out of the other

#include <iostream>
#include <deque>

using namespace std;

int main()
{

deque<int> my_deq;
for(int i=0; i < 5; i++){

my_deq.push_back(i+50);
}
cout << “At index 2 is: “ << my_deq[2] ;
cout << endl;

for(int i=0; i < 5; i++){
int x = my_deq.front();
my_deq.push_back(x+10);
my_deq.pop_front();

}
while(! my_deq.empty()){

cout << my_deq.front() << “ “;
my_deq.pop_front();

}
cout << endl;

}

my_deq
51

1

52 53 54 60

0 1 2 3 4

my_deq
50 51 52 53 54

0 1 2 3 4

my_deq
60 61 62 63 64

0 1 2 3 4

2

3

4

1

2

3

4

my_deq

after 1st iteration

after all iterations

14

Deque Implementation

• Let's consider how we can implement a deque

• Could we use a singly-linked list and still get
fast [i.e. O(1)] insertion/removal from both
front and back?

15

List class

Singly-Linked List Deque

• Recall a deque should allow for fast [i.e. O(1)]
addition and removal from front or back

• In our current singly-linked list we only know
where the front is and would have to traverse
the list to find the end (tail)

0x148

head

3 0x1c0

val next

9 0x210

val next

0x148 0x1c0

6 NULL

val next

0x210

16

List class

Option 1: Singly-Linked List + Tail Pointer

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end?

0x148

head

0x210

tail

3 0x1c0

val next

9 0x210

val next

0x148 0x1c0

6 NULL

val next

0x210

17

List class

Option 1: Singly-Linked List + Tail Pointer

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end? O(1)

– How fast could we remove the tail item?

0x148

head

0x190

tail

3 0x1c0

val next

9 0x210

val next

0x148 0x1c0

6 0x190

val next

0x210

12 NULL

val next

0x190

18

List class

Option 1: Singly-Linked List + Tail Pointer

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end? O(1)

– How fast could we remove the tail item? O(n)

• Would have to walk to the 2nd to last item

0x148

head

0x190

tail

3 0x1c0

val next

9 0x210

val next

0x148 0x1c0

6 0x190

val next

0x210

12 NULL

val next

0x190

19

List class

Option 2: Tail Pointer + Double-Linked List

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end?

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail

20

List class

Option 2: Tail Pointer + Double-Linked List

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end? O(1)

– How fast could we remove the tail item?

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 0x1900x1c0

val nextprev

0x210

0x190

tail

12 NULL0x210

val nextprev

0x190

0x210

21

List class

Option 2: Tail Pointer + Double-Linked List

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end? O(1)

– How fast could we remove the tail item? O(1)

• We use the PREVIOUS pointer to update tail

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 0x1900x1c0

val nextprev

0x210

0x210

tail

12 NULL0x210

val nextprev

0x190

0x190

22

List class

Option 2: Tail Pointer + Double-Linked List

• We might think of adding a tail pointer data
member to our list class

– How fast could we add an item to the end? O(1)

– How fast could we remove the tail item? O(1)

• We use the PREVIOUS pointer to update tail

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail

12 NULL0x210

val nextprev

0x190

0x190

23

List class

Option 3: Circular Double-Linked List

• Make first and last item point at each other to
form a circular list

– We know which one is first via the 'head' pointer

0x148

head

3 0x1c00x210

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 0x1480x1c0

val nextprev

0x210

24

List class

Option 3: Circular Double-Linked List

• Make first and last item point at each other to
form a circular list

– We know which one is first via the 'head' pointer

– What expression would yield the tail item?

0x148

head

3 0x1c00x210

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 0x1480x1c0

val nextprev

0x210

25

List class

Option 3: Circular Double-Linked List

• Make first and last item point at each other to
form a circular list

– We know which one is first via the 'head' pointer

– What expression would yield the tail item?

• head->prev

0x148

head

3 0x1c00x210

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 0x1480x1c0

val nextprev

0x210

26

One Last Point

• Can this kind of deque implementation
support O(1) access to element i?

– i.e. Can you access list[i] quickly for any i?

• No!!! Still need to traverse the list

• You can use a "circular" array based deque
implementation to get fast random access

– This is similar to what the actual C++ deque<T>
class does

– More to come in CS 104!

