CS 103 Unit 15

Doubly-Linked Lists and Deques

Mark Redekopp



e — 5 iterbi >
Singly-Linked List Review

#include<iostream>
e Used structures/classes and ,
. Ninked’ d using namespace std;
struct Item struct Item blueprint:
pointers to make ‘linked’ data ( )
structures int val; :“i‘r{t“[‘&é‘rﬁ‘*“:
. . . . Item* next; | val |_next !
* Singly-Linked Lists dynamically 2
allocates each item when the user | c1ass List
decides to add it. t
public:
 Each item includes a 'next' pointer Hoel
holding the address of the void push_back(int v); ...
. . private:
following Item object Ttem* head:
. . . . }s
* Traversal and iteration is only easily -
iven temp...could you ever

aChieVEd in one dir‘ection head temp | recover the address of the

previous item?
0x148

No!ll
0x148 0x1¢0 0x168

0x0
2 (Nulh

val next val next val next

3 |oxico O |ox168




- 00000000 USCViterbi®
Doubly-Linked Lists

Includes a previous
pointer in each item so
that we can
traverse/iterate
backwards or forward

First item's previous field
should be NULL

Last item's next field
should be NULL

#tinclude<iostream>

using namespace std;
struct DLItem {
int val;
DLItem* prev;
DLItem* next;

}s

class DLList
{
public:
DLList();
~DLList();

void push_back(int v); ...

private:
DLItem* head;

}s

head
0x148

0x148 0x1cO

School of Engineering

struct Item blueprint:

0x210

)
NULL [ 3 |0x1cO 0x148 | 9

0x210

0x1cO

NULL

prev val next prev val

next

prev

val

next



i, TS(“Viterbi -

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update...

* ..Answer
— Head
— New front's next & previous
— Old front's previous

0x190
head

0x148

12

prev val next

:: 0x148 0x1cO 0x210

NULL | 3 |0x1cO 0x148 | 9 ([0x210 Ox1cO| 6 |NULL

prev. val next prev. val next prev. val next



i, TS(“Viterbi -

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update...

— Head
— New front's next & previous
— Old front's previous

head

0x148

0x190
NULL [ 12 |0x148
prev. val next

0x148 0x1c0 0x210
0x190 | 3 [Ox1cO 0x148 | 9 |0x210 Ox1cO| 6 ([NULL
prev. val next prev. val next prev.  val next



i, TS(“Viterbi -

School of Engineering

Doubly-Linked List Add Middle

* Adding to the middle requires you to update...
— Previous item's next field
— Next item's previous field
— New item's next field
— New item's previous field

0x190
head 12
0x148 prev val next
0x148 0x1cO @ 0x210
> NULL 3 |0x1cO 0x148 9 Ox210\ 0x1cO 6 NULL
N

prev.  val next prev.  val next prev.  val next



i, TS(“Viterbi -

* Adding to the middle requires you to update...

School of Engineering

Doubly-Linked List Add Middle

Previous item's next field

Next item's previous field

New item's next field

New item's previous field

head

0x148

0x190

0Ox1cO

12

0x210

0x210

0x190

0x148 0x1cO
NULL | 3 |Ox1cO 0x148 | 9 |0x190
prev. val next prev. val next

prev

val

next

NULL

prev

val

next



i, TS(“Viterbi

School of Engineering

Doubly-Linked List Remove Middle

Removing from the middle requires you to update...

— Previous item's next field

— Next item's previous field

— Delete the item object

head

0x148

0x148

0x1cO

0x210

NULL

0Ox1cO

pd

0x148

0x210

0Ox1cO

NULL

prev

val

next

prev

val

next

prev

val

next



i, TS(“Viterbi -

School of Engineering

Doubly-Linked List Remove Middle

« Removing from the middle requires you to update...
— Previous item's next field
— Next item's previous field
— Delete the item object

head
0x148

0x148 0x210

NULL | 3 |0x210 0x148 | 6 |NULL

prev.  val next prev.  val next



Using a Doubly-Linked List to Implement a Deque

DEQUES AND THEIR
IMPLEMENTATION



i, TS(“Viterbi )

School of Engineering

Understanding Performance

e Recall vectors are good at some things and worse at others in terms of
performance
 The Good:
— Fast access for random access (i.e. indexed access such as myvec[6])
— Allows for ‘fast’ addition or removal of items at the back of the vector

e The Bad:
— Erasing / removing item at the front or in the middle (it will have to copy all
items behind the removed item to the previous slot)

— Adding too many items (vector allocates more memory that needed to be
used for additional push_back()’s...but when you exceed that size it will be
forced to allocate a whole new block of memory and copy over every item

Vector may have 1

0 1 2/ 3 4 5 extra slot, but when
we add 2 items a
memory must be

have to move M
\ v ¥

everyone up A A A 2 A A
30(51|53|54|10 30(51(53|54|10(12|18

allocated and items
copied over




Deque Class

* Double-ended queues (like their name
sounds) allow for efficient (fast) additions and
removals from either 'end’ (front or back) of

the list/queue

e Performance:

— Slightly slower at random access (i.e. array style
indexing access such as: data[3]) than vector

— Fast at adding or removing items at front or back



- USCViterbi @
Deque Class

e Similar to vector but allows for #include <iostream>
#include <d >
push_front() and pop_front() FneTHae cdeqne
. using namespace std;
options . .
int main()
e Useful when we want to put { .
] . ) deque<int> my_deq;
things in one end of the list and for(int i=@; i < 5; i++){
deq. h back(i+50);
take them out of the other 1] "-deq. push_back(1+50)

cout << “At index 2 is: “ << my_deq[2] ;
cout << endl;

0 1 2 3 4 for(int i=0; i < 5; i++){

my_deq int x = my_deq.front();
50|51 (52|53 |54 my_deq.push_back(x+10);
53 my_deq.pop_front();
0 1 2 3 4 }
while( ! my deq.empt
my_deq 51|52 [53|54 |60 | after 1stiteration coui << %; dzq fﬁoﬁizi{<< RS-
_ucy. )
4] 3

my deq.pop_front();
cout << endl;

N

my_ded | g0 (61|62 |63 |64] after all iterations

B~ W DN B

my_deq




— ()5 Viterbi
Deque Implementation

e Let's consider how we can implement a deque

* Could we use a singly-linked list and still get
fast [i.e. O(1)] insertion/removal from both

front and back?



Singly-Linked List Deque

e Recall a deque should allow for fast [i.e. O(1) ]
addition and removal from front or back

* |n our current singly-linked list we only know
where the front is and would have to traverse

the list to find the end (tail)

List class
head

0x148

0x148 0x1c0 0x210

3 |ox1c0[ | 9 |o0x210 5 6 |NULL




 We might think of adding a tail pointer data
member to our list class

— How fast could we add an item to the end?

List class
head tail
0x148 0x210

e —

0x148 0x1cO O< 210

> 6 |[NULL

3 [0x1cO > 9 |0x210

val next val next val next



 We might think of adding a tail pointer data
member to our list class
— How fast could we add an item to the end? O(1)
— How fast could we remove the tail item?

List class
head tail
0x148 0x190

—

0x148 0x1c0 0x210 O\ 190

3 |ox1c0[ | 9 |o0x210 5 6 |0x190—>| 12 |NULL

val next val next val next val next



 We might think of adding a tail pointer data

member to our list class

— How fast could we add an item to the end? O(1)

— How fast could we remove the tail item? O(n)

* Would have to walk to the 2" to last item

List class

head

0x148

0x148

e —

tail
0x190

0x1cO

0x210

0x190

N\

3

0Ox1cO

9 |0x210

6

0x190

12

NULL

val

next

val  next

val next

val next

eering



 We might think of adding a tail pointer data
member to our list class

— How fast could we add an item to the end?

List class

head

tail

0x148

0x210

0x148

e —

0x1cO

0x2[L0
N\

NULL | 3 |Ox1cO|_

0x148 | 9 |0x210

Ox1cO| 6 |NULL

prev val next

prev val next

prev val next

eering



Option 2: Tail Pointer + Double-Linked List

 We might think of adding a tail pointer data
member to our list class

— How fast could we add an item to the end? O(1)
— How fast could we remove the tail item?

List class
head tail
0x148 0x190
v
0x148 0x1cO 0x210 0190

NULL | 3 |[Ox1cO[_ ~]0x148| 9 OXZlOE Ox1cO | 6 |0x190 0x210 ( 12 |NULL

prev.  val next prev. val next prev.  val  next prev. val next



Option 2: Tail Pointer + Double-Linked List

 We might think of adding a tail pointer data
member to our list class

— How fast could we add an item to the end? O(1)

— How fast could we remove the tail item? O(1)
* We use the PREVIOUS pointer to update tail

List class

head

0x148

0x148

e —

tail

0x210

0x1c0 0x210 0x%190

NULL

3

Ox1cO[_~] 0x148 | 9 |0x210 c Ox1cO | 6 |0x190 0x210 ( 12 |NULL

prev.  val next prev. val next prev.  val  next prev. val next



Option 2: Tail Pointer + Double-Linked List

 We might think of adding a tail pointer data
member to our list class

— How fast could we add an item to the end? O(1)

— How fast could we remove the tail item? O(1)
* We use the PREVIOUS pointer to update tail

List class

head

0x148

0x148

e —

tail

0x210

NULL

3

0x1cO Ox2\ 10 0x190
Ox1cO|_ 0x148 9 [0x210 c Ox1cO 6 |[NULL 0x21
prev. val next prev.  val next prev.  val next prev




Option 3: Circular Double-Linked List

* Make first and last item point at each other to
form a circular list

— We know which one is first via the 'head' pointer

List class
head
0x148

0x148 0x1cO 0x210

0x210 | 3 |Ox1cOf_ “]O0x148 | 9 [0x210

: 0Ox1cO 6 |0x148

prev val next

prev.  val next prev.  val next




Option 3: Circular Double-Linked List

* Make first and last item point at each other to
form a circular list

— We know which one is first via the 'head' pointer
— What expression would yield the tail item?

List class
head
0x148

0x148 0x1cO 0x210

0x210 | 3 |Ox1cOf_ “]O0x148 | 9 [0x210

: 0Ox1cO 6 |0x148

prev val next

prev.  val next prev.  val next




Option 3: Circular Double-Linked List

* Make first and last item point at each other to
form a circular list

— We know which one is first via the 'head' pointer

— What expression would yield the tail item?
* head->prev

List class
head
0x148

0x148 0x1cO 0x210

0x210 | 3 |Ox1cOf_ “]O0x148 | 9 [0x210 ¢ Ox1cO| 6 |0x148

prev.  val next prev.  val next prev.  val next




One Last Point

* Can this kind of deque implementation
support O(1) access to element i?

— i.e. Can you access list[i] quickly for any i?

e No!ll Still need to traverse the list

* You can use a "circular"” array based deque
implementation to get fast random access

— This is similar to what the actual C++ deque<T>
class does

— More to come in CS 104!



