
1

CS 103 Unit 13 Slides

C++ References

Mark Redekopp

2

Swap Two Variables

• Classic example of issues with local
variables:
– Write a function to swap two variables

• Pass-by-value doesn't work
– Copy is made of x,y from main and

passed to x,y of swapit…Swap is
performed on the copies

• Pass-by-reference (pointers) does
work
– Addresses of the actual x,y variables in

main are passed

– Use those address to change those
physical memory locations

int main()
{ int x=5,y=7;

swapit(x,y);
cout <<"x,y="

<< x << "," << y << endl;
}
void swapit(int x, int y)
{ int temp;

temp = x;
x = y;
y = temp;

}

int main()
{ int x=5,y=7;

swapit(&x,&y);
cout <<"x,y="

<< x << "," << y << endl;
}
void swapit(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}

Output: x=5,y=7

Output: x=7,y=5

3

C++ Reference Variables

• So you want a function to actually modify a variable from
another function but you don’t like pointers and they confuse
you?
– Too bad. Don’t give up!

You CAN understand pointers…keep working at it

– BUT…

– You can also use C++ Reference variables

• C++ reference variables essentially pass arguments via
pointer/address behind the scences but use the syntax of
pass-by-value (i.e. no more de-referencing)
– So we needed you to know what's actually happening behind the

scenes, thus we taught you pointers.

– But now you can use the simplified syntax with C++ references

4

Using C++ Reference Variables

• To declare a reference variable, use the
‘&’ operator in a declaration!
– Poor choice by C++ because it is confusing since ‘&’ is

already used for the ‘address of operator’ when used
in an expression (i.e. non-declaration)

• Behind the scenes the compiler will essentially
access variable with a pointer

• But you get to access it like a normal variable
without dereferencing

• Think of a reference variable as an alias

int main()
{

int y = 3;
doit(&y); //address-of oper.
cout << y << endl;
return 0;

}

int doit(int *x)
{

*x = *x - 1;
return *x;

}

Output: ‘2’ in both programs

int main()
{

int y = 3;
doit(y);
cout << y << endl;
return 0;

}

int doit(int &x)
// Ref. declaration

{
x = x - 1;
return x;

}

Using pointers

Using C++ References

y

3

x

3

y

0x1a0

x

0x1a0 3

y

0x1a0

x

0x1a0

With Pointers With References

- Physically

With References

- Logically

5

Swap Two Variables

• Pass-by-value => Passes a copy

• Pass-by-reference =>
– Pass-by-pointer/address => Passes address of actual variable

– Pass-by-C++-reference => Passes an alias to actual variable

int main()
{
int x=5,y=7;
swapit(x,y);
cout <<"x,y="<< x<<","<< y;
cout << endl;

}

void swapit(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

int main()
{

int x=5,y=7;
swapit(&x,&y);
cout <<"x,y="<< x<<","<< y;
cout << endl;

}

void swapit(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}

int main()
{

int x=5,y=7;
swapit(x,y);
cout <<"x,y="<< x<<","<< y;
cout << endl;

}

void swapit(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}Output: x=5,y=7 Output: x=7,y=5 Output: x=7,y=5

6

When to Use References

• Reason 1: Whenever you
want to actually modify an
input parameter/argument
(i.e. a local variable from
another function)

• Reason 2: To avoid making a
copy when passing big struct
or class objects
– Because no copy will be made,

(pass-by-value would have
wasted time copying contents
to new memory)

class GradeBook{
public:
int grades[8][100];

};

int main()
{

GradeBook gb;
...
double average = process_it(gb);
return 0;

}
double process_it(GradeBook& mygb)
{

double sum = 0;
for(int i=0; i < 8; i++)

for(int j=0; j < 100; j++)
sum += mygb.grades[i][j];

mygb.grades[0][0] = 91;

sum /= (8*100);

return sum;
}

mygb

gb

7

Const arguments

• An aside:
– If we want an extra safety

precaution for our own
mistakes, we can declare
arguments as 'const'

– The compiler will produce an
error to tell you that you have
written code that will modify
the object you said should be
constant

– Doesn’t protect against back-
doors like pointers that
somehow point at these data
objects (compiler check only)

class GradeBook{
public:
int grades[8][100];

};

int main()
{

GradeBook gb;
...
double average = process_it(gb);
return 0;

}
double process_it(const GradeBook &mygb)
{

double sum = 0;
for(int i=0; i < 8; i++)

for(int j=0; j < 100; j++)
sum += mygb.grades[i][j];

mygb.grades[0][0] = 91;
// modification of const Gradebook
// compiler will produce ERROR!

sum /= (8*100);

return sum;
}

mygb

gb

This Photo by Unknown Author is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/file:lock.svg
https://creativecommons.org/licenses/by-sa/3.0/

8

Vector/Deque/String Suggestions

• When you pass a vector, deque,
or even C++ string to a function a
deep copy will be made which
takes time

• Copies may be desirable in a
situation to make sure the
function alter your copy of the
vector/deque/string

• But passing by const reference
saves time and provide the
same security.

#include <iostream>
#include <vector>
using namespace std;
int main()
{

vector<int> my_vec;
for(int i=0; i < 5; i++){

// my_vec[i] = i+50; // recall doesn't work
my_vec.push_back(i+50);

}

// can myvec be different upon return?
do_something1(myvec);

// can myvec be different upon return?
do_something2(myvec);
return 0;

}
void do_something1(vector<int> v)
{

// process v;
}
void do_something2(const vector<int>& v)
{

// process v;
}

9

Don't Make This Mistake!

• Returning a reference to
a dead variable (i.e. a
local variable of a
function that just
completed)

• avg was a local variable
and thus was deallocated
when process_it
completed

class GradeBook{
public:
int grades[8][100];

};
int main()
{

GradeBook gb;
double& average = process_it(gb);
cout << "Avg: " << average << endl;
// Possible seg. fault / prog. crash
return 0;

}

double& process_it(const GradeBook &mygb)
{

double avg = 0;

for(int i=0; i < 8; i++)
for(int j=0; j < 100; j++)

avg += mygb.grades[i][j];

avg /= (8*100);
return avg; // reference to avg

// is returned...
}

average

avg

10

MORE C++ REFERENCE FACTS

11

Using C++ References
• Mainly used for parameters, but can

use it within the same function

• A variable/type declared with an ‘&’
doesn’t store any data, but
references/aliases some other actual
variable

• MUST assign to the reference variable
when you declare it.

Output: y=4 in both programs

int main()
{

int y = 3, *ptr;
ptr = &y; // address-of

// operator

int &z; // NO! must assign

int &x = y; // reference
// declaration

// we've not copied
// y into x
// we've created an alias

x++; // y just got incr.
cout << y << endl;
return 0;

}

y

3

x

3

y

0x1a0

ptr

0x1a0 3

y

0x1a0

x

0x1a0

With Pointers With References

- Physically

With References

- Logically

