CS 103 Unit 10 Slides

C++ Classes

Mark Redekopp

P USCViterbi
Object-Oriented Approach

* Model the application/software as a set of objects that interact
with each other

* Objects fuse data (i.e. variables) and functions (a.k.a methods)
that operate on that data into one item (i.e. object)

* Objects replace global-level functions as the primary method of
encapsulation and abstraction
— Encapsulation: Hiding implementation and controlling access

* Group data and code that operates on that data together into one unit

* Only expose a well-defined interface to control misuse of the code by other
programmers

— Abstraction

e Hiding of data and implementation details

* How we decompose the problem and think about our design at a higher level rather
than considering everything at the lower level

i, TS(“Viterbi -

School of Engineering

Object-Oriented Programming

* Objects contain:

— Data members

» Data needed to model the object and track its state/operation
(just like structs)

— Methods/Functions

* Code that operates on the object, modifies it, etc.

e Example: Deck of cards

— Data members:
* Array of 52 entries (one for each card) indicating their ordering
* Top index

— Methods/Functions
 shuffle(), cut(), get top card()

- USCViterbi @
C++ Classes

#include <iostream>
- using namespaces std;
* C(lasses are the programming construct used class Deck {

H : . public:
to define objects, their data members, and Deck(); // Constructor
methods/functions int get_top_card();
private:
int cards[52];
int top_index;

e Similar idea to structs

s Steps: b
— Define the class’ data members and // member function implementation 5
. Deck: :Deck() w
function/method prototypes { s
— Write the methods RS e %
— i H H } 2}
Instantiate/Declare object variables and use N R S
them by calling their methods {
. return cards[top_index++];
 Terminology: }
// Main application
— Class = Definition/Blueprint of an object int main(int argc, char *argv[]) {
. Deck d;
— Object = Instance of the class, actual int hand[5];
allocation of memory, variable, etc. g.shz-(F-;:le();
.Cu 5

for(int i=0; i < 5; i++){
hand[i] = d.get_top_card();
}

Common to separate class into separate
source code files so it can easily be reused
in different applications

Steps:

— Define the class’:
1.) data members and
2.) function/method prototypes
(usually in a separate header file)

— Must define the class using the syntax:
* class name { ... };

— Write the methods (usually in a separate
.cpp file)

— Instantiate/Declare object variables and use

them by calling their methods

i, TS(“Viterbi -

School of Engineering

Common C++ Class Structure

class Deck {

public:
Deck(); // Constructor
~Deck(); // Destructor

void shuffle();
void cut();
int get_top_card();

private:

}s

int cards[52];
int top_index;

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {

}

Deck d;
int hand[5];

d.shuffle();

d.cut();

for(int i=0; i < 5; i++){
hand[i] = d.get_top _card();

}

U'399p

ddoxoap

ddoawebpied

e — 5 Viterbi
Access Specifiers

class Deck {
e Each function or data member can be classified public:
bli . d Deck(); // Constructor
as public, private, or protecte ~Deck(); // Destructor (see next slide)
— These classifications support encapsulation by "O}j Shz‘(c‘)cle(” _
. void cu ;
allowing data/method members to be int get top card(); 3
inaccessible to code that is not a part of the class private: =
(i.e. only accessible from within a public class int cards[52];
. . int top_index;
method) to avoid mistakes by other programmers 1s
— Ensure that no other programmer writes code
that uses or modifies your object in an #includeciostream> o
unintended way #include “deck.h %
()
_ : . o
Private: Can ca!l or access only by // Code for each prototyped method S
methods/functions that are part of that class
. . #include<iostream>
— Public: Can call or access by any other code #include “deck.h”
: More on this in CS 104
.) int main(int argc, char *argv[]) {
* Everything private by default so you must Deck d; R
. int hand[5]; o
use public: to make things visible S
d.shuffle(); S
* Make the interface public and the d.cut(); 3
; _ ; : d.cards[@] = ACE; //won’t compile 8
guts/lnner worklngs private d.top_index = 5; //won’t compile S
}

I (S C Viterbi (0
Constructors / Destructors

e Constructor is a function of the same name as
the class itself

It is called automatically when the object is
created (either when declared or when allocated
via ‘new’)

Use to initialize your object (data members) to
desired initial state

Returns nothing

e Destructor is a function of the same name
as class itself with a “~’ in front

Called automatically when object goes out of
scope (i.e. when it is deallocated by ‘delete’ or
when scope completes)

Use to free/delete any memory allocated by the
object or close any open file streams, etc.

Returns nothing

[Note: Currently we do not have occasion to use
destructors; we will see reasons later on in the
course]

School of Engineering

class Deck {

public:
Deck(); // Constructor
~Deck(); // Destructor

N

#include<iostream>
#include “deck.h”

Deck: :Deck() {
top_index = 0;
for(int i=0; i < 52; i++){
cards[i] = i;

}

}

Deck: :~Deck() {
}

#include<iostream>
#include "deck.h"

int main() {
Deck d; // Deck() is called

return 0;
// ~Deck() is called since
// function is done

}

U'399p

ddoxoap

ddoawebpied

School of Engineering

Writing Member Functions

What's wrong with the code on the left vs.
code on the right

void f1() Deck: :Deck()
{ {

top_index = 0; top_index = 0;
} }

class Deck {

public:
Deck(); // Constructor
~Deck(); // Destructor

void shuffle();

s

Compiler needs to know that a function is a
member of a class

Include the name of the class followed by

(o o)

: :7 just before name of function

This allows the compiler to check access to
private/public variables

— Without the scope operator [i.e.
int get top card() ratherthan
int Deck::get _top_card()]the compiler
would think that the function is some outside

function (not a member of Deck) and thus generate

an error when it tried to access the data members
(i.e. cards array and top_index).

#include<iostream>

#include "deck.h"

Deck: :Deck() A
top_index = 0;
for(int i=0; i < 52; i++){

cards[i] = 1i;

}

}

Deck: :~Deck()

{

}

void Deck::shuffle()

{
cut(); //calls cut() for this object

}
int Deck::get_top_card()

{

top_index++;
return cards[top_index-1];

B

i, TS(“Viterbi

U'399p

ddoyoap

— 5 iterbi
Multiple Constructors

. class Student {
* Can have multiple public:
. . Student(); // Constructor 1
COI’\Str‘UCtOFS Wlth d|fferent Student(string name, int id, double gpa);
. // Constructor 2 "
argument ||StS ~Student(); // Destructor =
string get_name(); o
int get _id(); =
double get gpa(); =
Vo?j Sez—'_‘jm?(it'_”(ijng name); | Note: Often name
void set_id(int id); data members with
void set_gpa(double gpa);)
#include<iostream> private: special decorator
#inC].ude "Student.h" Str\ing name_; (ld_ or m_ld) to make
int main() int id_; «<— | it obvious to other
{ double gpa_; programmers that
Student s1; // calls Constructor 1 }; this variable is a data
string myname; Student: :Student() member
cin >> myname; {
sl.set_name(myname); name_ = “?, id_ = @; gpa_ = 2.0;
sl.set_id(214952); } - - - "
sl.set_gpa(3.67); c
Student::Student(string name, int id, double gpa) |&
Student s2(myname, 32421, 4.0); { =]
// calls Constructor 2 name_ = name; id = id_; gpa = gpa_; 9
©
} }

i, TS(“Viterbi

School of Engineering

Accessor / Mutator Methods

* Define public "get" (accessor) and
"set" (mutator) functions to let other
code access desired private data
members

e Use 'const' after argument list for
accessor methods

— Ensures data members are not altered
by this function (more in CS 104)

#include<iostream>
#include “deck.h”

int main()

{
Student sl1; string myname;
cin >> myname;
sl.set _name(myname);

string another_name;
another_name = sl.get _name();

class Student {
public:
Student(); // Constructor 1

Student(string name, int id, double gpa);

// Constructor 2
~Student(); // Destructor
string get_name() const;
int get_id() const;
double get_gpa() const;

void set_name(string s);

void set_id(int i);

void set_gpa(double g);
private:

string _name;

int _id;

double _gpa;
}s

string Student::get_name() const
{ return _name; }

int Student::get_id() const

{ return _id; }

void Student::set_name(string s)
{ _name =s; }

void Student::set_gpa(double g)
{ _gpa =g;}

y'1uapnis

ddojuapnis

i, TS(“Viterbi Cw

School of Engineering

Calling Member Functions (1)

cards(s2l 1011|1213 |4|5|6|7
dl

* When outside the class scope ERLEES 0
(i.e. in main or some outside o
. cards 0/1(2|3(4|5|6|7
function) d2
top_index 0
— Must precede the member
function call with the name of the #include<iostreams
specific object that it should #include "deck.h”
operate on (i.e. d1.memfunc()) int main() {
) . Deck di, d2;
— d1.shuffle() indicates the int hand[5];
code of shuffle() should be di.shuffle();

. . . . | // not Deck.shuffle() or
operating implicitly on d1's data // shuffle(dl), etc.
member vs. d2 or any other Deck for(int i=0; i < 5; i++){

. hand[i] = dl.get_top_card();
object }

}

cards[52] 141127| 8 |39(25| 4 |11|17

top_index 1

dl

I (S C Viterbi (2
Calling Member Functions

 When inside the class scope (i.e. in
main or some outside function)

* Within a member function we can just
call other member functions directly.

d1’s data will be modified 41 1s implicitly
(shuffled and cut) passed to shuffle()

cards[52] 141|27| 8 |39(25| 4 11|17
top_index 0

dl

d2 | @®kd|oj1|2|3/4|5|6|7

top_index 0

Since shuffle was implicitly
working on d1’s data, d1 is
again implicitly passed to cut()

#include<iostream>
#include “deck.h”

int main(int argc, char *argv[]) {

Deck di, d2;
int hand[5];

dl.shuffle();

} .

School of Engineering

ddouayod

#tinclude<iostream>
#tinclude “deck.h”

void Deck: :shuffle()
{
cut(); // calls cut()
// for this object
for(i=0; i < 52; i++){
int r = rand() % (52-1i);
int temp = cards[r];
cards[r] cards[i];
cards[i] temp;
}
}
void Deck::cut()

{
}

// swap 15t half of deck w/ 2

ddo»oep

* |n-class Exercises

Exercises

- USCViterbi
Class Pointers

* Can declare pointers to these
new class types

e Use ‘->’ operator to access
member functions or data

dl

d2

dl

School of Engineering

cards[52] ol112

top_index 0

cards[52] 0ol112

top_index 0

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {

Deck *d1;
int hand[5];

dl = new Deck;

d1l->shuffle();

for(int i=0; i < 5; i++){
hand[i] = d1->get top _card();

}
}

cards[52] 41127! 8

39

25

11

17

top_index 5

e []S(j\ﬁtefbi<::>

School of Engineering

Public / Private and Structs vs. Classes

* In C++ the only difference between structs and classes is
structs default to public access, classes default to private
access

* Thus, other code (non-member functions of the class) cannot
access private class members directly

student.h grades.cpp
class Student { // what's the difference #include<iostream>
struct Student { // between these two #include "student.h"
int main()
Student(); // Constructor 1 {
Student(string name, int id, double gpa); Student s1; string myname;
// Constructor 2 cin >> myname;

~Student(); // Destructor sl. _name = myname;

cen // compile error if 'class' but not

string name_; // if 'struct'

int id_;

double gpa_; }
}s

