Maze PA Explanation

Mark Redekopp

Maze Solver

* Consider this maze
— S = Start
— F = Finish
—.=Free
— # = Wall

* Find the shortest
path

(0,0) 0,1) 0,2) (@
(1,0 (1Y) (in: (1,

(2,0) 2,1) 2,2) (2

(3,0) (3,1) (3,2) (3,

3)

)

#

w

w
L

3

#

i, TS(“Viterbi -

Maze Solver

Maze array: N e R
* To find a (there might be O (e o
many) shortest path we use a CUE e o o
breadth-first search (BFS) S B (#
* BFS requires we visit all nearer
squares before further Oueue

squares

— A simple way to meet this
requirement is to make a square
"get in line" (i.e. a queue) when
we encounter it

— We will pull squares from the
front to explore and add new
squares to the back of the queue

- USCViterbi®
Maze Solver

* We start by putting the
starting location into the
queue

School of Engineering

(0,0) (0,1) (0,2) (0,3)

Maze array:
(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#
(3,0) (3.1) (3.2) (3,3)
Queue

1,0

- USCViterbi®
Maze Solver

* We start by putting the
starting location into the

queue

* Then we enter a loop...while
the queue is not empty

Extract the front location, call it "curr"
Visit each neighbor (N,W,S,E) one at a

time

If the neighbor is the finish

Else if the neighbor is a valid location and

Stop and trace backwards

not visited before

Then add it to the back of the queue
Mark it as visited so we don't add it to the

queue again

Record its predecessor (the location [i.e. curr]

that found this neighbor

Maze array:
Queue
1,0
Visited

o,

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)

(2,0) (2,]# (2,2) (2,?#

(3,0) (3.1) (3.2) (3,3)

School of Engineering

Predecessor
(0,0) (0,1) 0,2) (0,3)
-1,-1/-1,-1-1,-1-1,-1
(1, 10 1y @2 (13

-1,-1/-1,-1/-1,-1}-1,-1
(CHORE (CHVI (CI R (CXO)
-1,-1/-1,-1/-1,-1}-1,-1
(30 (81 (B2 (83

“1,-1-1,-1-1,-1]-1,-1

IIJS(TVﬁeﬂﬁ<::>

School of Engineering

Maze Solver

Maze array:

* We start by putting the
starting location into the
queue

* Then we enter a loop...while

the queue is not empty

Extract the front location, call it "curr"

Queue

Visit each neighbor (N,W,S,E) one at a

time

If the neighbor is the finish

* Stop and trace backwards

Else if the neighbor is a valid location and

not visited before

* Then add it to the back of the queue
* Mark it as visited so we don't add it to the @3,

queue again

* Record its predecessor (the location [i.e. curr]

that found this neighbor

curr=1,0

1,010,020

Visited

(0,0)

(1,0)

(2,0) (2,]# (2,2) (2,?#

(3.0)

0.1

(1.1

(3.1)

(0,2) (0,3)

(1,2) (1,3)

(3.2) (3,3)

Predecessor
(0,0) (0,1) 0,2) (0,3)
1,0 -1,-1-1,-1'-1,-1
(1,0) (1,1) (1,2) (1,3)
-1,-11-1,-1/-1,-1}-1,-1
@1 |2 |3
1,0 -1,-1/-1,-1/-1,-1
(3,0) (3,1) (3,2) (3,3)

“1,-1-1,-1-1,-1]-1,-1

(2.0)

IIJS(TVﬁeﬂﬁ<::>

School of Engineering

Maze Solver

Maze array:

* We start by putting the
starting location into the
queue

* Then we enter a loop...while

the queue is not empty

Extract the front location, call it "curr"

Queue

Visit each neighbor (N,W,S,E) one at a

time

If the neighbor is the finish

* Stop and trace backwards

Else if the neighbor is a valid location and

not visited before

* Then add it to the back of the queue
* Mark it as visited so we don't add it to the @3,

queue again

* Record its predecessor (the location [i.e. curr]

that found this neighbor

curr=0,0

1,000 20]0,1

Visited

(5]

(0,0)

(1,0)

(2,0) (2,]# (2,2) (2,?#

(3.0)

0.1

(1.1

(3.1)

(0,2) (0,3)

(1,2) (1,3)

(3.2) (3,3)

Predecessor
(0,0) (0,1) 0,2) (0,3)
1,0 00 -1,-1 -1,1
(1,0) (1,1) (1,2) (1,3)
-1,-11-1,-1/-1,-1}-1,-1
@1 |2 |3
1,0 -1,-1/-1,-1/-1,-1
(3,0) (3,1) (3,2) (3,3)

“1,-1-1,-1-1,-1]-1,-1

(2.0)

i, TS(“Viterbi

School of Engineering
Maze array: ©0) jon 02 103
* We start by putting the
(1,0) (1,1) (1,2) (1,3)
starting location into the
(2,0) (2,1# (2,2) (2,?#
queue . .
(3,0) (3,1) (3,2) (3,3)
* Then we enter a loop...while
. curr=2,0
the queue is not empty ouele
H H n "
— Extract the front location, call it "curr roloolzoloslso
— Visit each neighbor (N,W,S,E) one at a
time
)) o Visited Predecessor
— If the neighbor is the finish R RN [e T (R TR ()
* Stop and trace backwards 6 6 1,0 00 [-1,-1/-1,1
— Else if the neighbor is a valid location and " (“b “'Zb “'3()) S i N
. 1,-1|-1,-1|-1,-1/-1,-1
not visited before = (2'16 (2'26 (2'?) oo
* Then add it to the back of the queue 1 1,0 |-1,-1/-1,-1-1,-1
* Mark it as visited so we don't add it to the (30 381 82 B9 B30 B B2 B3
queue again 20 [-1,-1}-1,-1 -1,-1

* Record its predecessor (the location [i.e. curr]
that found this neighbor

i, TS(“Viterbi -

School of Engineering
Maze array: ©0) jon 02 103
* We start by putting the
(1,0) (1,1) (1,2) (1,3)
starting location into the
(2,0) (2,1# (2,2) (2,?#
queue . .
(3,0) (3,1) (3,2) (3,3)
* Then we enter a loop...while
. curr=0,1
the queue is not empty ouele
H H n "
— Extract the front location, call it "curr roloolzoloslsoloz
— Visit each neighbor (N,W,S,E) one at a
time
)) o Visited Predecessor
— If the neighbor is the finish R RN [e T (R TR ()
* Stop and trace backwards 6 1,0/ 00 01 |-1,1
— Else if the neighbor is a valid location and " (“b “'Zb “'3()) S i N
. 1,-1|-1,-1|-1,-1/-1,-1
not visited before = (2'16 (2'26 (2'?) oo
* Then add it to the back of the queue 1 1,0 |-1,-1/-1,-1-1,-1
* Mark it as visited so we don't add it to the (30 381 82 B9 B30 B B2 B3
queue again 20 [-1,-1}-1,-1 -1,-1

* Record its predecessor (the location [i.e. curr]
that found this neighbor

i, TS(“Viterbi

School of Engineering
Maze array: ©0) jon 02 103
* We start by putting the
(1,0) (1,1) (1,2) (1,3)
starting location into the
(2,0) (2,1# (2,2) (2,?#
queue . .
(3,0) (3,1) (3,2) (3,3)
* Then we enter a loop...while
. curr=3,0
the queue is not empty ouele
H H n "
— Extract the front location, call it "curr rolool2oloslzolozlss
— Visit each neighbor (N,W,S,E) one at a
time
)) o Visited Predecessor
— If the neighbor is the finish R RN [e T (R TR ()
* Stop and trace backwards 6 1,0/ 00 01 |-1,1
— Else if the neighbor is a valid location and " (“b “'Zb “'3()) S i N
. 1,-1/-1,-11-1,-1/-1,-1
not visited before = (2'16 (2'26 (2'?) oo
* Then add it to the back of the queue 1 1,0 |-1,-1/-1,-1-1,-1
* Mark it as visited so we don't add it to the (30 [B81) 82 B9 B30 B B2 B3
queue again 201 301}-1,-1 -1,-1

* Record its predecessor (the location [i.e. curr]
that found this neighbor

- USCViterbi @
Maze Solver

Maze array: ©0) jon 02 103

 We start by putting the
starting location into the —t
queue R H

(3,0) (3.1) (3.2) (3,3)

(1,0) (1,1) (1,2) (1,3)

 Then we enter a loop...while
the gueue is not empty “"=%2 | Found the Finish at (1,2)

Queue
— Extract the front location, call it "curr"

— Visit each neighbor (N,W,S,E) one at a

10 00 20 01 3,0/02 3,1

time
Visited Predecessor
— If the neighbor is the finish R RN [e IR CoxTa e T
Stop and trace backwards 6 1,0 00 0,1 -1,1
— Else if the neighbor is a valid location and o) (“b “’Zb “’3()) S N N
L. -1,-1/-1,-1/-1,-1/-1,-1
not visited before O PO PP (7 o v ey |es
Then add it to the back of the queue 6 6 6 1,0 |-1,-11-1,-1-1,-1
Mark it as visited so we don't add it to the B0 381 82 [33 G0 B B2 B3
queue again 20130 -1,-1/-1,-1

Record its predecessor (the location [i.e. curr]
that found this neighbor

- USCViterbi@
Maze Solver

Now we need to backtrack
and add *'s to our shortest
path

We use the predecessor array
to walk backwards from curr
to the start

— Set maze[curr] = *’

* Not real syntax (as ‘curr’ is a
Location struct)

— Change curr = pred[curr]

School of Engineering

Maze array: 00 joh jeq 103
(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#
(3,0) (3,1) (3,2) (3,3)
curr =02 curr = pred[curt]
Queue

10 00 20 01 3,0/02 3,1

Visited Predecessor
(0,0 (0,1) (0,2) 0,3 (0,0) (0,1) 0,2) 0,3)
6 1,0/ 00 0,1 }-1,-1
(1,0) (1,1) (1,2) (1,3) (1,0) (1,1) (1,2) (1,3)
O O O -1,-11-1,-1/-1,-1/-1,-1
(2,0 2,1 (2,2 2.3 (2,0) 2,1) (2,2) (2.3
6 6 6 1,0 ' -1,-1/-1,-1 -1,-1
(30 B1) 1382 33 (30) IB1) B2 33

20130 -1-1 -1,1

- USCViterbi@
Maze Solver

Now we need to backtrack
and add *'s to our shortest
path

We use the predecessor array
to walk backwards from curr
to the start

— Set maze[curr] = *’

* Not real syntax (as ‘curr’ is a
Location struct)

— Change curr = pred[curr]

School of Engineering

Maze array: ©O 108 9% |@?
(1,0). (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#
(3,0) (3,1) (3,2) (3,3)
curr =02 curr = pred[curt]
Queue

10 00 20 01 3,0/02 3,1

Visited Predecessor
(0,0 (0,1) (0,2) 0,3 (0,0) (0,1) 0,2) 0,3)
6 1,0 0,0 0,1 |-1,-1
(1,0) (1,1) (1,2) (1,3) (1,0) (1,1) (1,2) (1,3)
O O O -1,-11-1,-1/-1,-1/-1,-1
(2,0 2,1 (2,2 2.3 (2,0) 2,1) (2,2) (2.3
6 6 6 1,0 ' -1,-1/-1,-1 -1,-1
(30 B1) 1382 33 (30) IB1) B2 33

20130 -1-1 -1,1

i, TS(“Viterbi

School of Engineering

Maze Solver

Now we need to backtrack
and add *'s to our shortest
path

We use the predecessor array
to walk backwards from curr
to the start

— Set maze[curr] = *’

* Not real syntax (as ‘curr’ is a
Location struct)

— Change curr = pred[curr]

Maze array: 0 1Oy ©0F4 |09

(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#

(3,0) (3.1) (3.2) (3,3)

curr=0,2 curr = pred[curr]

Queue

10 00 20 01 3,0/02 3,1

Visited Predecessor
(0,0 (0,1) (0,2) 0,3 (0,0) (0,1) 0,2) 0,3)
6 1,0 0,0 0,1 |-1,-1
(1,0) (1,1) (1,2) (1,3) (1,0) (1,1) (1,2) (1,3)
O O O -1,-11-1,-1/-1,-1/-1,-1
(2,0 2,1 (2,2 2.3 (2,0) 2,1) (2,2) (2.3
6 6 6 1,0 ' -1,-1/-1,-1 -1,-1
(30 B1) 1382 33 (30) IB1) B2 33

20130 -1-1 -1,1

I (S C Viterbi (U
Need to Do

Queue class

Make internal array to be of size
= max number of squares

Should it be dynamic?

We need to keep track of the
“front” and “back” since only a
portion of the array is used

Just use integer indexes to
record where the front and back
are

School of Engineering

Maze array: 0 1Oy ©0F4 |09
(1,0) (1,1) (1,2) (1,3).
(2,0) 2,1 (2,2) (2,?#
(3,0) (3,1) (3,2) (3,3)
curr =02 curr = pred[curt]
Queue

10 00 20 01 3,0/02 3,1

Visited Predecessor
(0,0 (0,1) (0,2) 0,3 (0,0) (0,1) 0,2) 0,3)
6 1,0 0,0 0,1 |-1,-1
(1,0) (1,1) (1,2) (1,3) (1,0) (1,1) (1,2) (1,3)
O O O -1,-11-1,-1/-1,-1/-1,-1
(2,0 2,1 (2,2 2.3 (2,0) 2,1) (2,2) (2.3
6 6 6 1,0 ' -1,-1/-1,-1 -1,-1
(30 B1) 1382 33 (30) IB1) B2 33

20130 -1-1 -1,1

- USCViterbi .
Need to Do

* Allocate 2D arrays for maze, visited,

Maze array: O 104 104 O3
and predecessors :
(1,0) (1,1) (1,2) (1,3)
— Note: in C/C++ you cannot allocate a 2D
array with variable size dimensions R "
 BAD: new int[numrows][numcols]; (0 3D 32 63
— Solution:
e Allocate 1 array of NUMROW pointers
* Then loop through that array and allocate an
array of NUMCOL items and put its start
address into the i-th array you allocated
above
Each allocated
Each entry 0 1 2 3 on a separate
is int * / olololo iteration
0| 1a0 0|0|0foO
t | 410 7
"1 2¢0]
Tf}ﬁts*t*ls 5 1b4 » 010 ‘O\i t[2] = Ox1b4
3| 3e0 t[2][1] =0
T~ olofo]o

BACKUP

i, TS(“Viterbi

Maze Solver

* To find a (there might be
many) shortest path we use a
breadth-first search (BFS)

* BFS requires we visit all nearer
squares before further
squares

— A simple way to meet this
requirement is to make a square
"get in line" (i.e. a queue) when
we encounter it

— We will pull squares from the
front to explore and add new
squares to the back of the queue

Maze array:

Queue

(1,0)

(3.0)

Visited

(0%) (Ovlb (026

(1,1

(3.1

0

(1,2)

3

0
(216 (2v16 (226

N

)

School of Engineering

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#

(3,0) (3.1) (3.2) (3,3)

Predecessor

(0,3 (0,00 (01 (02 [(023)
6 -1,-11-1,-1/-1,-1}-1,-1

(13) 10 (L) (12 (193
-1,-11-1,-1/-1,-1}-1,-1

2,3 20 1) 22 @23
6 -1,-11-1,-1/-1,-1}-1,-1

(33) G0 B B2 B3

“1,-1-1,-1-1,-1]-1,-1

i, TS(“Viterbi

Maze Solver

* To find a (there might be
many) shortest path we use a
breadth-first search (BFS)

* BFS requires we visit all nearer
squares before further
squares

— A simple way to meet this
requirement is to make a square
"get in line" (i.e. a queue) when
we encounter it

— We will pull squares from the
front to explore and add new
squares to the back of the queue

Maze array:
curr=1,0
Queue
1,0
Visited

(vab (Ovlb (026

(1,0)

(3.0)

(1,1

(3.1

0

(1,2)

3

0
(216 (2v16 (226

N

)

School of Engineering

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#

(3,0) (3.1) (3.2) (3,3)

Predecessor

(0,3 (0,00 (01 (02 [(023)
6 -1,-11-1,-1/-1,-1}-1,-1

(13) 10 (L) (12 (193
-1,-11-1,-1/-1,-1}-1,-1

2,3 20 1) 22 @23
6 -1,-11-1,-1/-1,-1}-1,-1

(33) G0 B B2 B3

“1,-1-1,-1-1,-1]-1,-1

i, TS(“Viterbi

Maze Solver

* To find a (there might be
many) shortest path we use a
breadth-first search (BFS)

* BFS requires we visit all nearer
squares before further
squares

— A simple way to meet this
requirement is to make a square
"get in line" (i.e. a queue) when
we encounter it

— We will pull squares from the
front to explore and add new
squares to the back of the queue

Maze array:
Queue
1,0
Visited

(0%) (Ovlb (026

(1,0)

(3.0)

(1,1

(3.1

0

(1,2)

3

0
(216 (2v16 (226

N

)

School of Engineering

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) 2,1 (2,2) (2,?#

(3,0) (3.1) (3.2) (3,3)

Predecessor

(0,3 (0,00 (01 (02 [(023)
6 -1,-11-1,-1/-1,-1}-1,-1

(13) 10 (L) (12 (193
-1,-11-1,-1/-1,-1}-1,-1

2,3 20 1) 22 @23
6 -1,-11-1,-1/-1,-1}-1,-1

(33) G0 B B2 B3

“1,-1-1,-1-1,-1]-1,-1

