
6.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 6

Python

6.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PROGRAMMING LANGUAGES

(Optional – Instructor may skip due to time constraints)

6.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Computer Abstractions

• Recall that all computer
programs must be
converted to 1's and 0's
(aka machine code)

• Similar to translating
from one spoken
language to another

• Imagine you need to give
a speech in front of a
crowd that does not
speak your native
language. How could you
do it?

High Level

Languages:

Python /

Java / C++

Logic Gates

Transistors

HW

SW

Voltage / Currents

Assembly /

Machine Code

Applications

LibrariesOS

Processor / Memory / I/O

Compilers /

Interpreters

6.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Compiled vs. Interpreted Languages

Compiled (Natively)

• Requires code to be converted to
the native machine language of
the processor in the target
system before it can be run

• Analogy: Taking a speech and
translating it to a different
language ahead of time so the
speaker can just read it

• Faster

• Often allows programmer closer
access to the hardware

Interpreted

• Requires an interpreter program on
the target system that will interpret
the program source code command
by command to the native system
at run-time

• Analogy: Speaking through an
interpreter where the speaker waits
while the translator interprets

• Better portability to different
systems

• Often abstracts HW functionality
with built-in libraries (networking,
file I/O, math routines, etc.)

https://www.youtube.com/watch?v=qaj7nO1HUqA

https://www.youtube.com/watch?v=qaj7nO1HUqA

6.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Best of Both Worlds?

• Many languages used for web
and desktop apps (e.g. Java and
Python) will compile their code
to an intermediate form (aka
bytecode)
– Then an interpreter can be used to

execute the byte code faster than
interpreting the high-level
language directly

– New interpreters can be provided
for new devices (platforms)

• Other languages like C/C++
compile their code directly to a
form that can be executed and
run on the device

Compiler

High-Level
Language

ByteCode

Machine Code
for iOS (ARM)

Interpreter

Machine Code
for PC (x86)

Phone Laptop

6.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Live Demo

• Sort an array of integers from N-1 to 0

– [9,999 9,998 9,997 … 3 2 1] =>

– [1 2 3 … 9,997 9,998 9,999]

• With a Python script (interpreted)

• With C++ (compiled natively)

• With a "built-in" Python library function that does the
same task we just wrote manually (different algorithm)

– a = range(N)

– a.reverse()

– a.sort() // built-in sort implementation (non-interpreted)

• Note: Algorithms can make all the difference!

6.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PYTHON

6.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Credits

• Many of the examples below are taken from the
online Python tutorial at:

– http://docs.python.org/tutorial/introduction.html

6.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Python in Context

• Two major versions with some language differences

– Python 2.x

– Python 3.x (we will focus on this version)

• Interpreted, not compiled like C++

– Can type in single commands at a time and have them
execute in "real time"

– Somewhat slower

– Better protection (no memory faults)

6.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Interactive vs. Scripts
• Can invoke python and work interactively

– % python #python 2.x

– % python3 #python 3.x
>>> print("Hello World")

Ctrl-D (Linux/Mac) [Ctrl-Z Windows] at the prompt will exit.

• Can write code into a text file and execute that file as
a script

– % python3 myscript.py
python2.x
>>>print "Hello world"

python3.x
>>> print("Hello world")

myscript.py

6.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Types

• Types
– Bool: True/False (not true/false)

– Integers

• Integer division => see examples

– Floats

– Complex

– Strings

• Dynamically typed
– No need to "type" a variable

– Python figures it out based on what it is
assigned

– Can change when re-assigned

>>> 3 / 2 # default to float
1.5

>>> 3 // 2 # integer division
1

>>> 1.25 / 0.5
2.5

>>> 2+4j + 3-2j
(5+2j)

>>> "Hello world"
'Hello world'

>>> 5 == 6
False

>>> x = 3

>>> x = "Hi"

>>> x = 5.0 + 2.5

6.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Strings

• Enclosed in either double
or single quotes

– The unused quote type
can be used within the
string

• Can concatenate using
the ‘+’ operator

• Can convert other types
to string via the str(x)
method

• Compare with ==, !=, etc.

>>> 'spam eggs'
'spam eggs'

>>> "doesn't"
"doesn't"

>>>'"Yes," he said.'
'"Yes," he said.'

>>> "Con" + "cat" + "enate"
'Concatenate'

>>> i = 5
>>> j = 2.75
>>> "i is " + str(i) + " & j is" + str(j)
'i is 5 & j is 2.75'

6.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Simple Console I/O

• Python3.x
– Output using print()

• Must use parentheses

• Use end='' argument for ending
options

– Input using input(prompt)
• Returns a string of all text typed until

the newline

• Conversion to numeric types:
– int(string_var) convert to an

integer

– float(string_var) convert to a
float

>>> print("A new line will")
>>> print('be printed')
A new line will
be printed

>>> print('A new line will', end='')
>>> print(' not be printed')
A new line will be printed

Getting input
>>> response = input("Enter text: ")
Enter text: I am here

>>> print(response)
I am here

>>> response = input("Enter a num: ")
Enter a num: 6

>>> x = int(response)
>>> x = float(response)

6.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Structures

• if…elif…else

• Ends with a : on that line

• Blocks of code delineated by
indentation (via tabs/spaces)

myin = input("Enter a number: ")

x = int(myin)

if x > 10:
 print("Number is greater than 10")
elif x < 10:
 print("Number is less than 10")
else:
 print("Number is equal to 10")

6.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterative Structures

• while <cond>:

• Again code is delineated
by indentation

secret = 18

attempts = 0

while attempts < 10:

 myin = input("Enter a number: ")

 if int(myin) == secret:

 print("Correct!")

 break

 attempts += 1

6.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Lists

• Lists are like arrays from C++
but can have different
(heterogenous) types in a single
list object

• Comma separated values
between square brackets

• Basic operations/functions:
– append(value)

– pop(loc)

– len(list)

>>> x = ['Hi', 5, 6.5]
>>> print(x[1])
5

>>> y = x[2] + 1.25
7.75

>>> x[2] = 9.5
>>> x
['Hi', 5, 9.5]

>>> x.append(11)
['Hi', 5, 9.5, 11]

>>> y = x.pop(1)
>>> x
['Hi', 9.5, 11]

>>> print(y)
5

>>> len(x)
3

6.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterative Structures

• for <item> in <collection>:

• collection can be list or some other
collection

• For a specific range of integers just
use range() function to generate a list

– Start is inclusive, stop is exclusive

– range(stop)

• 0 through stop-1

– range(start, stop)

• start through stop-1

– range(start, stop, step)

• start through stop in increments of
stepsize

Prints 0 through 5 on separate lines
x = [0,1,2,3,4,5] # equiv to x = range(6)
for i in x:
 print(i)

Prints 0 through 4 on separate lines
x = 5
for i in range(x):
 print(i)

Prints 2 through 5 on separate lines
for i in range(2,6):
 print(i)

x = ["hi", "world", "bye"]
mystring = ""
for word in x:
 mystring += word + " "

6.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 1

• Get integers from the user
until they type quit

• Output only the sum of
the 1st and last integers
entered

7
2
-4
9
quit
16

	Slide 1: Unit 6
	Slide 2: Programming Languages
	Slide 3: Computer Abstractions
	Slide 4: Compiled vs. Interpreted Languages
	Slide 5: Best of Both Worlds?
	Slide 6: A Live Demo
	Slide 7: Python
	Slide 8: Credits
	Slide 9: Python in Context
	Slide 10: Interactive vs. Scripts
	Slide 11: Types
	Slide 12: Strings
	Slide 13: Simple Console I/O
	Slide 14: Selection Structures
	Slide 15: Iterative Structures
	Slide 16: Lists
	Slide 17: Iterative Structures
	Slide 18: Exercise 1

