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Unit 4e

Sorting
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Task 12a – From Unit 3d

• Find the maximum value in an array and move it to the 
end of the array

• Questions:

– Do we scan through the array to find the maximum without 
moving it and swap it at the end ..or..

– Do we move it as we can through the array

Find the maximum value and move it to the end of the array. 

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10
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Task 12a
Find the maximum value and move it to the end of the array. 
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out 8 3 2 7 10 9 12
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Task 12a

• What programming issues 
(mechanics) should you think 
about?

– Do we just need to track the 
maximum VALUE or the INDEX 
of the maximum value?

– Given that you can move the 
maximum number to the end 
of the array, how could this be 
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++) 
  { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
  cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}
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Task 12b
Find the maximum value and move it to the end of the array. 
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Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 4
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Index: [0] [1] [2] [3] [4] [5] [6]
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Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 12 4

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 4 12
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Task 12b

• What programming issues 
(mechanics) should you think 
about?

– Do we just need to track the 
maximum VALUE or the INDEX 
of the maximum value?

– Given that you can move the 
maximum number to the end 
of the array, how could this be 
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++) 
  { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
  cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}
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Sorting

• Sorting requires us to move data 
around within an array

• Allows users to see and organize 
data more efficiently

• Behind the scenes it allows more 
effective searching of data

• There are MANY sorting 
algorithms out there, we will focus 
on two simple ones

7 3 8 6 5 1List

index

Original

1 2 3 4 50

1 3 5 6 7 8List

index

Sorted

1 2 3 4 50
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Bubble Sort
• Main Idea: Keep comparing neighbors, 

moving larger item up and smaller item 
down until largest item is at the top. 
Repeat on list of size n-1

• Have one loop to count each pass, (a.k.a. i) 
to identify which index we need to stop at

• Have an inner loop start at the lowest 
index and count up to the stopping 
location comparing neighboring elements 
and advancing the larger of the neighbors

7 3 8 6 5 1List

Original

3 7 6 5 1 8List

After Pass 1

3 6 5 1 7 8List

After Pass 2

3 5 1 6 7 8List

After Pass 3

3 1 5 6 7 8List

After Pass 4

1 3 5 6 7 8List

After Pass 5
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Bubble Sort Algorithm

7 3 8 6 5 1

j i

Pass 1

3 7 8 6 5 1

j i

3 7 8 6 5 1

j i

3 7 6 8 5 1

j i

3 7 6 5 8 1

j

3 7 6 5 1 8

swap

no swap

swap

swap

swap

j i

Pass 2

3 7 6 5 1 8

j i

3 6 7 5 1 8

j i

3 6 5 7 1 8

3 6 5 1 7 8

j

no swap

swap

swap

swap

3 7 6 5 1 8

i

Pass n-2

3 1 5 6 7 8

1 3 5 6 7 8 swap

…

void bsort(int mylist[], int size)
{
  int i, j ;
  for(i=...     ){
     for(j=...   ){
        if(mylist[j] > mylist[j+1]) {
           // swap mylist[j] & mylist[j+1]
  }  }  }
}

i

i

j
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Bubble Sort

Value

List Index
Courtesy of wikipedia.org
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Selection Sort

• Selection sort does away with the many swaps and just 
records where the min or max value is and performs one swap 
at the end

• The list/array can again be thought of in two parts
– Sorted

– Unsorted

• The problem starts with the whole array unsorted and slowly 
the sorted portion grows

• We could find the max and put it at the end of the list or we 
could find the min and put it at the start of the list
– Just for variation let's choose the min approach
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Selection Sort Algorithm

7 3 8 6 5 1

ji

Pass 1

7 3 8 6 5 1

ji

7 3 8 6 5 1

ji

7 3 8 6 5 1

ji

7 3 8 6 5 1

j

1 3 8 6 5 7

min=1

min=1

min=1

min=5

swap

Pass 2 Pass n-2

void ssort(int mylist[], int size)
{
  for(i=...){
     int min = i;
     for(j=... ){
        if(mylist[j] < mylist[min]) {
           min = j
     }  }
     // swap mylist[i] & mylist[min]
}

i

min=1 1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 swap

1 3 5 6 7 8 min=4

ji

min=0 min=1 min=4
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Selection Sort

Value

List IndexCourtesy of wikipedia.org
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OPERATIONS ON A SORTED ARRAY 
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Insertion to a Sorted Array

• Another option rather than sorting an unordered array us to 
always insert new data into the correct location of the array

• See example below

• To insert, we must
– Iterate until we find the appropriate location to place the new value

– Make room for the new value by shifting the remaining items back a spot

7insert(7)
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Removing from a Sorted Array

• Erasing / removing item at any location other than the very last 
item requires us to copy all items behind the removed item to the 
previous slot

30 51 52 53 54

0 1 2 3 4 5

60

30 51 5253 54 60

To delete/remove 

the item at location 

2 requires us to 

move everyone 

else up
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COMPLEXITY & RUNTIME
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Time Complexity

• Coming up with AN algorithm to solve a problem is 
often not TOO hard

• Coming up with a GOOD algorithm to solve a 
problem can be a bit harder

• We need a way to judge how "GOOD" an algorithm is

– For us "GOOD" will mean how long the algorithm takes to 
solve the problem

– We will count steps of work and come up with an answer 
in terms of 𝑛, where 𝑛 is the size of the input/problem
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Bubble Sorting
• Recall the bubble sort

• How much work do our nested 
loops require us to do
– Think of each step/iteration as 1 

unit of time/work

7 3 8 6 5 1List

Original

3 7 6 5 1 8List

Pass 1 (______ steps)

3 6 5 1 7 8List

Pass 2 (______ steps)

3 5 1 6 7 8List

Pass 3 (______ steps)

3 1 5 6 7 8List

Pass 4 (______ steps)

1 3 5 6 7 8List

Pass 5 (______ steps)

1 3 5 6 7 8List

Pass 6 (______ steps)

7 3 8 6 5 1List

Original List is length N

(N=6 for this example)
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Complexity of Sort Algorithms

• Bubble Sort & Selection Sort
– 2 Nested Loops

– Execute outer loop 𝑛 times

– For each outer loop iteration, 
inner loop runs 𝑖 times.

– Time complexity is proportional 
to 𝑛2

• Other sort algorithms can run 
in time proportional to:
 𝑛 ∗ log 2(𝑛)
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Importance of Time Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4 400 1,048,576 

200 1 7.6 200 1,528.8 40,000 1.60694E+60

2000 1 11.0 2000 21,931.6 4,000,000 #NUM!

• It makes the difference between effective and impossible

• Many important problems currently can only be solved with exponential run-time 
algorithms (e.g. O(2n) time)

• Usually algorithms are only practical if they run in polynomial time (e.g. O(n) or O(n2) 
etc.)
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SOLUTIONS
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Task 12a - Sol

• What programming issues 
(mechanics) should you think 
about?

– Do we just need to track the 
maximum VALUE or the INDEX 
of the maximum value?

– Given that you can move the 
maximum number to the end 
of the array, how could this be 
used to SORT the entire array?
• Repeat the process for the first 

n-1 elements, then repeat for the 
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++) 
  { cin >> data[i]; }
 // now perform the given task
 int cmax = 0;
 for(int i=1; i < n; i++) {
  if(data[i] > data[cmax]){
   cmax = i;
  }
 }
 // swap the max and end element
 int temp = data[n-1];
 data[n-1] = data[cmax];
 data[cmax] = temp;
 // Print out results
 for(int i=0; i < n; i++){
  cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}
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Task 12b - Sol

• What programming issues 
(mechanics) should you think 
about?

– Do we just need to track the 
maximum VALUE or the INDEX 
of the maximum value?

– Given that you can move the 
maximum number to the end 
of the array, how could this be 
used to SORT the entire array?
• Repeat the process for the first 

n-1 elements, then repeat for the 
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++) 
  { cin >> data[i]; }
 // now perform the given task
 for(int i=0; i < n-1; i++) {
  if(data[i] > data[i+1]){
   int temp = data[i];
   data[i] = data[i+1];
   data[i+1] = temp;
  }
 }
 // Print out results
 for(int i=0; i < n; i++){
  cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}
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