

Unit 4e

Sorting

Task 12a – From Unit 3d

- Find the maximum value in an array and move it to the end of the array
- Questions:
 - Do we scan through the array to find the maximum without moving it and swap it at the end ..or..
 - Do we move it as we can through the array

Find the maximum value and move it to the end of the array.

Index:	[0]	[1]	[2]	[3]	[4]	[5]	[6]
out	8	3	2	7	12	9	10

School of Engineering

4e.3

Task 12a

Find the maximum value and move it to the end of the array.

Task 12a

- What programming issues (mechanics) should you think about?
 - Do we just need to track the maximum VALUE or the INDEX of the maximum value?
 - Given that you can move the maximum number to the end of the array, how could this be used to SORT the entire array?

```
int main() {
   // setup array with data
   int n, val, data[100];
   cin >> n;
   for(int i=0; i < n; i++)
      { cin >> data[i]; }
   // now perform the given task
```

4e.4

School of Engineering

```
// Print out results
for(int i=0; i < n; i++){
   cout << data[i] << " ";
}
cout << endl;
return 0;</pre>
```

}

Task 12b

Find the maximum value and move it to the end of the array.

[0] [1]	[2] [3]	[4]	[5] [6]	i
8 🛟 3				0
[0] [1]	[2] [3]	[4]	[5] [6]	i
3 8 🔇	2			1
[0] [1]	[2] [3]	[4]	[5] [6]	i
2	8 🛟 7			2
[0] [1]	[2] [3]	[4]	[5] [6]	i
	7 8	12		3
[0] [1]	[2] [3]	[4]	[5] [6]	i
		12	>9	4
[0] [1]	[2] [3]	[4]	[5] [6]	i
		9	12	5
[0] [1]	[2] [3]	[4]	[5] [6]	
3 2	7 8	9	4 12	
	(0) (1) 8<	(0) (1) (2) (3) 8<	(0) (1) (2) (3) (4) $8 \checkmark 3$ (3) (4) (0) (1) (2) (3) (4) 3 $8 \checkmark 2$ (4) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (0) (1) (2) (3) (4) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (1)	(0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) 3 8 2 (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (0) (1) (2) (3) (4) (5) (6) (1) (2) </td

School of Engineering

4e.5

USC Vit

Task 12b

- What programming issues (mechanics) should you think about?
 - Do we just need to track the maximum VALUE or the INDEX of the maximum value?
 - Given that you can move the maximum number to the end of the array, how could this be used to SORT the entire array?

```
int main() {
   // setup array with data
   int n, val, data[100];
   cin >> n;
   for(int i=0; i < n; i++)
      { cin >> data[i]; }
   // now perform the given task
```

4e.6

School of Engineering

```
// Print out results
for(int i=0; i < n; i++){
   cout << data[i] << " ";
}
cout << endl;
return 0;</pre>
```

Sorting

- Sorting requires us to move data around within an array
- Allows users to see and organize data more efficiently
- Behind the scenes it allows more effective searching of data
- There are MANY sorting algorithms out there, we will focus on two simple ones

4e.7

School of Engineering

List	1	3	5	6	7	8	
index	0	1	2	3	4	5	
	Sorted						

 $\ensuremath{\mathbb{C}}$ 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bubble Sort

- Main Idea: Keep comparing neighbors, moving larger item up and smaller item down until largest item is at the top. Repeat on list of size n-1
- Have one loop to count each pass, (a.k.a. i) to identify which index we need to stop at
- Have an inner loop start at the lowest index and count up to the stopping location comparing neighboring elements and advancing the larger of the neighbors

4e.8

School of Engineering

After Pass 5

Bubble Sort Algorithm

```
void bsort(int mylist[], int size)
{
    int i, j ;
    for(i=... ){
        for(j=... ){
            if(mylist[j] > mylist[j+1]) {
                // swap mylist[j] & mylist[j+1]
        } }
}
```


...

Bubble Sort

(4e.10)

USCViterbi

School of Engineering

Countersy of wikipedias or gted and may not be shared, uploaded, or distributed.

Selection Sort

- Selection sort does away with the many swaps and just records where the min or max value is and performs one swap at the end
- The list/array can again be thought of in two parts
 - Sorted
 - Unsorted
- The problem starts with the whole array unsorted and slowly the sorted portion grows
- We could find the max and put it at the end of the list or we could find the min and put it at the start of the list
 - Just for variation let's choose the min approach

Selection Sort Algorithm

```
void ssort(int mylist[], int size)
{
   for(i=...){
      int min = i;
      for(j=...){
         if(mylist[j] < mylist[min]) {
                min = j
          }
          }
          // swap mylist[i] & mylist[min]
}</pre>
```


ISCViter

School of Engineering

(4e.12)

Selection Sort

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

OPERATIONS ON A SORTED ARRAY

Insertion to a Sorted Array

- Another option rather than sorting an unordered array us to always insert new data into the correct location of the array
- See example below
- To insert, we must
 - Iterate until we find the appropriate location to place the new value
 - Make room for the new value by shifting the remaining items back a spot

School of Engineering

Removing from a Sorted Array

 Erasing / removing item at any location other than the very last item requires us to copy all items behind the removed item to the previous slot

> To delete/remove the item at location 2 requires us to move everyone else up

School of Engineering

COMPLEXITY & RUNTIME

Time Complexity

School of Engineering

- Coming up with AN algorithm to solve a problem is often not TOO hard
- Coming up with a GOOD algorithm to solve a problem can be a bit harder
- We need a way to judge how "GOOD" an algorithm is
 - For us "GOOD" will mean how long the algorithm takes to solve the problem
 - We will count steps of work and come up with an answer in terms of n, where n is the size of the input/problem

Bubble Sorting

- Recall the bubble sort
- How much work do our nested loops require us to do
 - Think of each step/iteration as 1 unit of time/work

List 7 3 8 6 5 1

Original List is length N (N=6 for this example)

4e.19

School of Engineering

School of Engineering

Complexity of Sort Algorithms

- Bubble Sort & Selection Sort
 - 2 Nested Loops
 - Execute outer loop n times
 - For each outer loop iteration, inner loop runs *i* times.
 - Time complexity is proportional to n^2
- Other sort algorithms can run in time proportional to: n * log₂(n)

Importance of Time Complexity

- It makes the difference between effective and impossible
- Many important problems currently can only be solved with exponential run-time algorithms (e.g. O(2ⁿ) time)
- Usually algorithms are only practical if they run in polynomial time (e.g. O(n) or O(n²) etc.)

Ν	O(1)	O(log ₂ n)	O(n)	O(n*log ₂ n)	O(n ²)	O(2 ⁿ)
2	1	1	2	2	4	4
20	1	4.3	20	86.4	400	1,048,576
200	1	7.6	200	1,528.8	40,000	1.60694E+60
2000	1	11.0	2000	21,931.6	4,000,000	#NUM!

SOLUTIONS

USC Viterbi

School of Engineering

Task 12a - Sol

- What programming issues (mechanics) should you think about?
 - Do we just need to track the maximum VALUE or the INDEX of the maximum value?
 - Given that you can move the maximum number to the end of the array, how could this be used to SORT the entire array?
 - Repeat the process for the first n-1 elements, then repeat for the first n-2 elements, etc.

```
© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
```

```
int main() {
  // setup array with data
  int n, val, data[100];
  cin >> n;
  for(int i=0; i < n; i++)</pre>
    { cin >> data[i]; }
  // now perform the given task
  int cmax = 0;
  for(int i=1; i < n; i++) {</pre>
    if(data[i] > data[cmax]){
       cmax = i;
    }
  // swap the max and end element
  int temp = data[n-1];
  data[n-1] = data[cmax];
  data[cmax] = temp;
  // Print out results
  for(int i=0; i < n; i++){</pre>
    cout << data[i] << " ";</pre>
  }
  cout << endl;</pre>
  return 0;
```

USC Viterbi

Task 12b - Sol

- What programming issues (mechanics) should you think about?
 - Do we just need to track the maximum VALUE or the INDEX of the maximum value?
 - Given that you can move the maximum number to the end of the array, how could this be used to SORT the entire array?
 - Repeat the process for the first n-1 elements, then repeat for the first n-2 elements, etc.

```
© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
```

```
int main() {
  // setup array with data
  int n, val, data[100];
  cin >> n;
  for(int i=0; i < n; i++)</pre>
    { cin >> data[i]; }
  // now perform the given task
  for(int i=0; i < n-1; i++) {</pre>
    if(data[i] > data[i+1]){
       int temp = data[i];
       data[i] = data[i+1];
       data[i+1] = temp;
    }
  // Print out results
  for(int i=0; i < n; i++){</pre>
    cout << data[i] << " ";</pre>
  }
  cout << endl;</pre>
  return 0;
```