
4e.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4e

Sorting

4e.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a – From Unit 3d

• Find the maximum value in an array and move it to the
end of the array

• Questions:

– Do we scan through the array to find the maximum without
moving it and swap it at the end ..or..

– Do we move it as we can through the array

Find the maximum value and move it to the end of the array.

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

4e.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a
Find the maximum value and move it to the end of the array.

cmax

0

i

1

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

0

i

2

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

0

i

3

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

4

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

5

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

6

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

6

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 10 9 12

4e.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

4e.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b
Find the maximum value and move it to the end of the array.

i

0

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 4

i

1

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 8 2 7 12 9 4

i

2

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 8 7 12 9 4

i

3

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 12 9 4

i

4

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 12 9 4

i

5

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 12 4

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 4 12

4e.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

4e.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sorting

• Sorting requires us to move data
around within an array

• Allows users to see and organize
data more efficiently

• Behind the scenes it allows more
effective searching of data

• There are MANY sorting
algorithms out there, we will focus
on two simple ones

7 3 8 6 5 1List

index

Original

1 2 3 4 50

1 3 5 6 7 8List

index

Sorted

1 2 3 4 50

4e.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bubble Sort
• Main Idea: Keep comparing neighbors,

moving larger item up and smaller item
down until largest item is at the top.
Repeat on list of size n-1

• Have one loop to count each pass, (a.k.a. i)
to identify which index we need to stop at

• Have an inner loop start at the lowest
index and count up to the stopping
location comparing neighboring elements
and advancing the larger of the neighbors

7 3 8 6 5 1List

Original

3 7 6 5 1 8List

After Pass 1

3 6 5 1 7 8List

After Pass 2

3 5 1 6 7 8List

After Pass 3

3 1 5 6 7 8List

After Pass 4

1 3 5 6 7 8List

After Pass 5

4e.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bubble Sort Algorithm

7 3 8 6 5 1

j i

Pass 1

3 7 8 6 5 1

j i

3 7 8 6 5 1

j i

3 7 6 8 5 1

j i

3 7 6 5 8 1

j

3 7 6 5 1 8

swap

no swap

swap

swap

swap

j i

Pass 2

3 7 6 5 1 8

j i

3 6 7 5 1 8

j i

3 6 5 7 1 8

3 6 5 1 7 8

j

no swap

swap

swap

swap

3 7 6 5 1 8

i

Pass n-2

3 1 5 6 7 8

1 3 5 6 7 8 swap

…

void bsort(int mylist[], int size)
{
 int i, j ;
 for(i=...){
 for(j=...){
 if(mylist[j] > mylist[j+1]) {
 // swap mylist[j] & mylist[j+1]
 } } }
}

i

i

j

4e.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bubble Sort

Value

List Index
Courtesy of wikipedia.org

4e.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Sort

• Selection sort does away with the many swaps and just
records where the min or max value is and performs one swap
at the end

• The list/array can again be thought of in two parts
– Sorted

– Unsorted

• The problem starts with the whole array unsorted and slowly
the sorted portion grows

• We could find the max and put it at the end of the list or we
could find the min and put it at the start of the list
– Just for variation let's choose the min approach

4e.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Sort Algorithm

7 3 8 6 5 1

ji

Pass 1

7 3 8 6 5 1

ji

7 3 8 6 5 1

ji

7 3 8 6 5 1

ji

7 3 8 6 5 1

j

1 3 8 6 5 7

min=1

min=1

min=1

min=5

swap

Pass 2 Pass n-2

void ssort(int mylist[], int size)
{
 for(i=...){
 int min = i;
 for(j=...){
 if(mylist[j] < mylist[min]) {
 min = j
 } }
 // swap mylist[i] & mylist[min]
}

i

min=1 1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 min=1

ji

1 3 8 6 5 7 swap

1 3 5 6 7 8 min=4

ji

min=0 min=1 min=4

4e.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Sort

Value

List IndexCourtesy of wikipedia.org

4e.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OPERATIONS ON A SORTED ARRAY

4e.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Insertion to a Sorted Array

• Another option rather than sorting an unordered array us to
always insert new data into the correct location of the array

• See example below

• To insert, we must
– Iterate until we find the appropriate location to place the new value

– Make room for the new value by shifting the remaining items back a spot

7insert(7)

3 7

0

3 7 8

3 6 7 8

0

0

1

1

1

2

2 3

insert(3)

insert(8)

insert(6)

0

7 7

7

7

7

7

3 7 8

0 1 2

7

3

insert(6)

3 7 8

0 1 2

7

3

3 7 8

0 1 2

6

3

4e.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Removing from a Sorted Array

• Erasing / removing item at any location other than the very last
item requires us to copy all items behind the removed item to the
previous slot

30 51 52 53 54

0 1 2 3 4 5

60

30 51 5253 54 60

To delete/remove

the item at location

2 requires us to

move everyone

else up

4e.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

COMPLEXITY & RUNTIME

4e.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Time Complexity

• Coming up with AN algorithm to solve a problem is
often not TOO hard

• Coming up with a GOOD algorithm to solve a
problem can be a bit harder

• We need a way to judge how "GOOD" an algorithm is

– For us "GOOD" will mean how long the algorithm takes to
solve the problem

– We will count steps of work and come up with an answer
in terms of 𝑛, where 𝑛 is the size of the input/problem

4e.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bubble Sorting
• Recall the bubble sort

• How much work do our nested
loops require us to do
– Think of each step/iteration as 1

unit of time/work

7 3 8 6 5 1List

Original

3 7 6 5 1 8List

Pass 1 (______ steps)

3 6 5 1 7 8List

Pass 2 (______ steps)

3 5 1 6 7 8List

Pass 3 (______ steps)

3 1 5 6 7 8List

Pass 4 (______ steps)

1 3 5 6 7 8List

Pass 5 (______ steps)

1 3 5 6 7 8List

Pass 6 (______ steps)

7 3 8 6 5 1List

Original List is length N

(N=6 for this example)

4e.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Complexity of Sort Algorithms

• Bubble Sort & Selection Sort
– 2 Nested Loops

– Execute outer loop 𝑛 times

– For each outer loop iteration,
inner loop runs 𝑖 times.

– Time complexity is proportional
to 𝑛2

• Other sort algorithms can run
in time proportional to:
 𝑛 ∗ log 2(𝑛)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

R
u
n
-t

im
e

N

N2

N*log2(N)

4e.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Importance of Time Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4 400 1,048,576

200 1 7.6 200 1,528.8 40,000 1.60694E+60

2000 1 11.0 2000 21,931.6 4,000,000 #NUM!

• It makes the difference between effective and impossible

• Many important problems currently can only be solved with exponential run-time
algorithms (e.g. O(2n) time)

• Usually algorithms are only practical if they run in polynomial time (e.g. O(n) or O(n2)
etc.)

4e.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

4e.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a - Sol

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int cmax = 0;
 for(int i=1; i < n; i++) {
 if(data[i] > data[cmax]){
 cmax = i;
 }
 }
 // swap the max and end element
 int temp = data[n-1];
 data[n-1] = data[cmax];
 data[cmax] = temp;
 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

4e.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b - Sol

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 for(int i=0; i < n-1; i++) {
 if(data[i] > data[i+1]){
 int temp = data[i];
 data[i] = data[i+1];
 data[i+1] = temp;
 }
 }
 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

	Slide 1: Unit 4e
	Slide 2: Task 12a – From Unit 3d
	Slide 3: Task 12a
	Slide 4: Task 12a
	Slide 5: Task 12b
	Slide 6: Task 12b
	Slide 7: Sorting
	Slide 8: Bubble Sort
	Slide 9: Bubble Sort Algorithm
	Slide 10: Bubble Sort
	Slide 11: Selection Sort
	Slide 12: Selection Sort Algorithm
	Slide 13: Selection Sort
	Slide 14: Operations on a SORTED array
	Slide 15: Insertion to a Sorted Array
	Slide 16: Removing from a Sorted Array
	Slide 17: Complexity & runtime
	Slide 18: Time Complexity
	Slide 19: Bubble Sorting
	Slide 20: Complexity of Sort Algorithms
	Slide 21: Importance of Time Complexity
	Slide 22: solutions
	Slide 23: Task 12a - Sol
	Slide 24: Task 12b - Sol

