
4d.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4d

Compiling and Debugging

4d.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

EDITING AND COMPILING
MANUALLY

4d.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review: Print Statements / Narration

• When we first discussed debugging we
said an easy way to find an error is to add
print statements that will "narrate" where
you are and what the variable values are

• Be a detective by narrowing down where
the error is
– Put a print statement in each 'for', 'while', 'if'

or 'else' block…this will make sure you are
getting to the expected areas of your code

– Then print variable values so you can see what
data your program is producing

4d.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Editors

• "Real" developers use editors
designed for writing code

– No word processors!!

• You need a text editor to
write your code

– Eclipse, Sublime, MS Visual Code,
Emacs, Atom, and many others

• These often have handy functions for
commenting, indenting, checking
matching braces ({..}) etc.

4d.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Compilers

• Several free and commercial compilers are
available

– g++:

– clang++

– XCode

– MS Visual Studio

• Several have "integrated" editors, debuggers
and other tools and thus are called IDE's
(Integrated Development Environments)

4d.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using the Command Line

• While GUIs are nice, we often have
more control when using the command
line interface (i.e. the terminal)

• Linux (the OS used by Codio and in CS
103, 104, etc.) has a rich set of
command line utilities (Mac & Windows
do too, though Windows uses different
names for the utilities)

• We can navigate the file system (like you
would with Explorer or Finder), start
programs (double-clicking an icon), and
much more by simply typing commands

Terminal Icon

Linux Terminal

View

Vocareum

Terminal View

4d.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Software Process

Executable

Binary Image

("test")

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

C++ file(s)

(test.cpp)

Compiler

#include <iostream>

using namespace std;

int main()

{ int x = 5;

 cout << "Hello"

 << endl;

 cout << "x=" << x;

 return 0;

}

g++
Load &

Execute

$ code test.cpp &

$ code test.cpp &

$ g++ –g –Wall test.cpp –o test
or
$ make test

$ code test.cpp &

$ g++ –g –Wall test.cpp –o test

$./test

2 Compile & fix compiler

errors
1 Edit & write

code
3 Load & run the

executable program

Std C++ & Other

Libraries

Note: Most documentation
and books use $ as a
placeholder for the command
line prompt.

Input file

(source code)

Output file

(binary executable)

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

4d.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

g++ Options

• Most basic usage
– g++ cpp_filenames

– Creates an executable a.out

• Options
– -o => Specifies output executable name (other than default a.out)

– -g => Include info needed by debuggers like gdb, kdbg, etc.

– -Wall => show all warnings

• Most common usage form:
– $ g++ -g -Wall kiosks.cpp -o kiosks

4d.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Listing Files (Folder Contents)

• In Mac/Linux, to view the files in a folder, just
type ls (stands for list)

Executable

Source code file

4d.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Running the Program

• First ensure the program compiles

– $ g++ -g -Wall kiosks.cpp -o kiosks

• Then run the program by preceding the
executable name with ./

– $./kiosks

– Remember NOT to type the `$`

4d.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DEBUGGERS

4d.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 4: Using a Debugger

• Allows you to

– Set a breakpoint (the code will run and then stop
when it reaches a certain line of code)

– Step through your code line by line so you can see
where it goes

– Print variable values when you are stopped at a
certain line of code

4d.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GDB and Other Debuggers

• gdb is a simple text-based debugger that comes with
many Linux/Unix based system

– We'll focus on this debugger

• Other development environment have built in
debuggers

– MS Visual Studio

– Apple Xcode

– Eclipse

– Even Codio has a graphical interface for GDB

• Online compiler + GUI based GDB tool

– https://www.onlinegdb.com/

https://www.onlinegdb.com/

4d.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Running the Debugger

• Compile your program and include the -g flag

– $ g++ -g search.cpp -o search

• Then start the debugger giving it the program
you want to debug (not the source code)

– $ gdb ./search

4d.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breakpoints

• Stop program execution at a given line number

• Set before you start the program in the debugger

– (gdb) break 36

• Get the program running

– (gdb) run

• It will run and then stop when it reaches the code on
line 36

4d.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Stepping

• Type step to execute one line and then stop
(aka single-step)

– (gdb) step

• If you get to a line with a function call that you
don't want to go into but just have execute
fully, type next (aka step-over)

– (gdb) next

int max(int a, int b)
{
 if(a > b)
 return a;
 ...
}
int main()
{ ...
 cin >> x;
 y = max(10,x);
 cout << y << endl;
}

Suppose we are

stopped here

step

next

4d.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Printing values

• At any point in time you can print a variable or
an expressions

– (gdb) print size

• Would print the value of the size variable

– (gdb) print nums[i]

• Would print the value in nums[i]

– (gdb) print nums[i] == target

• Would print true or false

4d.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

gdb TUI / GUI

• Gdb has a text-based user interface (aka "TUI") that you can
enable if desired:

• To see both the source code and the debugger command area,
type:
– (gdb) layout src (turns on src display)

– (gdb) tui disable (turns off src display)

• You can also toggle between the two display modes using the
key sequence: Ctrl-X, a

• To move your cursor between scrolling in the source window
and entering commands in the gdb command terminal, use:
Ctrl-X, o to toggle back and forth

• A web-based GUI for gdb: https://www.onlinegdb.com/

https://www.onlinegdb.com/

4d.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• Practice with gdb in Codio

– search

– sumpairs

– count

– primes

4d.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Codio Exercises 2

• Practice using a debugger

– histogram (break at line 8)

	Slide 1: Unit 4d
	Slide 2: Editing and Compiling manually
	Slide 3: Review: Print Statements / Narration
	Slide 4: Editors
	Slide 5: Compilers
	Slide 6: Using the Command Line
	Slide 7: Software Process
	Slide 8: g++ Options
	Slide 9: Listing Files (Folder Contents)
	Slide 10: Running the Program
	Slide 11: Debuggers
	Slide 12: Step 4: Using a Debugger
	Slide 13: GDB and Other Debuggers
	Slide 14: Running the Debugger
	Slide 15: Breakpoints
	Slide 16: Stepping
	Slide 17: Printing values
	Slide 18: gdb TUI / GUI
	Slide 19: Exercises
	Slide 20: Codio Exercises 2

