
4b.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4b

Writing Functions

4b.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

4b.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functions Overview

• Functions (aka procedures,
subroutines, or methods) are the
unit of code decomposition and
abstraction

– Decomposition: Breaking programs
into smaller units of code

– Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

ValidateInputs()

RetrieveMap()

GetOverlayData()

Render()

Publish()

F
u

n
c
ti
o

n
 D

e
c
o

m
p

o
s
it
io

n

Map

Service

4b.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function Signatures/Prototypes

• We think of a function as a blackbox (don't
know how it does the task internally)
where we can provide inputs and get back
a value

• A function has:

– A name

– Zero or more input parameters

– 0 or 1 return (output) values
• We only specify the type

• The signature (or prototype) of a function
specifies these aspects so others know
how to "call" the function

ba

max

int max(int a, int b);

Function Signature/Prototype

4b.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

User Defined Functions

• We can define our own functions
in 3 steps

• Step 1: "Declare" your function
by placing the prototype
(signature) at the top of your
code

• Step 2: "Define" the function
(actual code implementation)
anywhere (above or below
main()) by placing the code in { }

• Step 3: "Call" the function from
main() or another function
passing in desired inputs and
using the return value (output)

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
 int x, y, mx;
 cin >> x >> y;

 /* Code for main */

}

int max(int a, int b)
{
 if(a > b)
 return a; // immediately stops max
 else
 return b; // immediately stops max
}

4b.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Calling a Function (1)

• We "call" or "invoke" the function by:

– Using its name and place variables or
constants that the current function
has declared in the order that we
want them to map to the
parameter/argument list

– First variable listed (x) will map to the
first parameter (a) in the function's
argument list, the second variable (y)
to the second parameter (b), etc.

• Don't

– Relist the return type in the call

– Relist the type of the arguments

– Use variable names that don't exist in
the current function

– Forget to save the returned value

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
 int x, y, mx;
 cin >> x >> y;

 /* Call the function */

 mx = max(x, y);

 /* Bad */
 mx = int max(x, y);
 mx = max(int x, int y);
 mx = max(a, b);
 max(x, y);

}

int max(int a, int b)
{
 if(a > b)
 return a; // immediately stops max
 else
 return b; // immediately stops max
}

4b.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Calling a Function (2)

• The we can "call" (activate/invoke)
our function from any other location
in our code as many times as we like

• Semantics of a function call:

– Pause the caller code (i.e. main)

– Pass copies of the arguments to the
function (i.e. pass a copy of x and y to
a and b)

– Let the function execute

– When the function completes we
return back to the caller (i.e. main)
and resume execution

– Any return value is substituted in
place of the function call

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
 int x, y;
 cin >> x >> y; // User types: -5 7

 int mx = 1 + max(x, y); // call max
 cout << mx << endl;

 cout << max(0, x) << endl; // call max
}

int max(int a, int b)
{
 if(a > b)
 return a; // immediately stops max
 else
 return b; // immediately stops max
}

8
0

Program Output (if user types -5 7):

7

0

4b.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Execution Timeline

1. We always start at main() and execute sequentially
until a function call or the end of main()

2. When we hit a function call, execution of main
pauses and execution of max begins

3. Max will compare the arguments and return the
bigger

4. Upon return we go back to where we left off in the
previous function and replace the function call
with the return value

5. We continue to evaluate the expression in which
the function call was made (i.e. 1 + max)

6. We assign the result to mx

7. We continue sequentially until another function
call or until the end of main()

8. Another function call again causes main to pause
and max begins execution anew

9. Max compares arguments

10. It then returns to the caller (main) and substitutes
its return value in the larger expression

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
 int x, y, mx;
 cin >> x >> y; // User types: -5 7

 int mx = 1 + max(x, y); // call max
 cout << mx << endl;

 cout << max(0, x) << endl; // call max
}

int max(int a, int b)
{
 if(a > b)
 return a; // immediately stops max
 else
 return b; // immediately stops max
}

8
0

Program Output (if user types -5 7):

7

0
7

1

2

3
4

56

8

9

10

4b.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Functions? (1)

• Functions are best use to perform
code that would otherwise have to be
duplicated

• By "factoring" common code into its
own function and possibly
parameterizing it we can make
flexible, reusable blocks of code

#include <iostream>
using namespace std;

int main()
{
 // Print flag of 3 rows
 for(int i=0; i < 3; i++){
 for(int k=0; k < 3-i; k++){
 cout << '/';
 }
 cout << endl;
 }

 // Print flag of 5 rows
 for(int i=0; i < 5; i++){
 for(int k=0; k < 5-i; k++){
 cout << '/';
 }
 cout << endl;
 }

 return 0;
}

///
//
/
/////
////
///
//
/

Desired Program Output:

4b.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Functions? (2)

• Here we have factored the common
code into its own function
parameterized based on how many
rows are desired

#include <iostream>
using namespace std;

void printFlag(int rows);

int main()
{
 printFlag(3);
 printFlag(5);
 return 0;
}

void printFlag(int rows)
{
 for(int i=0; i < rows; i++){
 for(int k=0; k < rows-i; k++){
 cout << '/';
 }
 cout << endl;
 }
}

///
//
/
/////
////
///
//
/

Desired Program Output:

4b.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functions Calling Functions

• We could create 1 or 2 functions to do this
job (probably could all be done in
printFlag but we want you to see how one
function can call another)

• Anytime a function calls another, the
caller pauses and the called function
begins

• When a function ends it returns to the
previous function (the one that called it)

#include <iostream>
using namespace std;

void printRow(int n); // prototype
void printFlag(int rows); // prototype

int main()
{
 printFlag(3);
 printFlag(5);
 return 0;
}
void printFlag(int rows)
{
 for(int i=0; i < rows; i++){
 printRow(rows-i);
 }
}
void printRow(int n);
{
 for(int i=0; i < n; i++){
 cout << '/';
 }
 cout << endl;
}

///
//
/
/////
////
///
//
/

Program Output:

4b.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

TWO SETS OF ARGUMENT NAMES
Formal and Actual Parameters

4b.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Argument Names

• A script (play or movie) could be produced in
many different places each with different
casts (actual actors and actresses).

• Thus, the script is written in terms of
character names but when the cast is
chosen, actual people's names are
mapped/substituted.

• In the play, everything is setup to use the
character names (the audience wouldn't
know what's going on if they use the
actresses real name).

• Before or after the play, people's actual
(real) names are used to refer to people

• The same thing happens with arguments
passed to a function.

character names real names

4b.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Formal and Actual
Argument Names

• In the analogy, the play is a function

• Formal argument name (character names):
The names used INSIDE the function code
which act as a placeholder to know which
input is which)

– When taking the power would pow(x,y) give
the same result as pow(y,x)? No!

– So we need to know which input is the base
and which is the exponent…formal argument
names help us know that.

• Actual argument names (names of the
actors): The actual values and variables in
the calling function that they want to pass
or map to the functions formal arguments

Formal Arguments

(character names)

Actual Arguments

(real names)

// prototype
double mypow(double base, int exp);

int main() {
 double x=2,y=3; // actual args
 double result1 = mypow(x,y);
 double result2 = mypow(y,2);
 ...
}
 // formal args
double mypow(double base, int exp)
{ . . . }

4b.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Mapping Formals to Actuals

• When we call a function, the ACTUAL
arguments are assigned into the FORMAL
arguments
– Ex: formal = actual;

• The mapping is just based on the ORDER we
list the formals in the function signature
and the ORDER we list the actuals when we
call the function
– The first formal is assigned the first actual

– The second formal is assigned the second actual

– The third formal is assigned the third actual

– …

• Each time we call the function we can use a
different set of "actresses" (i.e. different
actuals for each call)

#include <iostream>
using namespace std;
// prototype
double mypow(double base, int exp);

int main() {
 double x; int y;
 cin >> x >> y;
 // actual args
 double result1 = mypow(x,y);
 double result2 = mypow(y,2);
 ...
}

 // formal args
double mypow(double base, int exp)
{
 int result = 1;
 for(; exp != 0; exp--){
 result *= base;
 }
 return result;
}

// Playbill for 1st call
base = x;
exp = y;

// Playbill for 2nd call
base = y;
exp = 2;

4b.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variable Scope
• "Scope" of a variable refers to the

– Visibility (who can access it) and

– Lifetime of a variable (how long is the
memory reserved

• For now, there are 2 scopes we will
learn

– Global: Variables are declared
outside of any function and are
visible to all the code/functions in
the program
• For various reasons, it is "bad" practice

to use global variables. You MAY NOT use
them in CS 102.

– Local: Variables are declared inside
the { } in a function and are only
visible in those { } and die when the
the end brack } is reached

#include <iostream>
using namespace std;

// Global Variable
int x=1;

int add_x()
{
 int n; // n is a "local" variable
 cin >> n;
 // y and z NOT visible (in scope) here
 // but x is since it is global
 return (n + x);
} // n dies here
int main()
{
 // y and z are "local" variables
 int y=0, z;

 z = add_x();
 y += z / x; // n is NOT visible
 cout << x << " " << y << endl;
 return 0;
} // y and z die here

4b.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• Exercises

– hypotenuse

– wakeup

4b.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

main

Example Functions 1

rateyrs

calcInterest

double calcInterest(double amt, int yrs, double rate);

Function Signature/Prototype

#include <iostream>
#include <cmath>
using namespace std;

// prototype
double calcInterest(double amt, int yrs, double rate);

int main()
{
 double amount, r;
 cin >> amount >> r;

 double interest = calcInterest(amount, 30, r);
 cout << "Interest: " << interest << endl;
 return 0;
}

double calcInterest(double amt, int yrs, double rate)
{
 return amt * pow(rate/12, 12*yrs);
}

amt

30 ramount

interest

4b.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

main

Example Functions 2

exp_pwd

getAndCheckLogin

bool getAndCheckLogin(string exp_pwd);

Function Signature/Prototype

#include <iostream>
using namespace std;

// prototype
bool getAndCheckLogin(string exp_pwd);

int main()
{
 string pass = "Open123!"; // secret password
 bool valid;

 valid = getAndCheckLogin(pass);
 if(valid == true) { cout << "Success!" << endl; }
 else { cout << "Password mistmatch!" << endl; }
 return 0;
}

bool getAndCheckLogin(string exp_pwd)
{ string pwd;
 cout << "Enter your password: " << endl;
 cin >> pwd;
 return pwd == exp_pwd;
}

pass

valid

O
p
e
n
1
2
3
!

4b.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

main

Example Functions 3

correct

printLoginResult

void printLoginResult(bool correct);

Function Signature/Prototype

#include <iostream>
using namespace std;

// prototype
void printLoginResult(bool correct);

int main()
{
 string pass = "Open123!"; // secret password
 bool valid;

 valid = getAndCheckLogin(pass);
 printLoginResult(valid);
 return 0;
}

void printLoginResult(bool correct)
{
 if(correct == true) { cout << "Success!" << endl; }
 else { cout << "Password mistmatch!" << endl; }
}

valid

4b.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example Functions 4

genCoinFlip

bool genCoinFlip();

Function Signature/Prototype

#include <iostream>
#include <cstdlib>
using namespace std;

// prototype
bool genCoinFlip();

int main()
{
 bool heads;

 heads = genCoinFlip();
 if(heads == true) { cout << "Heads!" << endl; }
 else { cout << "Tails!" << endl; }
 return 0;
}

bool genCoinFlip()
{
 int r = rand(); // Generate random integer
 return (r%2) == 1;
}

heads

main

4b.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Predicate Functions

• We can write functions
that return a bool (true
or false) to assert or
confirm something about
the input

• These functions can then
be called in the condition
of an if statement or a
loop

bool isNegative(double x)
{
 return x < 0;
}
bool isDigit(char c)
{
 return (c >= '0' && c <= '9');
}
bool __________(int s1, int s2, int s3, int s4)
{
 return (s1 == s2) && (s2 == s3) &&
 (s3 == s4);
}

int main()
{
 int a; char b; int f, g, y, z;
 cin >> a >> b >> f >> g >> y >> z;
 if(isNegative(a)) {
 cout << "Error..neg. #" << endl;
 }
 if(isDigit(b)) {
 cout << "digit character" << endl;
 }
 if((f==g) && (g == y) && (y == z))
 {
 cout << "Yes...___________" << endl;
 }
 return 0;
}

	Slide 1: Unit 4b
	Slide 2: Unit 4
	Slide 3: Functions Overview
	Slide 4: Function Signatures/Prototypes
	Slide 5: User Defined Functions
	Slide 6: Calling a Function (1)
	Slide 7: Calling a Function (2)
	Slide 8: Execution Timeline
	Slide 9: Why Functions? (1)
	Slide 10: Why Functions? (2)
	Slide 11: Functions Calling Functions
	Slide 12: Two Sets of Argument Names
	Slide 13: Argument Names
	Slide 14: Formal and Actual Argument Names
	Slide 15: Mapping Formals to Actuals
	Slide 16: Variable Scope
	Slide 17: Exercises
	Slide 18: Example Functions 1
	Slide 19: Example Functions 2
	Slide 20: Example Functions 3
	Slide 21: Example Functions 4
	Slide 22: Predicate Functions

