Unit 4a

Calling and Using Functions

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

{%—'ﬁ;ﬂ}

{O D:D—»ié}—ﬂm:m}

QT —~O0D

{ }

* Unit 4: Divide & Conquer
(Functional Decomposition)

————————

ig{y)[—i
JCJi

———————

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

i, TS(“Viterbi

School of Engineering

Functional Decomposition Overview

/ \
| fx))
1
1
* Idea: Extract common (small) code /int main() { Hary) [_,‘I
. . 1
sequence into separate blocks (aka // setup array with data (]]j
f . d b) int n, val, data[100]; Vemmm———
unctions, procedures, subroutines, cin >> n;
or methods) that we can "call" for(int i=0; i < n; i++)
. { cin >> data[i]; }
from anyWhere in our code bool foundl100 = false, found@ = false;
By decomposing our software into // Find 100)
f .) for(int i=0; i < n; i++) {
unctions, we can: if(100 == data[i]){
— Reduce coding effort found1ee = true;
break;
— Reuse code)})
— Increase maintainability // Find @ ,)
- for(int i=0; i < n; i++) {
— Increase readability (the name of a if(0 == data[i]){
function is often a "comment" foundo = true;
about what that function's code 1) break;)
does cout << "found 100: " << foundl1l09 << endl;
— Build up large solutions from cout << "found @: " << found@ << endl;
return 0;

smaller pieces \i /
ibute

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distr

i, TS(“Viterbi

School of Engineering

Functional Decomposition Overview

o)
* Idea: Extract common (small) code //bool find(int d[], int len, int v)\ ig(y, [_,‘I
sequence into separate blocks (aka || {)
. . for(int i=0; i < len; i++) { Yo
functions, procedures, subroutines, if(v == d[i]){ return true; }
or methods) that we can "call" }

return false;
\. Y,

int main() {

from anywhere in our code

By decomposing our software into

funCtlonS' we can. // setup array with data

— Reduce coding effort int n, val, data[100];
cin >> n;

— Reuse code for(int i=0; i < n; i++)

{ cin >> data[i]; }
bool found100 = false, found@ = false;
// Find 100
found100 = find(data, n, 100);

— Increase maintainability

— Increase readability (the name of a
function is often a "comment"
. // Find ©
about what that function's code founde = find(data, n, 0):
does cout << "found 100: " << foundl1l09® << endl;

— Build uplarge solutions from cout << "found 0: " << found@ << endl;
return 0;

smaller pieces \i /
ibute

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distr

Functions Overview

* Functions (aka procedures,
procedures, or methods) are the
unit of code decomposition and
abstraction

— Decomposition: Breaking programs
into smaller units of code

— Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map Validatelnputs()
Service
C
: s
RetrieveMap() =
S
=
GetOverlayData() | $
)
c
e
Render() 3]
=
LL
Publish()

CHINATOWN
/os Akl‘é‘s
-r DOWNTOWN

FLrE S,

i, TS(“Viterbi

School of Engineering

Recall: Walking a Square in Scratch

 We can define a function (i.e. block of code) once and then "call" it any time

we want to execute that block of code.

* Can provide different input values (aka "arguments" / "parameters") and

even get an output (aka "return” value).

o @ @
point in direction ()

when

1{ go to x: o Yy o
i{ point in direction @

[5c X 7c)tum (& @ degrees
L5d X7d wait a seconds

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploadec, .. =C...ccccw.

.;.’.' —‘;- il ,‘

oo @ v @

point in direction @
wait ° seconds
repeat
)
D O

WalkForwardAndTurn

100
—

define WalkForwardAndTurn distance delay |

move distance steps

wait delay seconds

tum C @ degrees

wait delay seconds

i, TS(“Viterbi

School of Engineering

Function Signatures/Prototypes

We think of a function as a blackbox (don't know
or care how it does the task internally) of code
where we can provide inputs and get back a value

— Or think of it as a web-app (or form) where you supply
data to "named" inputs and get back a value

In C/C++, a function has:
— A name
— Zero or more input parameters
— 0 or 1 return (output) values
* We only specify the type
* O return values is indicated with void type

The signature (or prototype) of a function specifies
these aspects so others know how to "call" the
function

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Max

T 2

>
>

Mmax

int max(int a, int b);

Function Signature/Prototype

i, TS(“Viterbi

School of Engineering
function
pow rand <cstdlib>
(c90/c99|c++98[c++11|@ N
double pow (double base, double exponent); Generate random number
Raise to power Returns a pseudo-random integral number in the range between 0

and RAND_MAX.

Returns base raised to the power exponent: _ _ ,
This number is generated by an algorithm that returns a sequence of

apparently non-related numbers each time it is called. This algorithm
baseeXDonem uses a seed to generate the series, which should be initialized to

some distinctive value using function srand.

base exp
Random
rand .
pow base&xP Integer
double pow(double base, double exp); int rand();
Function Signhature/Prototype Function Signature/Prototype

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

_USCViterbi
"Functional” Programming

* While we can write arithmetic
expressions directly in C++, let's practice
using functions to perform the same
operations.

* Suppose you are given:
— int add(int p, int q); // returns p+q
— int sub(int p, int q); // returns p-q
— int mul(int p, int q); // returns p*q
— int div(int p, int q); // returns p/q

* Convert the following expressions to use
functions and no operators (+, -, *, /)

* Key ldeas:

— Execution works from inside to outside
(i.e. f(g(x)) invokes g(x) first)

— The return value of a function is
substituted and used in the larger
x.F?resfsifon

© 2023 by Mark Rece,, s protected and may not be shared, uploaded, or distributed.

School of Engineering

// Add 3 numbers

a=Xx+Yy+ z;

// which upholds the order of ops
a = add(add(x,y),z);

a = add(x,add(y,z));

// Exercise 1
a=x/y+y*z-Xx;

a =

// Exercise 2
a=x%*(y-2)/ z;

a =

Disclaimer: These functions (add, sub, etc.)
are fictitious and in C++ we just use the +, -,
etc. operators, but this is to practice using
functions.

] USCViterbi
Function call statements

 Reminder that you can call a
function anywhere

* Resultis replaced into bigger
expression

e Take care to "save" the result

— If you don't save the return value
into a variable or use it
immediately, the result is lost

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

#include <iostream>
#include <cmath>

#include <algorithm>
using namespace std;

int main()

{

// can call functions
// in an assignment
double res = cos(@®); // res = 1.0

// can call functions in an
// expression
)(sqrt(z) / 2; // forgot to save result
res = sqrt(2) / 2; // save 1.414/2 in res

cout << max(34, 56) << endl;
// outputs 56

return O;

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

Reading Documentation

* Much of programming is calling other library
functions which do small pieces of work in an
effort to accomplish the overall application

— Learn to read documentation
* Documentation at:

— http://www.cplusplus.com/reference/cmath/

— http://www.cplusplus.com/reference/cctype/

— http://www.cplusplus.com/reference/cstdlib/

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.cplusplus.com/reference/cmath/
http://www.cplusplus.com/reference/cctype/
http://www.cplusplus.com/reference/cstdlib/

i, TS(“Viterbi

School of Engineering

SOLUTIONS

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

_USCViterbi
"Functional” Programming

* While we can write arithmetic
expressions directly in C++, let's practice
using functions to perform the same
operations.

* Suppose you are given:
— add(p, q) // returns p+q
— sub(p, q) // returns p-q
— mul(p, q) // returns p*q
— div(p, q) // returns p/q

* Convert the following expressions to use
functions and no operators (+, -, *, /)
* Key ldeas:

— Execution works from inside to outside
(i.e. f(g(x)) invokes g(x) first

— The return value of a function is
substituted and used in the larger

© 2023 by Mark Redekoe?)[)).(er;%osn%r!t(l)srp)rotected and may not be shared, uploaded, or distributed.

School of Engineering

// Add 3 numbers

a=Xx+Yy+ z;

// which upholds the order of ops
a = add(add(x,y),z);

a = add(x,add(y,z));

// Exercise 1
a=x/y+y*z-x;
a = sub(add(div(x,y),mul(y,z)),x);

// Exercise 2
a=x*(y-2)/ z;
a = div(mul(x, sub(y,z)), z);

Disclaimer: These functions (add, sub, etc.)
are fictitious and in C++ we just use the +, -,
etc. operators, but this is to practice using
functions.

	Slide 1: Unit 4a
	Slide 2: Unit 4
	Slide 3: Functional Decomposition Overview
	Slide 4: Functional Decomposition Overview
	Slide 5: Functions Overview
	Slide 6: Recall: Walking a Square in Scratch
	Slide 7: Function Signatures/Prototypes
	Slide 8: Common Functions
	Slide 9: "Functional" Programming
	Slide 10: Function call statements
	Slide 11: Reading Documentation
	Slide 12: Solutions
	Slide 13: "Functional" Programming

