
4a.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4a

Calling and Using Functions

4a.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 4

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

4a.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functional Decomposition Overview

• Idea: Extract common (small) code
sequence into separate blocks (aka
functions, procedures, subroutines,
or methods) that we can "call"
from anywhere in our code

• By decomposing our software into
functions, we can:

– Reduce coding effort

– Reuse code

– Increase maintainability

– Increase readability (the name of a
function is often a "comment"
about what that function's code
does

– Build up large solutions from
smaller pieces

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 bool found100 = false, found0 = false;
 // Find 100
 for(int i=0; i < n; i++) {
 if(100 == data[i]){
 found100 = true;
 break;
 } }
 // Find 0
 for(int i=0; i < n; i++) {
 if(0 == data[i]){
 found0 = true;
 break;
 } }
 cout << "found 100: " << found100 << endl;
 cout << "found 0: " << found0 << endl;
 return 0;
}

4a.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functional Decomposition Overview

• Idea: Extract common (small) code
sequence into separate blocks (aka
functions, procedures, subroutines,
or methods) that we can "call"
from anywhere in our code

• By decomposing our software into
functions, we can:

– Reduce coding effort

– Reuse code

– Increase maintainability

– Increase readability (the name of a
function is often a "comment"
about what that function's code
does

– Build up large solutions from
smaller pieces

bool find(int d[], int len, int v)
{
 for(int i=0; i < len; i++) {
 if(v == d[i]){ return true; }
 }
 return false;
}

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 bool found100 = false, found0 = false;
 // Find 100
 found100 = find(data, n, 100);
 // Find 0
 found0 = find(data, n, 0);
 cout << "found 100: " << found100 << endl;
 cout << "found 0: " << found0 << endl;
 return 0;
}

4a.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functions Overview

• Functions (aka procedures,
procedures, or methods) are the
unit of code decomposition and
abstraction

– Decomposition: Breaking programs
into smaller units of code

– Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

ValidateInputs()

RetrieveMap()

GetOverlayData()

Render()

Publish()

F
u
n
c
ti
o
n
 D

e
c
o
m

p
o
s
it
io

n

Map

Service

4a.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1

2

3

Recall: Walking a Square in Scratch

• We can define a function (i.e. block of code) once and then "call" it any time
we want to execute that block of code.

• Can provide different input values (aka "arguments" / "parameters") and
even get an output (aka "return" value).

4a.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function Signatures/Prototypes
• We think of a function as a blackbox (don't know

or care how it does the task internally) of code
where we can provide inputs and get back a value
– Or think of it as a web-app (or form) where you supply

data to "named" inputs and get back a value

• In C/C++, a function has:

– A name

– Zero or more input parameters

– 0 or 1 return (output) values

• We only specify the type

• 0 return values is indicated with void type

• The signature (or prototype) of a function specifies
these aspects so others know how to "call" the
function

ba

max

int max(int a, int b);

Function Signature/Prototype

Max

a:

b:

4a.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Functions

rand

int rand();

Function Signature/Prototype

exp

pow

base

baseexp

Random

integer

double pow(double base, double exp);

Function Signature/Prototype

4a.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Functional" Programming

• While we can write arithmetic
expressions directly in C++, let's practice
using functions to perform the same
operations.

• Suppose you are given:
– int add(int p, int q); // returns p+q

– int sub(int p, int q); // returns p-q

– int mul(int p, int q); // returns p*q

– int div(int p, int q); // returns p/q

• Convert the following expressions to use
functions and no operators (+,-,*,/)

• Key Ideas:

– Execution works from inside to outside
(i.e. f(g(x)) invokes g(x) first)

– The return value of a function is
substituted and used in the larger
expression

// Add 3 numbers
 a = x + y + z;
 // which upholds the order of ops
 a = add(add(x,y),z);
 a = add(x,add(y,z));

 // Exercise 1
 a = x / y + y * z – x;

 a = ________________________________

 // Exercise 2
 a = x * (y – z) / z;

 a = ________________________________

Disclaimer: These functions (add, sub, etc.)
are fictitious and in C++ we just use the +, -,
etc. operators, but this is to practice using
functions.

4a.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function call statements

• Reminder that you can call a
function anywhere

• Result is replaced into bigger
expression

• Take care to "save" the result
– If you don't save the return value

into a variable or use it
immediately, the result is lost

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
{
 // can call functions
 // in an assignment
 double res = cos(0); // res = 1.0

// can call functions in an
// expression
sqrt(2) / 2; // forgot to save result

res = sqrt(2) / 2; // save 1.414/2 in res

cout << max(34, 56) << endl;
 // outputs 56

 return 0;
}

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

4a.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Reading Documentation

• Much of programming is calling other library
functions which do small pieces of work in an
effort to accomplish the overall application

– Learn to read documentation

• Documentation at:

– http://www.cplusplus.com/reference/cmath/

– http://www.cplusplus.com/reference/cctype/

– http://www.cplusplus.com/reference/cstdlib/

http://www.cplusplus.com/reference/cmath/
http://www.cplusplus.com/reference/cctype/
http://www.cplusplus.com/reference/cstdlib/

4a.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

4a.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Functional" Programming

• While we can write arithmetic
expressions directly in C++, let's practice
using functions to perform the same
operations.

• Suppose you are given:
– add(p, q) // returns p+q

– sub(p, q) // returns p-q

– mul(p, q) // returns p*q

– div(p, q) // returns p/q

• Convert the following expressions to use
functions and no operators (+,-,*,/)

• Key Ideas:

– Execution works from inside to outside
(i.e. f(g(x)) invokes g(x) first

– The return value of a function is
substituted and used in the larger
expression

// Add 3 numbers
a = x + y + z;
// which upholds the order of ops
a = add(add(x,y),z);
a = add(x,add(y,z));

// Exercise 1
a = x / y + y * z – x;

 a = sub(add(div(x,y),mul(y,z)),x);

// Exercise 2
a = x * (y – z) / z;

 a = div(mul(x, sub(y,z)), z);

Disclaimer: These functions (add, sub, etc.)
are fictitious and in C++ we just use the +, -,
etc. operators, but this is to practice using
functions.

	Slide 1: Unit 4a
	Slide 2: Unit 4
	Slide 3: Functional Decomposition Overview
	Slide 4: Functional Decomposition Overview
	Slide 5: Functions Overview
	Slide 6: Recall: Walking a Square in Scratch
	Slide 7: Function Signatures/Prototypes
	Slide 8: Common Functions
	Slide 9: "Functional" Programming
	Slide 10: Function call statements
	Slide 11: Reading Documentation
	Slide 12: Solutions
	Slide 13: "Functional" Programming

