
3d.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 3d – Array and Loop Tasks

Mark Redekopp

3d.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 3

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

3d.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Algorithmic Thinking

• Informal definition of algorithm:
– A precise way to accomplish a task or solve a problem

• The skill we REALLY want to help you build is
algorithmic thinking (i.e. computational problem
solving)

• We will just try to work as many example as possible
but you need to be mentally engaged and trying to
solve these tasks before and while we go through them
together.

3d.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Implementation

• Algorithm Discovery:

– Solve the problem yourself for several examples

– Reflect on what your thought process was

– Given a computer can only do 1 operation (on two values)
at a time, what variables do you need to remember past
results and what loops are necessary to perform that 1
operation many times

• Implementation / Programming mechanics

– Can we achieve our task in one pass (loop), sequential
loops, or need nested loops

– Can we stop early? And how do we implement that (break
statements, etc.)

3d.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8

• Given two sorted arrays of size n1 and n2 respectively,
merge them into a single sorted array of size n1+n2

• Questions:

– Do we need nested loops or sequential loops?

– What are the options for whom should in the first output
location?

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Merge the two sorted arrays into a single sorted array

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

3d.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8

If the user enters 3, find 3 and return its index or -1:

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

0

r1

0

w

0

r2

1

r1

0

w

1

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

1

r1

0

w

1

r2

1

r1

1

w

2

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

1

r1

1

w

2

r2

1

r1

2

w

3

3d.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8

If the user enters 3, find 3 and return its index or -1:

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

1

r1

2

w

3

r2

1

r1

3

w

4

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

1

r1

3

w

4

r2

2

r1

3

w

5

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

2

r1

3

w

5

r2

3

r1

3

w

6

3d.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8

If the user enters 3, find 3 and return its index or -1:

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

3

r1

3

w

6

r2

3

r1

4

w

7

Index: [0] [1] [2] [3] [4] [5] [6] [7]

out 1 2 4 5 8 9 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2]

in2 1 8 9

r2

3

r1

4

w

7

r2

3

r1

5

w

8

3d.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8

• What programming issues (mechanics) should you think about?
– What cases or "phases" exist for the merge process? What two elements

should be compared and what element should be placed in the output?
array int main() {

 // setup array with data
 int n1=0, n2=0, in1[20], in2[20], out[40];
 int num;
 // Read array 1
 cin >> num;
 while(num != -1){
 in1[n1++] = num;
 cin >> num;
 }
 // Read array 2
 cin >> num;
 while(num != -1){
 in2[n2++] = num;
 cin >> num;
 }
 // See next column

 // now perform the given task

 // Output the results
 return 0;
}

3d.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 9

• Given a SORTED array of length n, insert a value, val to
a location that keeps the array sorted

• Questions:

– How do we find the location to insert the value to?

– What else do we have to do to avoid overwriting other
values?

Insert 7 into the sorted array below

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

Index: [0] [1] [2] [3] [4] [5]

in1 2 4 5 7 10 12

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

3d.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 9
Insert 7 into the sorted array below

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

loc

-1

curr

0

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

loc

-1

curr

1

val

7

val

7

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

loc

-1

curr

2

val

7

Index: [0] [1] [2] [3] [4]

in1 2 4 5 10 12

loc

3

curr

3

val

7

3d.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 9
Insert 7 into the sorted array below

Index: [0] [1] [2] [3] [4] [5]

in1 2 4 5 10 12 12

loc

3

curr

4

val

7

Index: [0] [1] [2] [3] [4] [5]

in1 2 4 5 10 10 12

loc

3

curr

3

val

7

Index: [0] [1] [2] [3] [4] [5]

in1 2 4 5 7 10 12

loc

3

curr

3

val

7

Index: [0] [1] [2] [3] [4] [5]

in1 2 4 5 7 10 12

3d.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 9

• What programming
issues (mechanics)
should you think about?

– Are the indexes
independent or is one
dependent on another?

– How and when are we
ready to print our
answer?

– How do we stop (one or
both loops)?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Output the results
 return 0;
}

3d.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 10

• Remove the first occurrence of a given value (if it
exists) from an array, shifting values up

• Questions:

– How can this be broken into 2 smaller tasks

Remove 7 from the array:

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

Index: [0] [1] [2] [3] [4] [5]

out 8 3 2 12 9 10

3d.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 10
Remove the first occurrence of val from the array

loc

0

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

val

7

loc

1

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

val

7

loc

2

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

val

7

loc

3

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

val

7

loc

3

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 12 12 9 10

val

7

loc

4

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 12 9 9 10

val

7

loc

5

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 12 9 10 10

val

7

data[loc] = data[loc+1]

data[loc] = data[loc+1]

data[loc] = data[loc+1]

3d.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 10
Remove the first occurrence of val from the array

loc

5

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 12 9 10 10

val

7 data[loc] = data[loc+1]

loc

5

n

6

Index: [0] [1] [2] [3] [4] [5]

out 8 3 2 12 9 10

val

7 n--;

3d.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 10

• What programming issues
(mechanics) should you
think about?

– In what order should you
shift?

– Will you shift from k to k-1
or k+1 to k? And where
would you stop?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Output the results
 ...
 return 0;
}

3d.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

INTERLUDE: ARRAY HOMEWORK

3d.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequential Iteration

• We usually iterate over an
array sequentially, but this
need not be the rule

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

540
[5]

540
[6]

scores: 0 0 0 0 0 0 0 …

int main()
{
 int scores[100];
 // allocates 100 integers

 // initialize all to 0
 for(int i=0; i < 100; i++){
 scores[i] = 0;
 }

 // ..OR.. read in all entries
 for(int i=0; i < 100; i++){
 cin >> scores[i];
 }

}

3d.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Random Access (Indexing)

• We can access values in any
random order.

• Suppose I say that any student
that visits me in office hours
will receive 2 additional points

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

540
[5]

540
[6]

oh_visit 0 0 0 0 0 0 0 …

int main()
{
 int oh_visit[100];
 // allocates 100 integers

 // loop to initialize array
 // to 0s

 int stu_id;
 cin >> stu_id;

 while(stu_id != -1) {

 oh_visit[stu_id] = 2;

 cin >> stud_id;

 }

}

3d.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Arrays as Look-Up Tables

• Use the value of one array as the
index of another

• Suppose you are given some
integers as data [in the range of 0
to 5]

• Suppose computing squares of
integers was difficult (no built-in
function for it)

• Could compute them yourself,
record answer in another array
and use data to “look-up” the
square

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

for(int i=0; i < 8; i++){
 int x = data[i]
 int x_sq = squares[x];
 cout << i << "," << x_sq << endl;
}

// the data
int data[8] = {3, 2, 0, 5, 1, 4, 5, 3};

// The LUT
int squares[6] = {0,1,4,9,16,25};

for(int i=0; i < 8; i++){
 int x_sq = squares[data[i]];
 cout << i << "," << x_sq << endl;
}

3d.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Approach to "Priority" Problem
• Find the 2D structure

• Consider when sequential loops are
necessary vs. nesting loops

• In this program the values of the priority
array can be used to check the requests
array in order from most to least priority.

3d.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 11

• Remove ALL the occurrences of a given value from an
array, shifting values up.

• Questions:

– Can we do this in one pass? If so, what do we need to track?

Remove 11 from the array:

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 11 2 11 12 9 11

Index: [0] [1] [2] [3]

out 8 2 12 9

3d.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 11
Remove the first occurrence of val from the array

trail

0

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 7 2 7 12 9 70

val

11

trail

1

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 11 2 7 12 9 7

val

11

trail

1

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 2 7 12 9 7

val

11

trail

2

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 2 11 12 9 7

val

11

trail

2

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 12 11 12 9 7

val

11

trail

3

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 12 9 12 9 7

val

11

trail

4

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 12 9 12 9 11

val

11

lead

0

lead

1

lead

2

lead

3

lead

4

lead

5

lead

6

data[trail] = data[lead]
trail++; lead++;

data[trail] = data[lead]
trail++; lead++;

data[trail] = data[lead]
trail++; lead++;

data[trail] = data[lead]
trail++; lead++;

lead++;

lead++;

lead++;

3d.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 11
Remove the first occurrence of val from the array

n

4

trail

4

n

7

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 2 12 9 12 9 11

val

11

lead

7

Index: [0] [1] [2] [3]

out 8 2 12 9

3d.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 11

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Output the results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a

• Find the maximum value in an array and move it to the
end of the array

• Questions:

– Do we scan through the array to find the maximum without
moving it and swap it at the end ..or..

– Do we move it as we can through the array

Find the maximum value and move it to the end of the array.

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

3d.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a
Find the maximum value and move it to the end of the array.

cmax

0

i

1

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

0

i

2

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

0

i

3

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

4

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

5

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

6

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 10

cmax

4

i

6

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 10 9 12

3d.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b
Find the maximum value and move it to the end of the array.

i

0

Index: [0] [1] [2] [3] [4] [5] [6]

out 8 3 2 7 12 9 4

i

1

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 8 2 7 12 9 4

i

2

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 8 7 12 9 4

i

3

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 12 9 4

i

4

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 12 9 4

i

5

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 12 4

Index: [0] [1] [2] [3] [4] [5] [6]

out 3 2 7 8 9 4 12

3d.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

3d.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 8 - Sol

• What programming issues (mechanics) should you think about?
– What cases or "phases" exist for the merge process? What two elements

should be compared and what element should be placed in the output?

int main() {
 // setup array with data
 int n1=0, n2=0, in1[20], in2[20], out[40];
 int num;
 // Read array 1
 cin >> num;
 while(num != -1){
 in1[n1++] = num;
 cin >> num;
 }
 // Read array 2
 cin >> num;
 while(num != -1){
 in2[n2++] = num;
 cin >> num;
 }
 // See next column

 // now perform the given task
 int r1 = 0, r2 = 0, w = 0;
 while(r1 < n1 && r2 < n2) {
 if(in1[r1] < in2[r2]) {
 out[w++] = in1[r1++];
 }
 else {
 out[w++] = in2[r2++];
 }
 }
 while(r1 < n1) { // place remaining in1
 out[w++] = in1[r1++];
 }
 while(r2 < n2) { // place remaining in2
 out[w++] = in2[r2++];
 }
 // Output the results
 return 0;
}

3d.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 9 - Sol

• What programming
issues (mechanics)
should you think about?

– Are the indexes
independent or is one
dependent on another?

– How and when are we
ready to print our
answer?

– How do we stop (one or
both loops)?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int val, loc = -1, curr = 0;
 cin >> val;
 if(n < 100){
 while(curr < n && val > data[curr]) {
 curr++;
 }
 loc = curr;
 for(int curr = n-1; curr >= loc; curr--) {
 data[curr+1] = data[curr];
 }
 data[loc] = val;
 n++;
 }
 else {
 cout << "No room" << endl;
 }
 // Output the results
 return 0;
}

3d.35

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 10 - Sol

• What programming issues
(mechanics) should you
think about?

– In what order should you
shift?

– Will you shift from k to k-1
or k+1 to k? And where
would you stop?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int val, loc;
 cin >> val;
 // find first occurrence of val
 for(loc = 0; loc < n; loc++) {
 if(data[loc] == val) { break; }
 }
 if(loc < n) {
 // shift items up from loc to n
 // invariant: data[loc] is always safe
 // to overwrite
 for(; loc < n-1; loc++) {
 data[loc] = data[loc+1];
 }
 n--;
 }
 // Output the results
 ...
 return 0;
}

3d.36

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 11 - Sol

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int val, lead, trail;
 cin >> val;
 trail = 0;
 for(lead = 0; lead < n; lead++) {
 if(data[lead] != val) {
 data[trail] = data[lead];
 trail++;
 }
 }
 n = trail;
 // Output the results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.37

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12a - Sol

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int cmax = 0;
 for(int i=1; i < n; i++) {
 if(data[i] > data[cmax]){
 cmax = i;
 }
 }
 // swap the max and end element
 int temp = data[n-1];
 data[n-1] = data[cmax];
 data[cmax] = temp;
 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.38

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 12b - Sol

• What programming issues
(mechanics) should you think
about?

– Do we just need to track the
maximum VALUE or the INDEX
of the maximum value?

– Given that you can move the
maximum number to the end
of the array, how could this be
used to SORT the entire array?
• Repeat the process for the first

n-1 elements, then repeat for the
first n-2 elements, etc.

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 for(int i=0; i < n-1; i++) {
 if(data[i] > data[i+1]){
 int temp = data[i];
 data[i] = data[i+1];
 data[i+1] = temp;
 }
 }
 // Print out results
 for(int i=0; i < n; i++){
 cout << data[i] << " ";
 }
 cout << endl;
 return 0;
}

3d.39

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 13 - Partition

• TBD

	Default Section
	Slide 1: Unit 3d – Array and Loop Tasks
	Slide 2: Unit 3
	Slide 3: Algorithmic Thinking
	Slide 4: Implementation
	Slide 5: Task 8
	Slide 6: Task 8
	Slide 7: Task 8
	Slide 8: Task 8
	Slide 9: Task 8
	Slide 10: Task 9
	Slide 11: Task 9
	Slide 12: Task 9
	Slide 13: Task 9
	Slide 14: Task 10
	Slide 15: Task 10
	Slide 16: Task 10
	Slide 17: Task 10
	Slide 18: InterLude: Array Homework
	Slide 19: Sequential Iteration
	Slide 20: Random Access (Indexing)
	Slide 21: Arrays as Look-Up Tables
	Slide 22: Approach to "Priority" Problem
	Slide 23: Task 11
	Slide 24: Task 11
	Slide 25: Task 11
	Slide 26: Task 11
	Slide 27: Task 12a
	Slide 28: Task 12a
	Slide 29: Task 12a
	Slide 30: Task 12b
	Slide 31: Task 12b
	Slide 32: solutions
	Slide 33: Task 8 - Sol
	Slide 34: Task 9 - Sol
	Slide 35: Task 10 - Sol
	Slide 36: Task 11 - Sol
	Slide 37: Task 12a - Sol
	Slide 38: Task 12b - Sol
	Slide 39: Task 13 - Partition

