
3c.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 3c – Debugging Strategies

Mark Redekopp

3c.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DEBUGGING – PART 1

(Part 2 in a few weeks)

3c.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bugs

• The original "bug"

3c.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 1: Review your Own Code

• Rubber Duck Debugging: Reference from an
anecdote from a book, "The Pragmatic
Programmer", that has become popular

• Idea: Explain your code line by line to yourself or
some other "object"

– Note: Commenting your code
is a way to do this

3c.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 2: Test Cases & Expected
Outputs

• Determine input test case(s) that will exercise
various parts of your code

– Each if/else block

– When the loop executes 0, 1, or more times

• Determine the expected output

– You cannot effectively debug without an
expectation of the right output so you know when
the program is working

3c.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 3: Tracing

• Use one of your input
scenarios that is not
working and trace the
execution of your
code by hand

– Make a table of
variables and walk the
code line by line

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 int n;
 cout << "Enter an integer:" endl;
 cin >> n;
 bool isPrime;

 isPrime = true;
 for(int i=2; i < sqrt(n); i++){
 if(n % i == 0){
 isPrime = false;
 break;
 }
 }
 if(isPrime){
 cout << "Prime" << endl;
 }

 else {
 cout << "Not prime" << endl;
 }
 return 0;

}

i n isPr

3c.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 4: Print Statements / Narration

• Let the computer "trace" for you by using print
statements

• Now that you know what to expect, the most
common and easy way is to find the error is to
add print statements that will "narrate" where
you are and what the variable values are

• Be a detective by narrowing down where the
error is
– Put a print statement in each 'for', 'while', 'if' or 'else'

block…this will make sure you are getting to the
expected areas of your code

– Then print variable values so you can see what data
your program is producing

3c.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tips

• Don't write the entire program all at once

• Write a small portion, compile and test it

– Write the code to get the input values, add some
couts to print out what you got from the user, and
make sure it is what you expect

– Write a single loop and test it before doing nested
loops

• Once one part works, add another part and
test it

3c.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CODIO DEBUGGER

3c.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Debuggers

• Allows you to:

– Set a breakpoint (the code will run and then stop
when it reaches the certain line of code)

– Step through your code line by line so that you
can see where the flow of the program goes

– Show variable values when you have stopped at a
certain line of code.

3c.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Starting the Debugger

● In codio, Use the “Debug Current File” on the far right of the

top menu bar to launch the debugger targeting the file your

cursor is in.

● When you run the program , It highlights the exact line

where the code breaks.

● Thus, whenever the code does not run as you expect or

want, one of your first steps should be : Run the debugger

3c.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breakpoints

• Allows you to specify lines of code where you
want the flow to stop and analyse the values
of the variables/function calls/etc.

• In codio, you can set it up by clicking on the
margin of the code and see a red dot appear
at the line of the code.

3c.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Commands

Runs the program

(until breakpoint).

Note: it will pause

temporarily when

at a cin statement

and wait for you to

type the input.

Step Over (Next) :

Run the current line

and pause at the next

line of code.

Step into : If current

line is function, it

steps into the function

pausing at the first line

of the function body.

If current line is not a

function, it executes

the line (like step

over)

Finishes (step out

of) the current

function’s code (or

hit the breakpoint),

and then pause at

the next line of the

previous function

on the stack

3c.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Showing Values

• We can view the value of local variables which
will update as we step through the program

3c.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function Call Stack (Not Covered)

● Allows you to see the functions

being called and what the system

stack looks like.

● For example here, the “main()”

function calls “reverseAndFind()”

● We can view the value of local

variables in each function by

clicking that function in the stack

area.

	Default Section
	Slide 1: Unit 3c – Debugging Strategies
	Slide 2: Debugging – Part 1
	Slide 3: Bugs
	Slide 4: Step 1: Review your Own Code
	Slide 5: Step 2: Test Cases & Expected Outputs
	Slide 6: Step 3: Tracing
	Slide 7: Step 4: Print Statements / Narration
	Slide 8: Tips
	Slide 9: Codio Debugger
	Slide 10: Debuggers
	Slide 11: Starting the Debugger
	Slide 12: Breakpoints
	Slide 13: Commands
	Slide 14: Showing Values
	Slide 15: Function Call Stack (Not Covered)

