
3b.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 3b – Array and Loop Tasks

Mark Redekopp

3b.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 3

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

3b.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Algorithmic Thinking

• Informal definition of algorithm:
– A precise way to accomplish a task or solve a problem

• The skill we REALLY want to help you build is
algorithmic thinking (i.e. computational problem
solving)

• We will just try to work as many example as possible,
but you need to be mentally engaged and trying to
solve these tasks before and while we go through them
together and then reflect and extract strategies
afterwards.

3b.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Implementation

• Algorithm Discovery:

– Solve the problem yourself for several examples

– Reflect on what your thought process was

– Given a computer can only do 1 operation (on two values)
at a time, what variables do you need to remember past
results and what loops are necessary to perform that 1
operation many times

• Implementation / Programming mechanics

– Can we achieve our task in one pass (loop), sequential
loops, or need nested loops

– Can we stop early? And how do we implement that (break
statements, etc.)

3b.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 1

• Let the user input a value and find the first
occurrence of that value in the array and output its
index, or -1 if it does not exist

• Questions:

– Could it be anywhere?

– Is there any intelligent way to narrow it down?

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

If the user enters 3, find 3 and return its index or -1:

3b.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 1

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

len

12

len

12

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

len

12

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

len

12

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

len

12

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 7 4 8 12 3 15 10 6 9 1 18

len

12

i

0

i

1

i

2

i

3

i

4

i

5

If the user enters 3, find 3 and return its index or -1:

3b.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 1

• What programming issues
(mechanics) should you
think about?

– How would you generate the
appropriate indexes?

– When can you stop?

– When would you be ready to
return -1?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 2

• Output all possible pairs of numbers (a,b)
– Order does NOT matter [Don't output (b,a) after outputting (a,b)]

• Questions:
– How many pairs are there?

• How many (4,x) pairs? (1,x) pairs? (7,x) pairs? (8,x) pairs? (12,x) pairs?

– Can we do this in 1 pass?

Index: [0] [1] [2] [3] [4]

data 4 1 7 8 12

Output all pairs of values from the array:

3b.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 2
Output all pairs of values from the array:

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 0 1

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 0 2

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 0 3

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 0 4

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 1 2

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 1 3

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 1 4

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 2 3

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 2 4

Index: [0] [1] [2] [3] [4] J K

data 4 1 7 8 12 3 4

3b.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 2

• What programming issues (mechanics) should you think about?
– How would you generate the appropriate indexes?

– Are the indexes independent or is one dependent on another?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3

• Check if all the numbers in an array are unique

• Seems easy enough for a human on the examples
below

Index: [0] [1] [2] [3] [4] [5] [6]

data 4 1 7 8 12 7 6

Check if all number are unique: NO

Index: [0] [1] [2] [3] [4] [5] [6]

data 4 1 10 8 12 7 6

Index: [0] [1] [2] [3] [4] [5] [6]

data 5 2 8 1 7 9 3

Check if all number are unique: YES

What if we can only see 1 or 2 numbers at a time.

3b.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3

• Check if all the numbers in an array are unique

• It may not be as easy even for a human when we
increase the amount of numbers?

• Questions:
– What process would you use as a human? Can we do this in 1 pass?

– If we can only see 1 thing or perform 1 operation at a time, what other
variables do we need?

– Do we always have to do the same amount of work, or might we find
an answer "early"?

Sample Data: 6 40 3 96 44 94 74 9 23 22 56 64 12 7 51 31 24 80 88 10
91 27 38 30 78 60 37 69 26 11 39 50 68 21 41 48 66 46
20 25 82 98 76 34 55 70 4 54 90 28 14 71 73 85 81 65 77
59 57 43 33 49 87 19 17 16 1 2 15 72 45 93 86 92 36

3b.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3
Check if all number are unique:

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 6

We've seen all the numbers now? Can we state they are all unique? What are
you "remembering" to answer that question? Can the computer do that?

3b.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3

• Why not start k at 0 as well?

– We never want to compare an element with itself

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 0 0 data[j] == data[k]

3b.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3
Check if all number are unique:

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 1 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 1 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 1 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 1 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 1 6

3b.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3
Check if all number are unique:

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 5 2 8 1 7 9 3 5 6

3b.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3

• What programming issues
(mechanics) should you
think about?

– Are the indexes independent
or is one dependent on
another?

– How and when are we ready
to print our answer?

– How do we stop (one or both
loops)?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 4

• Reverse an array of integers

– Question: Can we do this in 1 pass or do we need a nested
loop where we examine "pairs" ?

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8]

data 4 8 -3 12 -5 6 17 -10 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8]

data 9 -10 17 6 -5 12 -3 8 4

Reverse an array's contents:

3b.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 4

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 0 8 9

Reverse an array's contents:

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 1 7 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 2 6 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 3 5 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 4 4 9 ?

3b.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 4

Should we keep going?

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 4 4 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 6 -5 12 17 -10 9 5 3 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 3 5 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 17 6 -5 12 3 -10 9 2 6 9

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] J K n

data 4 8 -3 12 -5 6 17 -10 9 2 6 9

No! We must stop at the halfway point to avoid "undoing"
the swaps we've just done.

3b.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 4

• What programming issues
(mechanics) should you
think about?

– Does an even or odd length
array need to be handled
separately?

– Can we do this in 1 pass or do
we need a nested loop where
we examine "pairs" ?

– Are the indexes we need to
generate independent or is
one dependent on another?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 5

• Move all negative numbers to the front of the array,
preserving order of negative numbers (but not necessarily
positive numbers)
– Question: Can we do this in 1 pass or do we need a nested loop where

we examine "pairs"

– Can we identify the items to move as we perform 1 pass?

– If we need to move it, would we know where to place it?

– When we move it, do we risk overwriting something we should not?

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data 4 8 -3 12 -5 6 17 -10 9 1 2 -7

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

data -3 -5 -10 -7 8 6 17 4 9 1 2 12

Move all negative numbers to the front of the array:

3b.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 5
Move all negative numbers to the front of the array:

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data 4 8 -3 12 -5 6 17 -10

leading

0

trailing

0

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data 4 8 -3 12 -5 6 17 -10

leading

1

trailing

0

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data 4 8 -3 12 -5 6 17 -10

leading

2

trailing

0

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 8 4 12 -5 6 17 -10

leading

2

trailing

0

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 8 4 12 -5 6 17 -10

leading

3

trailing

1

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 8 4 12 -5 6 17 -10

leading

4

trailing

1

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 4 12 8 6 17 -10

leading

4

trailing

1

3b.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 5
Move all negative numbers to the front of the array:

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 4 12 8 6 17 -10

leading

5

trailing

2

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 4 12 8 6 17 -10

leading

6

trailing

2

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 4 12 8 6 17 -10

leading

7

trailing

2

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 -10 12 8 6 17 4

leading

7

trailing

2

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data -3 -5 -10 12 8 6 17 4

leading

8

trailing

3

Index: [0] [1] [2] [3] [4] [5] [6] [7]

data 4 8 -3 12 -5 6 17 -10

leading

0

trailing

0

3b.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 5

• What programming issues
(mechanics) should you think
about?
– When do we increment leading?

– When do we increment trailing?

• Invariants:
– All values behind trailing are

negative

– All values between leading and
trailing are positive

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6

• Assuming an array of size, max, but only n occupied
elements, insert a new value, v, at location, loc,
shifting others back

– Question: Can we do this in 1 pass or do we need a nested
loop where we examine "pairs" ?

– Do we insert then shift? Or shift then insert?

– In what order should we shift the needed values?

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max

data 4 8 7 3 12 1 9 ? ? 7 9

Insert 5 at location 2 into the array of 7 elements and 9 locations.

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max

data 4 8 5 7 3 12 1 9 ? 8 9

3b.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6

Insert 5 at location 2 into the array of 7 elements and 9 locations.

data[k+1] = data[k]

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 12 1 9 ? ? 7 9 2 2

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 7 12 1 9 ? ? 7 9 2 2

data[k+1] = data[k]
Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 7 7 1 9 ? ? 7 9 2 3

data[k+1] = data[k]
Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 7 7 7 9 ? ? 7 9 2 4

3b.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6

Insert 5 at location 2 into the array of 7 elements and 9 locations.

data[k+1] = data[k]

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 12 1 9 ? ? 7 9 2 6

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 12 1 9 9 ? 7 9 2 6

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 12 1 1 9 ? 7 9 2 5

data[k+1] = data[k]

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 12 12 1 9 ? 7 9 2 4

data[k+1] = data[k]

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 3 3 12 1 9 ? 7 9 2 3

data[k+1] = data[k]

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 7 3 12 1 9 ? 7 9 2 2

data[k+1] = data[k]

3b.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6

Insert 5 at location 2 into the array of 7 elements and 9 locations.

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 5 7 3 12 1 9 ? 8 9 2 2
data[loc] = val;
n++;

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 5 7 3 12 1 9 ? 8 9 2 2

Index: [0] [1] [2] [3] [4] [5] [6] [7] [8] n max loc k

data 4 8 7 7 3 12 1 9 ? 7 9 2 2

3b.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6

• What programming issues
(mechanics) should you think
about?
– Do we want to move from k to k+1

OR k-1 to k?

– Based on the above where should
we start and stop our loop?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7

• Given there is 1 number that does NOT have a
duplicate (pair), find and output that unique
number.

– Questions: Is this generating all pairs again?

– Might we be able to answer "early"?
Index: [0] [1] [2] [3] [4] [5] [6]

data 4 7 4 12 7 3 12
Find the unique number:

Index: [0] [1] [2] [3] [4] [5] [6]

data 8 3 3 5 6 8 5

33 13 23 72 20 6 61 66 46 54 33 1 17 47 29 73 18 1 50
73 89 46 5 98 13 32 70 32 10 10 87 53 99 12 5 61 12 18
76 96 87 60 96 82 47 52 29 76 93 70 71 6 7 39 48 48 17
99 36 82 72 60 71 89 36 98 54 93 7 66 39 52 53 50 20

Sample Data:

3b.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7
Find the unique number finding all pairs (with only one ordering rather than both for each pair):

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 1 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 6

We didn't find a match for the 2nd item in a pair that DID exist!

3b.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7
Find the unique number with all pairs (in both orders):

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 1 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 0 0

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 1 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 1 0

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 0

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 2 1

3b.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7
Find the unique number:

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 4

6 is the unique number!

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 0

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 3

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 3 6

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 4

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 0

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 1

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 2

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 5

Index: [0] [1] [2] [3] [4] [5] [6] J K

data 8 3 3 5 6 8 5 4 6

3b.35

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7

• What programming issues
(mechanics) should you think
about?
– How do we avoid matching

ourself?

– How do we know we've found a
unique item?

– When and how can we stop early?

• Variations
– Allow 0 or more unique values

and output the unique values OR
output "All have a pair" if each
number as a pair

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task

 return 0;
}

3b.36

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

3b.37

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 1 - Solution

• What programming issues
(mechanics) should you
think about?

– How would you generate the
appropriate indexes?

– When can you stop?

– When would you be ready to
return -1?

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 cin >> val;
 bool found = false;
 for(int i=0; i < n; i++) {
 if(val == data[i]){
 cout << i << endl;
 found = true;
 break;
 }
 }
 if(!found) { cout << -1 << endl; }
 return 0;
}

3b.38

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 2 - Solution

• What programming issues (mechanics) should you think about?
– How would you generate the appropriate indexes?

– Are the indexes independent or is one dependent on another?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 for(int j=0; j < n; j++) {
 for(int k=j+1; k < n; k++) {
 cout << data[j] << "," << data[k] << " ";
 }
 }
 cout << endl;
 return 0;
}

3b.39

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 3 - Solution

• What programming issues
(mechanics) should you
think about?

– Are the indexes independent
or is one dependent on
another?

– How and when are we ready
to print our answer?

– How do we stop (one or both
loops)?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 bool allUnique = true;
 for(int j=0; j < n; j++) {
 for(int k=j+1; k < n; k++) {
 if(data[j] == data[k]){
 allUnique = false;
 break;
 }
 }
 if(!allUnique) break;
 }
 if(allUnique)
 { cout << "All unique" << endl; }
 else
 { cout << "Not all unique" << endl; }
 return 0;
}

3b.40

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 4 - Solution

• What programming issues
(mechanics) should you
think about?

– Does an even or odd length
array need to be handled
separately?

– Can we do this in 1 pass or do
we need a nested loop where
we examine "pairs" ?

– Are the indexes we need to
generate independent or is
one dependent on another?

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 for(int j=0; j < n/2; j++) {
 // swap data[j] and data[k] (k=n-j-1)
 int temp = data[j];
 data[j] = data[n-j-1];
 data[n-j-1] = temp;
 }
 return 0;
}

3b.41

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 5 - Solution

• What programming issues
(mechanics) should you think
about?
– When do we increment leading?

– When do we increment trailing?

• Invariants:
– All values behind trailing are

negative

– All values between leading and
trailing are positive

int main() {
 // setup array with data
 int n, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int lead, trail = 0;
 for(lead=0; lead < n; lead++) {
 if(data[lead] < 0) {
 // swap leading and trailing
 int temp = data[lead];
 data[lead] = data[trail];
 data[trail] = temp;
 // only increment if we move
 trail++;
 }
 }
 return 0;
}

3b.42

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 6 - Solution

• What programming issues
(mechanics) should you think
about?
– Do we want to move from k to k+1

OR k-1 to k?

– Based on the above where should
we start and stop our loop?

int main() {
 // setup array with data
 int n, data[20];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 int loc, val;
 cin >> loc >> val;
 if(n < 20 && loc >= 0 && loc <= n){
 for(int k=n-1; k >= loc; k--) {
 data[k+1] = data[k];
 }
 data[loc] = val;
 n++;
 }
 else {
 cout << "Invalid" << endl;
 }

 cout << endl;
 return 0;
}

3b.43

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Task 7 - Solution

• What programming issues
(mechanics) should you think
about?
– How do we avoid matching

ourself?

– How do we know we've found a
unique item?

– When and how can we stop early?

• Variations
– Allow 0 or more unique values

and output the unique values OR
output "All have a pair" if each
number as a pair

int main() {
 // setup array with data
 int n, val, data[100];
 cin >> n;
 for(int i=0; i < n; i++)
 { cin >> data[i]; }
 // now perform the given task
 for(int j=0; j < n; j++) {
 bool unique = true;
 for(int k=0; k < n; k++) {
 if(j != k){
 if(data[j] == data[k]){
 unique = false;
 break;
 }
 }
 }
 if(unique){
 cout << data[j] << endl;
 break;
 }
 }
 return 0;
}

	Default Section
	Slide 1: Unit 3b – Array and Loop Tasks
	Slide 2: Unit 3
	Slide 3: Algorithmic Thinking
	Slide 4: Implementation
	Slide 5: Task 1
	Slide 6: Task 1
	Slide 7: Task 1
	Slide 8: Task 2
	Slide 9: Task 2
	Slide 10: Task 2
	Slide 11: Task 3
	Slide 12: Task 3
	Slide 13: Task 3
	Slide 14: Task 3
	Slide 15: Task 3
	Slide 16: Task 3
	Slide 17: Task 3
	Slide 18: Task 4
	Slide 19: Task 4
	Slide 20: Task 4
	Slide 21: Task 4
	Slide 22: Task 5
	Slide 23: Task 5
	Slide 24: Task 5
	Slide 25: Task 5
	Slide 26: Task 6
	Slide 27: Task 6
	Slide 28: Task 6
	Slide 29: Task 6
	Slide 30: Task 6
	Slide 31: Task 7
	Slide 32: Task 7
	Slide 33: Task 7
	Slide 34: Task 7
	Slide 35: Task 7
	Slide 36: solutions
	Slide 37: Task 1 - Solution
	Slide 38: Task 2 - Solution
	Slide 39: Task 3 - Solution
	Slide 40: Task 4 - Solution
	Slide 41: Task 5 - Solution
	Slide 42: Task 6 - Solution
	Slide 43: Task 7 - Solution

