
2d.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2d – Strings

Mark Redekopp

2d.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

How do we store these data sets

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

2d.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Character Arrays and Strings (1)

• Recall that in C/C++ string constants (the
text in between " ") are just character
arrays

– Each character consumes 1 element in
the array

– Ends with the null character (e.g. 0
decimal or '\0' ASCII)

• This approach of using an array of
char's to store a string is referred to
as a C-String because there was no
string type in C (i.e. before C++)

#include <string>
using namespace std;
int main()
{
 char str1[3] = {'C', 'S', '\0'};
 // For char arrays easier to use ""
 char str2[7] = "CS 102"
 /* Initializes the array to "CS 102"*/

 cout << str1 << endl; // prints "CS"
 cout << str2 << endl; // prints "CS 102"

 str2[5] = '3';
 cout << str2 << endl; // prints "CS 103"

 cin >> str2; // get a new string from
 // the user (suppose user
 // types "hello"
 cout << str2;
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str2: 'C' 'S' ' ' '1' '0' '2' '\0'

CS
CS 102
CS 103
hello

Program Output:

2d.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Character Arrays and Loops
• How many things can a computer do at

a time?

• To printout a string/character array,
we'd have to print one character at a
time!

• But C/C++ treats character arrays
specially. cout has a loop inside its
code to print strings/character arrays.

• Though not shown, cin also has a loop
inside to input a string.

• We say cout and cin have a special
relationship with character arrays.

#include <string>
using namespace std;
int main()
{
 char str1[7] = "CS 102"
 /* Initializes the array to "CS 102"*/

 // Usually in C/C++ we must use a loop to do
 // many operations
 for(int i=0; str[i] != '\0'; i++) {
 cout << str[i];
 }
 cout << endl;

 // but cout has its own loop so you don't
 // have to write the loop above but just
 // what you see below.
 cout << str1 << endl; // prints "CS 102"
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str1: 'C' 'S' ' ' '1' '0' '2' '\0'

CS 102
CS 102

Program Output:

2d.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

cout's Special Relationship with Character
Arrays

• To print out all elements of any array
type OTHER than a character array (i.e.
int, double, bool, etc.) you must
write your OWN loop (i.e. because
computers can only do 1 thing at a
time)

• But for character arrays, you can just
give cout the name of the array and it
will use its own INTERNAL loop to print
out all characters for you
– So, internally it is actually looping over the

characters so you don't have to

– It just assumes when you give it a character
array that you WANT it to print out all the
characters in the array

• Thus, we say cout treats character
arrays specially

int main()
{
 int data[5] = {9, 7, 8, 9, 5};
 char str1[] = "Many chars";
 // right way to print int array contents
 for(int i=0; i < 5; i++){
 cout << data[i] << " ";
 }
 cout << endl;

 // doesn't work for an int, double
 // or any other type of array
 cout << data << endl;

 // cout treats char. arrays specially
 cout << str1 << endl;
}

9 7 8 9 5
Many chars
0x7fffce40

Program Output:

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

Index: [0] [1] … [9] [10]

str1: 'M' 'a' … s \0

2d.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

cin's Special Relationship with Character
Arrays

• To get input for all elements of an
array type OTHER than character
arrays (i.e. int, double, etc.) you
must write your OWN loop

• But for character arrays, you can just
give cin the name of the array and
it will use its own INTERNAL loop to
receive all characters the user types
and store them sequentially in the
array
– So, internally it is actually looping over

the characters so you don't have to

– It just assumes when you give it a
character array that you WANT it to get a
full string (stopping at the next space)

• cin treats character arrays specially

int main()
{
 int data[5]; //5 garbage values to start
 char str1[8];//8 garbage values to start
 int sum = 0;
 // doesn't work for an int, double
 // or any other type of array
 cin >> data; // won't even compile

 // right way to get int array contents
 for(int i=0; i < 5; i++){
 cin >> data[i];
 }

 // cin treats char. arrays specially
 cin >> str1;
}

520

[0]

?

521

[1]

? ? ?

522

[2]
523

[3]

0str1:

CS102user types:

528

sum

?

524

[4]

?

525

[5]

?

526

[6]

?

527

[7]

520

[0]

C

521

[1]

S 1 0

522

[2]
523

[3]

0str1:

528

sum

2

524

[4]

\0

525

[5]

?

526

[6]

?

527

[7]

2d.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Problem with cin and Character Arrays

• What if the user types in TOO much
(more characters than our array has
room to store)?

• cin will not stop! It will keep
storing the characters the user
types, overwriting whatever data
and variables came after the array

• Warning: cin does not CHECK that
the string typed by the user will fit in
the array; instead it simply
overwrites memory leading to
undefined (bad) behavior!

• C++ strings fix this issue, allocating
more space based on what is typed.

int main()
{
 char str1[4];
 int sum = 0;
 // What if user types in "CS102"
 cin >> str1;

 cout << sum << endl;
 // won't see 0 because sum was modified
 // when cin received the string that was
 // too long!

 string s2;
 cin >> s2;
 // works regardless of user input length
}

520

[0]

'C'

521

[1]

'S' '1' '0' '2' '\0'

522

[2]
523

[3]

524

sum

…

520

[0]

?

521

[1]

? ? ?

522

[2]
523

[3]

0str1:

str1:

CS102user types:

524

sum

2d.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What About Other Operations
• How would you check whether two

strings (character arrays) are equal (i.e.
have the same character sequence).

• Since we can only do 1 thing at a time,
we'd have to use a loop

• Does '==' have a special relationship
with character arrays? NO!!!
– Most operations on strings require a loop

since we can only do 1 thing at a time.

– cin and cout are exceptions. Every other
operation requires the programmer to write a
loop!

• So when C++ came along they said, let's
fix this. Let's provide code to deal with
strings. Enter the C++ string type

#include <string>
using namespace std;
int main()
{
 char str1[7] = "CS 102"
 /* Initializes the array to "CS 102"*/
 char str2[7] = "CS 103";

 if(str1 == str2) { … } // Doesn't work

 // Instead you'd need some kind of loop
 bool same = true;
 for(int i=0; /* some condition */; i++) {
 if(str1[i] != str2[i]) {
 same = false;
 }
 }
 cout << endl;
 return 0;
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str1: 'C' 'S' ' ' '1' '0' '2' '\0'

str2: 'C' 'S' ' ' '1' '0' '3' '\0'

2d.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C-String C++ String

As constants
(same)

"hi" "hi"

As variables
(different)

char str1[3] = "hi";
char str2[4] = "bye";

string str1 = "hi";
string str2 = "bye";

To use: No special #include #include <string>

Works with cout Yes! Yes!

Works with cin Yes, but potentially
dangerous

Yes!

Other ops None Reassignment
Comparison (==, <, >, etc.)

Substrings

Why are strings messy ? Because they are variable length, where as other variable types are a fixed size!
Any int can fit in the memory of another int variable. But for strings what if we want to store a new,

longer string in the memory of a shorter string? We don't have room?

2d.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Character Arrays and Strings (2)

• C++ strings can do all that
character arrays can do

int main()
{
 char str2[7] = "CS 102"
 string str3 = "CS 102";

 cout << str2 << endl; // prints "CS 102"
 cout << str3 << endl; // prints "CS 102"

 str2[5] = '3';
 str3[5] = '3';
 cout << str2 << endl; // prints "CS 103"
 cout << str3 << endl; // prints "CS 103"
 cin >> str2; // get a new string from
 // the user (suppose user
 // types "hello"
 cin >> str3;
 cout << str2;
 cout << str3;
 return 0;
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str2: 'C' 'S' ' ' '1' '0' '2' '\0'

CS 102
CS 102
CS 103
CS 103
hello
hello

Program Output:

2d.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ Strings

• In C++, the library adds a new object
type named string (C++) and provides
an easier alternative to working with
plain-old character arrays (C-
language)

• Do's and Don'ts

– Do #include <string>

– Don't need to declare the size (i.e.
[7]), just assign

– Do still use it like an array by using
[index] to get individual characters

– Do still use cin/cout with strings

– Don't worry about how many
characters the user types when
inputting to a C++ string

#include <iostream>
#include <string>
using namespace std;

int main()
{
 char str1[7] = "CS 102";
 /* Initializes the array to "CS 102"*/
 string str2 = "CS 102";
 /* Initializes str2 to "CS 102"*/

 str1[5] = '3'; // now str1 = "CS 103"
 str2[5] = '4'; // now str2 = "CS 104"

 cout << str1 << endl;
 // prints "CS 103"
 cout << str2 << endl;
 // prints "CS 104"

 cin >> str1; // If the user types more
 // than 6 chars..uh oh!
 cin >> str2; // str2 will adjust to
 // hold whatever the user
 // types
}

2d.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Do Strings Do

• Strings simply abstract character arrays

• Behind the scenes strings are just creating and manipulating character
arrays but giving you a simplified set of operators and functions

• Can concatenate (append) to a string with the + operator

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str2 = "CS 102";
 // str2 stores 6 chars. = "CS 102"

 str2 = "Computer Science";
 // now str2 stores 16 characters

 // Can append using '+' or '+=' operator
 str2 = str2 + " is cool";
 // now str2 stores 24 characters
}

str2

CS 102

Computer Science

Computer Science is cool

Plain-old character array

Plain-old character array

Plain-old character array

61624

2d.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

String Size

• Strings track how many
characters they are
storing

• Call the
<stringname>.size()
function get the string's
size

– Returns the actual number
of real characters (and
does not count overhead
like the null character)

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str2 = "CS 102";
 cout << str2.size() << endl; // 6

 str2 = "Computer Science";
 cout << str2.size() << endl; // 16

 str2 = str2 + " is cool";
 cout << str2.size() << endl; // 24
}

2d.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

String Comparison

• Comparison operators do
not work with plain old
character arrays (C-Strings)

• C++ strings do perform
lexicographic
(alphabetical/dictionary-
order) comparison when
comparison operators (<, >,
==, etc.) are applied
– "a" < "z" ? __________

– "a" > "aa" ? __________

– "ab" < "ba" ? __________

– "aab" < "aac" ? __________

#include <iostream>
#include <string>
using namespace std;

int main()
{
 char str1[4] = "abc";
 string str2 = "abc";

 if(str1 == "abc") // doesn't work
 {...}
 if(str2 == "abc") // works..true
 {...}

 if(str1 < "aac") // doesn't work
 {...}
 if(str2 < "aac") // works..false
 {...}

 string str3 = "acb";

 if(str3 > str2) // works..true
 {...}
}

2d.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Substrings
• C++ strings allow you to produce a new

string from a substring of a current string

• Call either of the 2 versions:
.substr(start_index) or
.substr(start_index, length) function
on the string

– 1st version generates substring from starting
index location all the way to the end of the
string

– 2nd version generates substring from the
starting index and includes the next 'length'
characters

– Note: when a function has the same name
but different options for parameters we say
the function is overloaded

• Returns a new string

– Even if length is 1 (i.e. if length is 1 you might
think you just get a char, but you still get a
string)

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str1 = "CS102";

 string str2 = str1.substr(2);
 // str2 = "102"

 str1 = "Hello World";
 str2 = str1.substr(6,2);
 // str2 = "Wo"

 str2 = str1.substr(0,1);
 // str2 = "H"

}

2d.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

2d.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

String Comparison

• Comparison operators do
not work with plain old
character arrays (C-Strings)

• C++ strings do perform
lexicographic
(alphabetical/dictionary-
order) comparison when
comparison operators (<, >,
==, etc.) are applied
– "a" < "z" ? TRUE

– "a" > "aa" ? FALSE

– "ab" < "ba" ? TRUE

– "aab" < "aac" ? TRUE

#include <iostream>
#include <string>
using namespace std;

int main()
{
 char str1[4] = "abc";
 string str2 = "abc";

 if(str1 == "abc") // doesn't work
 {...}
 if(str2 == "abc") // works..true
 {...}

 if(str1 < "aac") // doesn't work
 {...}
 if(str2 < "aac") // works..false
 {...}

 string str3 = "acb";

 if(str3 > str2) // works..true
 {...}
}

	Default Section
	Slide 1: Unit 2d – Strings
	Slide 2: Unit 2
	Slide 3: Character Arrays and Strings (1)
	Slide 4: Character Arrays and Loops
	Slide 5: cout's Special Relationship with Character Arrays
	Slide 6: cin's Special Relationship with Character Arrays
	Slide 7: A Problem with cin and Character Arrays
	Slide 8: What About Other Operations
	Slide 9
	Slide 10: Character Arrays and Strings (2)
	Slide 11: C++ Strings
	Slide 12: What Do Strings Do
	Slide 13: String Size
	Slide 14: String Comparison
	Slide 15: Substrings
	Slide 16: solutions
	Slide 17: String Comparison

