Unit 2c — Arrays

Mark Redekopp

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi (2e2)

School of Engineering

{%—'ﬁkﬂ}

* Unit 2: Linear (1D) Processing {oO D:I»:\I—»@—»EL'D:D T
How do we store these data sets

FEEE

QT —~O0D

s

———————

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

e — ()5 Viterbi >
Motivating Example

int main()

{

* Suppose | need to store the int scorel, score2, score3;
grades for a” Students so | can cin >> scorel >> score2 >> score3;
then Compute StatiStiCS, sort (/ output scores in sorted order

] if(scorel < score2 &&
them, print them, etc. scorel < score3)

{ /* score 1 is smallest */ }

* | would need to store them in
variables that | could access and }
use

/* more */

int main()

— This is easy if | have 3 or 4 students {
int scorel, score2, score3,
— This is painful if | have many score4, score5, score6,
students score/, score8, score9,
scorel@, scorell, scorel2,
scorel3, scoreld4, scorel5,
75 S0 W/
scorel39, scoreldo;
cin >> scorel >> score2 >> score3
>> scored4 >> score5 >> scoreé6

/* o0 */

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Control vs. Data Structures

* Language constructs that allow us to make decisions
are referred to as control structures
— The common ones are: if statements, while loops, for loops

* We also need ways to store our data so we can
access it easily and efficiently

* Arrays are the simplest data structure and the only
one that C/C++ supports natively

— Other data structures are available through other library
code (but arrays need no additional code included)

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCViterbi@
Array Basics

 An array are a named collection of
ordered variables of the same type
that are accessed with an index and
stored contiguously in memory

— Named collection: One name to refer
to the collection of variables

— Ordered: There is a first and a last and
one comes before another

— Accessed with an index: Each variable
is accessed with its position/index
(using [] brackets)

— Same Type: Variables in one array
must all be the same type (one array
can't store doubles and ints)

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

scores: 96 84

School of Engineering

int main()

{

int scores[140];

// allocates 140 integers
// with garbage values

for(int i=0; i < 140; i++){
cin >> scores[i];

}
}
Addr: 520 524 528 1076
Index: [0] [1] [2] [139]

93

90

Computer Memory

i, TS(“Viterbi

School of Engineering

Accessing An Element

 Once an array is declared, there is
nothing "special" about it. Each
variable must be initialized and
accessed 1 at a time.

* To access an individual

variable/element of an array of size

n, use the name of the array followed

by square brackets containing ANY

expression (constant, variable,

arithmetic) that will evaluate to an

index from 0 to n-1
Addr:
— Note: Indexing starts at 0 Index:

{

int main()

int x = 1, myval = 5;
int scores[10];
// allocates 10 integers

scores[4] 73;

scores[x] = 82;
// sets scores[1]

scores[2*x + 1] = 93;
// sets scores[3]

scores[1+max(x,myval)] = 88;
// sets scores[6]

scores:

}
520 524 528 532 536 540 544
(0] [1] [2] (3] (4] [5] (6]
?? | 8 | ?? | 93 | 73 | ?? | 88

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or daistributed.

Computer Memory

i, TS(“Viterbi (2e)

LOOpS and ArrayS (1) rontor e

_ P
e The real power of arrays is ‘ ERT)
found when you combine int x =1, myval = 5;
i int scores[100];
them with |00p$ // allocates 100 integers
* Use the loop control variable // initialize all to @
. . . for(int i=0; i < 100; i++){
(int 1)to serve asthe index scores[i] = O;
of the array entry to be J
modrﬂed or accessed // ..OR.. read in all entries
for(int i=0; i < 100; i++){
— Whether the array has 1 or cin >> scores[i];
1,000,000 elements, our code }
size does not grow }
Addr: 520 524 528 532 536 540 540
index: 0] (11 (2 (8 @& (51 6]

scores: 0 0 0 o . - -

Computer Memory

i, TS(“Viterbi

Loops and Arrays (2)

int main()

* How could we determine |;
3 int scores[100];
the average score: /% ... fill in the data ... */
// Average all values
for(int i=0; i < 100; i++){

}

cout <« << endl;

return 0;

Addr: 5200 524 528 532 536
Index: [0] [1] [2] [3] [4]

scores: 9 7 8 8 6

Computer Memory

stributed.

i, TS(“Viterbi

School of Engineering

Loops and Arrays (3)

e How could we determine
the max score?

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

int scores[100];
/* ... fill in the data ... */

// Find maximum

for(int i=0; i < 100; i++){

}

cout << "Max: " << _ << endl;
return 0;

i, TS(“Viterbi

School of Engineering

When Do We Need Arrays?

int main()

* Arrays can store many related data
items of the same type

* A better question is when do we need
to store these related data items in an
array?

* We need arrays when we need to
revisit the data more than once

— If we just want to find the min/max or
average we could just get the data from the
user and update the sum or min/max as we
go and not need to store each data item

— Don't introduce arrays where they are not
needed

{0oO— -0 }

© 2023 by Mark Redekopp. This content is protected and may ared, uploaded, or distributed.

{

}

int scores[100];

// Get the data

for(int i=0; i < 100; i++){
cin >> scores[i];

}

// Average all values

int sum = 9;

for(int i=0; i < 100; i++){
sum += scores[i];

}

cout << sum / 100.0 << endl;

return 0;

int main()

{

int val, sum = ©;
// Get the data & average it
// at the same time
for(int i=0; i < 100; i++){
cin >> val;
sum += val;
}
cout << sum / 100.0 << endl;
return 0;

- USCViterbi ‘
Index vs. Value

o Value/data
* The expression in the square 1

brackets is an index écor‘es[z*i+1]‘
L___T___J

* Using array[index] yields the

data/value in the array at that index
index
* Anindex can be ANY EXPRESSION,
even the value from an array or
the return value from a function int main()
 Foranarray declared to be sizen, |{
T int scores[20];
only indices 0 to n-1 are legal /% £111 in the data x/
int 1 = 1;
int x = scores[2*i + 1]; /] X=_
Addr: 520 524 528 532 536 .
Index: [0] [[2 B8] 4] int y = scores[scores[1]]; // y=_
sorest| g 0 4 3 6 int z = scores[max(4,2)]; /] z=_
(values) return 0;
Computer Memory bue }

i (]S C Vicerbi ">
A Common Error

e (Care must be taken to ensure e et
no index is used that will lead {
int scores[20];
to an out-of-bounds access /% ... init in the data ... */

— Such an access will either corrupt int 1;

1=0° i = ° i ?
other data or cause the program for(i=0; 1 <= 20; i++){ // wrong:
scores[i] = O;
to crash!)

— These are often known as . .
. cin >> 1i;
segmentation faUIts' When you // what could happen here..not safe
see one, your first thought should scores[i] = 100;
be to check for a bad array index!

// safe
if(i >= 0 88 i < 20){
Addr: 520 524 528 532 596 600 S .
Index: [0] 1] 2] 3] [19] scores[i] = 100;
}
scores: 9 0 7 6 ?
(values) return @,

Computer Memory }

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Important C/C++ Rule: Array Size

int main()

e C/C++ needs to know the SIZE of { // GOOD!!

. int data[24]; // 24 known at
the array when the program is 7/ compile time
compiled, not when it is run.

// BAD!!
— This implies the size of the array int n;
cin >> n;
must be ONE, FIXED (or constant) int data[n]; // n not known at
size everytime the program is run // compile time
. —_ }
* For this course, we will just
allocate a LARGE array of the int main()
: : . {
maximum size potentially needed int data[100]; // max needed
. . int n;
and then use only a portion of it cin > ns

as the program runs o ,
for(int i=0; i < n; i++)

— Future courses will teach you how to {
deal with this correctly and not
waste array space }

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

cin >> data[i];

}

Exercises 1

* cpp/arrays/fibonacci
* cpp/arrays/sorted

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

ARRAY DETAILS

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi
Character Arrays

e (C-Strings are stored as character
arrays
— Each character consumes 1 element
in the array
— Ends with the null character (e.g. 0
decimal or "\0' ASClII)

e Canusecin and cout witha
character array to get a string from
the keyboard or output a string

— cin and cout will loop over the array

inputting or printing one character
at a time

Addr: 520 521 522 523 524 525 526
Index: ~ [0] [1] [2] 3] [4] [5] [6]

School of Engineering

int main()
{
char strl[7] = "CS 102";
/* Initializes the array to "CS 102"*/

strl[5] = '3'; // now "CS 103"

cout << strl << endl;
// prints "CS 103"

cin >> strl; // get a new string from
// the user (suppose user
// types "hello")

cout << stril;

}

Program Output:

Strl: ICI ISI] 1 |1| l0| |2| '\0'

Computer Memory

© 2023 by

CS 103
hello

i, TS(“Viterbi

School of Engineering

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Initializing Arrays With Constants

Arrays can be initialized with constants
when they are declared

To do so, use an initialization list which
is @ comma separated list of constants
in{..}

— Exception: If fewer values are provided
than the size of the array, remaining
elements will be filled with 0s

If an initialization list is provided you
need not specify the size in the square
brackets (i.e. just use empty []) as the
compiler can figure out what size the
array must be by counting the initial
values

int main()

{
int data[5]

double dec[4]

dec:

char stril[3]

Index:

data:

[o]

(1]

[2]

[3]

[4]

9

7

9

9

5

= {9) 7) 8) 9) 5};

= {0.25, 0.3};

0.25

0.3

0

= {'C’",

ISI,

"\e'};

// For char arrays easier to use
char str2[3] = "CS";

// str2 initialization is same as stril

strl:

int main()

{

int data[] = {9, 7, 8, 9,
// allocates array of size 5

double dec[]

char str2[] ="
// allocates array of size 3

Index:

data:

Icsll;

[o]

[1]

[2]

3]

(4]

9

7

9

9

5

5};

= {0.25, 0.3, 0.18, 0.2};
// allocates array of size 4

Specifying sizes is not necessary when using initial values list

Exercises 2

* cpp/arrays/sumpairs

— Given an array of size n (n is even), output the

sum of the
e first and last
e 2nd and 2" to last
39 and 3" to last

Addr:
Index:

scores:

520
[0]

524 528 532 536
(1] [2] (3] (4]

540
[5]

0

0 0 0 0

0

Computer Memory

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

SOLUTIONS

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Loops and Arrays (2)

 How could we determine
the average score?

Addr: 5200 524 528 532 536
Index: [0] [1] [2] [3] [4]

scores: 9 7 8 8 6

Computer Memory

int main()
{
int scores[100];
/*¥ ... fill in the data ... */

// Average all values

int sum = 0;

for(int i=0; i < 100; i++){
sum += scores[i];

}
cout << (double)sum / 100 << endl;

// Find maximum

int max = 0;

for(int i=0; i < 100; i++){
if(scores[i] > max)
max = scores[i]

}

cout << "Max:

return 0;

<< max << endl;

stributed.

- USCViterbi
Loops and Arrays (3)

e How could we determine

the max score?

Addr: 520 524 528 532 536
Index: [0] [1] [2] [3] [4]
scores: 9 7 8 8 6

Computer Memory

stributed.

School of Engineering

int main()

{

int scores[100];
/* ... fill in the data ... */

// Find maximum
int max = -1;
for(int i=0; i < 100; i++){
if(scores[i] > max)
max = scores[i]
}
cout << "Max: " << max << endl;
return 0;

- USCViterbi ‘
Index vs. Value

o Value/data
* The expression in the square 1

brackets is an index écor‘es[z*i+1]‘
L___T___J

* Using array[index] yields the

data/value in the array at that index
index
* Anindex can be ANY EXPRESSION,
even the value from an array or
the return value from a function int main()
 Foranarray declared to be sizen, |{
T int scores[20];
only indices 0 to n-1 are legal /% £111 in the data y
int 1 = 1;
int x = scores[2*i + 1]; // x=8
Addr: 520 524 528 532 536 .
Index: [0] [[2 B8] 4] int y = scores[scores[1]]; // y=9
scores: | g 0 - 3 6 int z = scores[max(4,2)]; // z=6
(values) return 0;
Computer Memory b }

	Default Section
	Slide 1: Unit 2c – Arrays
	Slide 2: Unit 2
	Slide 3: Motivating Example
	Slide 4: Control vs. Data Structures
	Slide 5: Array Basics
	Slide 6: Accessing An Element
	Slide 7: Loops and Arrays (1)
	Slide 8: Loops and Arrays (2)
	Slide 9: Loops and Arrays (3)
	Slide 10: When Do We Need Arrays?
	Slide 11: Index vs. Value
	Slide 12: A Common Error
	Slide 13: Important C/C++ Rule: Array Size
	Slide 14: Exercises 1
	Slide 15: Array Details
	Slide 16: Character Arrays
	Slide 17: Initializing Arrays With Constants
	Slide 18: Exercises 2
	Slide 19: solutions
	Slide 20: Loops and Arrays (2)
	Slide 21: Loops and Arrays (3)
	Slide 22: Index vs. Value

