
2c.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2c – Arrays

Mark Redekopp

2c.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

How do we store these data sets

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

2c.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivating Example

• Suppose I need to store the
grades for all students so I can
then compute statistics, sort
them, print them, etc.

• I would need to store them in
variables that I could access and
use
– This is easy if I have 3 or 4 students

– This is painful if I have many
students

int main()
{
 int score1, score2, score3;
 cin >> score1 >> score2 >> score3;

 // output scores in sorted order
 if(score1 < score2 &&
 score1 < score3)
 { /* score 1 is smallest */ }

 /* more */
}

int main()
{
 int score1, score2, score3,
 score4, score5, score6,
 score7, score8, score9,
 score10, score11, score12,
 score13, score14, score15,
 /* ... */
 score139, score140;
 cin >> score1 >> score2 >> score3
 >> score4 >> score5 >> score6
 /* ... */

2c.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Control vs. Data Structures

• Language constructs that allow us to make decisions
are referred to as control structures

– The common ones are: if statements, while loops, for loops

• We also need ways to store our data so we can
access it easily and efficiently

• Arrays are the simplest data structure and the only
one that C/C++ supports natively

– Other data structures are available through other library
code (but arrays need no additional code included)

2c.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Computer Memory

Array Basics

• An array are a named collection of
ordered variables of the same type
that are accessed with an index and
stored contiguously in memory
– Named collection: One name to refer

to the collection of variables

– Ordered: There is a first and a last and
one comes before another

– Accessed with an index: Each variable
is accessed with its position/index
(using [] brackets)

– Same Type: Variables in one array
must all be the same type (one array
can't store doubles and ints)

Addr:
Index:

520
[0]

524
[1]

528
[2]

1076
[139]

scores: 96 84 93 … 90

int main()
{
 int scores[140];
 // allocates 140 integers
 // with garbage values

 for(int i=0; i < 140; i++){
 cin >> scores[i];
 }
}

2c.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Accessing An Element

• Once an array is declared, there is
nothing "special" about it. Each
variable must be initialized and
accessed 1 at a time.

• To access an individual
variable/element of an array of size
n, use the name of the array followed
by square brackets containing ANY
expression (constant, variable,
arithmetic) that will evaluate to an
index from 0 to n-1
– Note: Indexing starts at 0

int main()
{
 int x = 1, myval = 5;
 int scores[10];
 // allocates 10 integers

 scores[4] = 73;

 scores[x] = 82;
 // sets scores[1]

 scores[2*x + 1] = 93;
 // sets scores[3]

 scores[1+max(x,myval)] = 88;
 // sets scores[6]
}

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

540
[5]

544
[6]

scores: ?? 82 ?? 93 73 ?? 88 …

2c.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops and Arrays (1)

• The real power of arrays is
found when you combine
them with loops

• Use the loop control variable
(int i) to serve as the index
of the array entry to be
modified or accessed
– Whether the array has 1 or

1,000,000 elements, our code
size does not grow

int main()
{
 int x = 1, myval = 5;
 int scores[100];
 // allocates 100 integers

 // initialize all to 0
 for(int i=0; i < 100; i++){
 scores[i] = 0;
 }

 // ..OR.. read in all entries
 for(int i=0; i < 100; i++){
 cin >> scores[i];
 }

}

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

540
[5]

540
[6]

scores: 0 0 0 0 0 0 0 …

2c.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops and Arrays (2)

• How could we determine
the average score?

int main()
{
 int scores[100];
 /* ... fill in the data ... */

 // Average all values

 for(int i=0; i < 100; i++){

 }
 cout << _____________________ << endl;

 return 0;
}

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores: 9 7 8 8 6 …

2c.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops and Arrays (3)

• How could we determine
the max score?

int main()
{
 int scores[100];
 /* ... fill in the data ... */

 // Find maximum

 for(int i=0; i < 100; i++){

 }
 cout << "Max: " << _____ << endl;
 return 0;
}

2c.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do We Need Arrays?
• Arrays can store many related data

items of the same type

• A better question is when do we need
to store these related data items in an
array?

• We need arrays when we need to
revisit the data more than once
– If we just want to find the min/max or

average we could just get the data from the
user and update the sum or min/max as we
go and not need to store each data item

– Don't introduce arrays where they are not
needed

int main()
{
 int scores[100];
 // Get the data
 for(int i=0; i < 100; i++){
 cin >> scores[i];
 }
 // Average all values
 int sum = 0;
 for(int i=0; i < 100; i++){
 sum += scores[i];
 }
 cout << sum / 100.0 << endl;

 return 0;
}

int main()
{
 int val, sum = 0;
 // Get the data & average it
 // at the same time
 for(int i=0; i < 100; i++){
 cin >> val;
 sum += val;
 }
 cout << sum / 100.0 << endl;
 return 0;
}

2c.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Index vs. Value

• The expression in the square
brackets is an index

• Using array[index] yields the
data/value in the array at that
index

• An index can be ANY EXPRESSION,
even the value from an array or
the return value from a function

• For an array declared to be size n,
only indices 0 to n-1 are legal

int main()
{
 int scores[20];
 /* ... fill in the data ... */

 int i = 1;
 int x = scores[2*i + 1]; // x=_
 int y = scores[scores[1]]; // y=_
 int z = scores[max(4,2)]; // z=_
 return 0;
}

scores[2*i+1]

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores:
(values)

9 0 7 8 6 …

index

Value/data

2c.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Common Error

• Care must be taken to ensure
no index is used that will lead
to an out-of-bounds access
– Such an access will either corrupt

other data or cause the program
to crash!

– These are often known as
segmentation faults. When you
see one, your first thought should
be to check for a bad array index!

int main()
{
 int scores[20];
 /* ... init in the data ... */
 int i;
 for(i=0; i <= 20; i++){ // wrong?
 scores[i] = 0;
 }

 cin >> i;
 // what could happen here..not safe
 scores[i] = 100;

 // safe
 if(i >= 0 && i < 20){
 scores[i] = 100;
 }
 return 0;
}Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

596
[19]

600

scores:
(values)

9 0 7 … 6 ?

2c.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Important C/C++ Rule: Array Size

• C/C++ needs to know the SIZE of
the array when the program is
compiled, not when it is run.
– This implies the size of the array

must be ONE, FIXED (or constant)
size everytime the program is run

• For this course, we will just
allocate a LARGE array of the
maximum size potentially needed
and then use only a portion of it
as the program runs
– Future courses will teach you how to

deal with this correctly and not
waste array space

int main()
{
 // GOOD!!
 int data[24]; // 24 known at
 // compile time

 // BAD!!
 int n;
 cin >> n;
 int data[n]; // n not known at
 // compile time
}

int main()
{
 int data[100]; // max needed
 int n;
 cin >> n;

 for(int i=0; i < n; i++)
 {
 cin >> data[i];
 }
}

2c.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises 1

• cpp/arrays/fibonacci

• cpp/arrays/sorted

2c.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ARRAY DETAILS

2c.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Character Arrays

• C-Strings are stored as character
arrays

– Each character consumes 1 element
in the array

– Ends with the null character (e.g. 0
decimal or '\0' ASCII)

• Can use cin and cout with a
character array to get a string from
the keyboard or output a string

– cin and cout will loop over the array
inputting or printing one character
at a time

int main()
{
 char str1[7] = "CS 102";
 /* Initializes the array to "CS 102"*/

 str1[5] = '3'; // now "CS 103"

 cout << str1 << endl;
 // prints "CS 103"

 cin >> str1; // get a new string from
 // the user (suppose user
 // types "hello")
 cout << str1;
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str1: 'C' 'S' ' ' '1' '0' '2' '\0'

CS 103
hello

Program Output:

2c.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Initializing Arrays With Constants
• Arrays can be initialized with constants

when they are declared

• To do so, use an initialization list which
is a comma separated list of constants
in {…}

– Exception: If fewer values are provided
than the size of the array, remaining
elements will be filled with 0s

• If an initialization list is provided you
need not specify the size in the square
brackets (i.e. just use empty []) as the
compiler can figure out what size the
array must be by counting the initial
values

int main()
{
 int data[5] = {9, 7, 8, 9, 5};

 double dec[4] = {0.25, 0.3};

 char str1[3] = {'C', 'S', '\0'};
 // For char arrays easier to use ""
 char str2[3] = "CS";
 // str2 initialization is same as str1
}

int main()
{
 int data[] = {9, 7, 8, 9, 5};
 // allocates array of size 5

 double dec[] = {0.25, 0.3, 0.18, 0.2};
 // allocates array of size 4

 char str2[] = "CS";
 // allocates array of size 3
}

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

dec: 0.25 0.3 0 0

str1:

Specifying sizes is not necessary when using initial values list

2c.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises 2

• cpp/arrays/sumpairs

– Given an array of size n (n is even), output the
sum of the

• first and last

• 2nd and 2nd to last

• 3rd and 3rd to last

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

540
[5]

scores: 0 0 0 0 0 0 …

2c.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

2c.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops and Arrays (2)

• How could we determine
the average score?

int main()
{
 int scores[100];
 /* ... fill in the data ... */

 // Average all values
 int sum = 0;
 for(int i=0; i < 100; i++){
 sum += scores[i];
 }
 cout << (double)sum / 100 << endl;

 // Find maximum
 int max = 0;
 for(int i=0; i < 100; i++){
 if(scores[i] > max)
 max = scores[i]
 }
 cout << "Max: " << max << endl;
 return 0;
}

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores: 9 7 8 8 6 …

2c.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops and Arrays (3)

• How could we determine
the max score?

int main()
{
 int scores[100];
 /* ... fill in the data ... */

 // Find maximum
 int max = -1;
 for(int i=0; i < 100; i++){
 if(scores[i] > max)
 max = scores[i]
 }
 cout << "Max: " << max << endl;
 return 0;
}

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores: 9 7 8 8 6 …

2c.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Index vs. Value

• The expression in the square
brackets is an index

• Using array[index] yields the
data/value in the array at that
index

• An index can be ANY EXPRESSION,
even the value from an array or
the return value from a function

• For an array declared to be size n,
only indices 0 to n-1 are legal

int main()
{
 int scores[20];
 /* ... fill in the data ... */

 int i = 1;
 int x = scores[2*i + 1]; // x=8
 int y = scores[scores[1]]; // y=9
 int z = scores[max(4,2)]; // z=6
 return 0;
}

scores[2*i+1]

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores:
(values)

9 0 7 8 6 …

index

Value/data

	Default Section
	Slide 1: Unit 2c – Arrays
	Slide 2: Unit 2
	Slide 3: Motivating Example
	Slide 4: Control vs. Data Structures
	Slide 5: Array Basics
	Slide 6: Accessing An Element
	Slide 7: Loops and Arrays (1)
	Slide 8: Loops and Arrays (2)
	Slide 9: Loops and Arrays (3)
	Slide 10: When Do We Need Arrays?
	Slide 11: Index vs. Value
	Slide 12: A Common Error
	Slide 13: Important C/C++ Rule: Array Size
	Slide 14: Exercises 1
	Slide 15: Array Details
	Slide 16: Character Arrays
	Slide 17: Initializing Arrays With Constants
	Slide 18: Exercises 2
	Slide 19: solutions
	Slide 20: Loops and Arrays (2)
	Slide 21: Loops and Arrays (3)
	Slide 22: Index vs. Value

