
2b.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2b – Coding with Loops and
Loop Idioms

Mark Redekopp

2b.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

2b.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Linear (1D) Processing Programs

• Process an arbitrary length sequence
or set of data (rather than a fixed
amount)

• The distinguishing feature is the use of
a LOOP to perform the same/similar
processing repetitively on each data
item

• We will likely still keep our general
structure but with some sequence of
those operations be repeated via the
loop:

– Prompt

– Input

– Process

– Output

Enter student scores (end with -1)

80

90

72

-1

The average score is 80.6667

1

2

4

3

2 3

2 3

2 3

For each day of the week, indicate

if you worked out at the gym:

yes no yes yes yes no yes

You worked out 5 days with a max

streak of 3 days in a row.

1

2

4

32 32 32 3

2b.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CHOOSING THE TYPE OF LOOP

2b.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a While Loop (1)

• When you DON'T know
in advance how many
times something should
repeat?

– How many guesses will
the user need before
they get it right?

#include <iostream>
using namespace std;
int main()
{
 int guess;

 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

2b.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a While Loop (2)

• Whenever you see, hear,
or use the word 'until' in a
description

• Important Tip:

– "until x" = "while not x"

• until(x)while(!x)

– Ex: "Keep guessing until
you are correct" is the
same as "keep guessing
while you are NOT correct"

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

2b.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Practice: Until to While Not

• Rephrase the following statements using while

• I run until I'm tired.

• I work until 5 p.m. or I'm done.

• I study until I get a good grade
 and understand the material.

Note: In logic, DeMorgan's

Theorem tell us:

• !(x || y) !x && !y
• !(x && y) !x || !y

2b.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a For Loop (1)

• When you DO KNOW in
advance (before the
loop starts) how many
times to iterate

– Usually, a constant or
variable that has been
calculated or input from
the user

// Program to output numbers
// 1 through n

#include <iostream>
using namespace std;
int main()
{
 int n;

 cin >> n;
 for(int i=1; i < n; i++)
 {
 cout << i << endl;
 }

 return 0;
}

2b.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

for Loop Example

• Suppose we change our
guessing game to limit the
user to 10 guesses.

• A for loop to repeat the
process 10 times seems
appropriate

• But do we always want to
iterate 10 time?

• Under what conditions do we
want to print "You lose!"

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 for(i=0; i < 10; i++)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;

 if(guess == secretNum){

 cout << "You win!" << endl;
 // what should we do now?
 }

 // Should we print "You lose!" here?
 }
 // Or here? And under what condition?
 cout << "You lose!" << endl;

 return 0;
}

2b.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

break Statement

• Sometimes we will want to
iterate some number of times
under normal circumstances,
but stop iterating immediately
if a certain condition is true (i.e.
halt the loop)

• The break keyword will
immediately cause the current
loop to exit if it is executed
– Note: break should always be in

some kind of conditional (if or
else); otherwise the loop would
only iterate once

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 for(i=0; i < 10; i++)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess == secretNum){
 cout << "You win!" << endl;
 break;
 }
 }
 // Should we always print this?
 cout << "You lose!" << endl;

 return 0;
}

2b.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiple Ways to Exit

• When we break we
immediately leave the loop and
resume execution at the code
AFTER the loop.

• But sometimes we need to
know WHY the loop
terminated…
– Was it because we executed a

break?

– Or was it because the loop
reached its terminating condition?

• Need to use some variable (a
bool often can be useful here)
to record how we left the loop

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 bool won = false;
 for(i=0; i < 10; i++)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess == secretNum){
 cout << "You win!" << endl;
 won = true;
 break;
 }
 }
 if(won == false) // same as if(!won)
 { cout << "You lose!" << endl; }

 return 0;
}

2b.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

We Can Use A While Loop

• We can always interchange
while and for loops

• Neither type is more
powerful, but sometimes one
is more intuitive than the
other.

• Take some time and trace this
code for yourself to
understand how it works

#include <iostream>
using namespace std;
int main()
{
 int secretNum = /* some code */
 int guess = secretNum-1, i = 0;
 while(guess != secretNum && i < 10)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 i++;
 }
 if(guess == secretNum) {
 cout << "You win!" << endl;
 }
 else {
 cout << "You lose!" << endl;
 }
 return 0;
}

2b.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Converting while to for Loops

• While and for loops are EQUALLY expressive (i.e. what you can
do with one, you can ALWAYS achieve with the other).

• Simply pick whichever makes the most sense to you!

cin >> guess;
while (guess != secretnum)
{
 cout << "Try again!" << endl;
 cin >> guess;
}
cout << "You got it!" << endl;

for(cin >> guess;
 guess != secretnum;
 cin >> guess)
{
 cout << "Try again!" << endl;
}
cout << "You got it!" << endl;

for(int i=0; i < 5; i++)
{
 cout << i << endl;
}

int i=0;
while(i < 5)
{
 cout << i << endl;
 i++;
}

2b.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

'while' or 'for'

While Loops

• Usually used to repeat code
until some condition is false

UNTIL WHILE not

For Loops

• Usually used to repeat code
some known amount of
time

• Very useful to access arrays
(which we will learn shortly)

int sum = 0, val = 0;
 /* how many iterations required */
 for(int i=0; i < 5; i++)
 {
 cin >> val;
 sum += val;
 }

int i=0;
 /* how many iterations required */
 cin >> i;
 while(i != -1)
 {
 cout << i << endl;
 cin >> i;
 }

Output each input until -1 is entered Sum 5 input values

2b.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PROBLEMS SOLVING IDIOMS
Map, Reduce, Selection

2b.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map Idiom

• Name: Map
– Defines a many-to-many input-

output relationship

• Description: Process /
transform / convert (aka map)
each value in a collection to
another value

• Structure: Use a loop to
process a series of input values
and convert each to the
desired output value

• Example(s):
– See example on the right

for(/* loop N times */)
{
 // Get next input, x
 // Transform to f(x)
 // Output f(x)
}

Structure: (Prompt), Input, Process,
Output are repeated each iteration

Input: 78, 61, 85, 93, 54
Output: P, NP, P, P, NP

Given a threshold of 70, indicate if
students have passed a quiz

2

4

3

2

4

3

2

4

3

2

4

3

Prompt
Input
Process
Output

2b.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map Idiom Examples (2)

for(int i=0; i < n; i++) {
 // i itself is the input
 cout << 2*i + 1 << endl;
}

Input: 0, 1, 2, ..., n-1
Output: 1, 3, 5, , 2(n-1)+1

Input: 78, 61, 85, 93, 54, -1
Output: P, NP, P, P, NP

Output the first n odd integers

Given a threshold of 70, indicate if
students have passed a quiz

Input: -18, -13, 36, 2, -21
Output: 18, 13, 36, 2, 21

Take the absolute value of each input

int score = 0;
cin >> score;
while (score != -1) {
 if(score >= 70) {
 cout << "P" << endl;
 }
 else { cout << "NP" << endl; }
 cin >> score;
}

int val;
for(int i=0; i < n; i++) {
 cin >> val;
 if(val < 0) {
 val = -val;
 }
 cout << val << endl;
}

Note: In example 2 and 3, assume n is
initialized earlier in the code.

2b.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Reduce Idiom
• Name: Reduce / Combine /

Aggregate
– A many-to-1 input-output relationship

• Description: Combine/reduce all
inputs of a collection to a single
value

• Structure: Use a "reduction"
variable and a loop to process a
series of input values, combining
each of them to form a single (or
constant number of) output value
in the reduction variable

• Example(s):
– See example on the right

// Declare reduction variable, r
 // & init. to its identity value
 for(/* loop thru each input */)
 {
 // Get next input, x
 // Update r using x
 }
 // output answer

Structure

Input: 2, 3, 1, 8, 4, 3
Average: 3.5

Average a series of 6 numbers

double sum = 0;
 double x;
 for(int i=0; i < 6; i++)
 { cin >> x;
 sum += x;
 }
 cout << sum / 6.0 << endl;

2
3

2
3

2
3

2

4

3

Input
Process

Output

2b.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Idiom
• Name: Selection

• Description: Select a subset
(possibly one or none) of
elements from a collection
based on a particular property

• Structure: Loop through each
element and check whether it
meets the desired property. If
so, perform a map, reduce, or
other other update operation.

• Example(s):
– Count all positive integers inputs

// declare/initialize any state variables
// needed to track the desired result

// loop through each instance
for(/* each input, i */) {
 // Check if input meets the property
 if(property is true for i) {
 // Update state (variables) as needed
 }
}
// Output the state variables

Structure

Input: 5, -3, -1, 8
Output: 2

Count Positive Integers

2b.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Selection Idiom Examples

• Example 1: Count how
many negative numbers
are input (stopping for
input 0)

• Example 2: Find the
largest number of 50
positive integer input
values

int x, neg_cnt = 0;
 cin >> x;
 while(x != 0)
 { if(x < 0) { neg_cnt += 1; }
 cin >> x;
 }
 cout << neg_cnt << endl;

int x, max = -1;
 for(int i=0; i < 50; i++)
 {
 cin >> x;
 if(x > max) { max = x; }
 }
 cout << max << endl;

2b.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise Set 1

• For each of the following exercises, think about the
problem and identify which idioms can be used to
solve the problem

– goldilocks

– Interest

– sum50

– sum-mult-2-5

2b.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Side Topic: Pre-/Post- Increment/Decrement

• Recall the increment and decrement operators: ++ and --
– If ++ comes before a variable it is call pre-increment; if after, it is called post-increment

x++; // If x was 2 it will be updated to 3 (x = x + 1)

++x; // Same as above (no difference when not in a larger expression)

x--; // If x was 2 it will be updated to 1 (x = x – 1)

--x; // Same as above (no difference when not in a larger expression)

• Difference between pre- and post- is only evident when used in a larger
expression

• Meaning:
– Pre: Update (inc./dec.) the variable before using it in the expression

– Post: Use the old value of the variable in the expression then update (inc./dec.) it

• Examples [suppose we start each example with: int y; int x = 3;]
y = x++ + 5; // Post-inc.; Use x=3 in expr. then inc. [y=8, x=4]

y = ++x + 5; // Pre-inc.; Inc. x=4 first, then use in expr. [y=9, x=4]

y = x-- + 5; // Post-dec.; Use x=3 in expr. then dec. [y=8, x=2]

y = --x + 5; // Pre-dec.; Dec. x=2 first, then use in expr. [y=7, x=2]

2b.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MORE MAP AND REDUCE
EXAMPLES
(GENERALIZING PATTERNS)

2b.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Map Examples

• Write a loop to generate the first n
positive, odd numbers

– Odd numbers: 1,3,5,7,9

• We could use two separate variables

– An inductive/control variable to count
to n and control how many repetitions

– Another to produce the odd values

• It is more common to put the desired
value in terms of the inductive/control
variable, i

• Tip: Write a table of i and the desired
value and try to see if a simple line
(y = mx+b) can fit the data

int n;
cin >> n;
int odd = 1;
for(int i=0; i < n; i++)
{
 cout << odd << endl;
 odd += 2;
}

Method 1: Generate the first n positive,
odd numbers

int n;
cin >> n;
for(int i=0; i < n; i++)
{
 cout << 2*i+1 << endl;
}

Method 2: Generate the first n positive,
odd numbers

2b.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 2a

• Write a for loop to
output all the
elements of the
specified sequences

– Try to put your
expressions in terms
of the inductive
variable, i

for(int i=0; i < 8; i++)
{
 cout << ______ << endl;
}

𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, 𝟐𝟕, 𝟑𝟏

for(int i=___; i <= ___; i++)
{
 cout << i << endl;

 cout << _______ << endl;
}

𝟏, 𝟗, 𝟐, 𝟖, 𝟑, 𝟕, 𝟒, 𝟔, 𝟓, 𝟓

2b.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 2b

• Write a loop to generate and
output this sequence:

– 0,0,1,1,2,2,3,3,4,4

– Trying doing so using only the
inductive variable

for(int i=___; _________; _____)
{
 cout << _________ << endl;

}

2b.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Map / Reduce Example:
Series Approximations

• Many interesting real-valued functions or constants
may be approximated as a rational number using a
series summation or product (e.g. π, ex, etc.)

– 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯

• Series are best generated using loops where each
iteration generates one term (i.e. map) and
combines it with the previous terms (by adding or
multiplying as necessary, i.e. reduce)

2b.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Reduce Exercise 3a: Factorials

• Write a loop to compute n! (factorial)

– 𝑛! = 1 ∗ 2 ∗ ⋯ ∗ 𝑛 − 1 ∗ 𝑛 = ς𝑖=1
𝑛 𝑖

– 0! is defined to just be 1
• We would not want to multiply by 0 since any further multiplication would

result in 0 as well

int n;
cin >> n;
int fact = ____;
for(int i=1; i <= n; i++)
{
 ___________________;
}

2b.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 3b: Calculating ex

• Write a loop to generate the first n terms
of the approximation of ex

– 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯

• Tips:

– Generalize: Look at the pattern and write
out the expression for the i-th term

– Since 0! is a bit strange and just defined to
be 1, pull out the first term and let the
loop calculate the remaining terms

– The first time around you can use the
pow(base, exp) function; then try to see
how you'd do it without using pow()

– Keep a variable for i! updating it each
iteration to be ready for the next

double x, e_x = ____;
int n, fact = 1;

cin >> x >> n;
for(int i=___; ________; _____)
{
 fact _______________;
 e_x _______________________;
}

Attempt 1

double x, e_x = ____, x_i = ____;
int n, fact = 1;

cin >> x >> n;
for(int i=___; ________; _____)
{
 x_i ______________________
 fact _______________;
 e_x _______________________;
}

Attempt 2

2b.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common 'while' Loop Mistakes

• Failing to update the
variables that affect the
condition

• Assignment rather than
equality check

• Off-by-one error

• Often leads to infinite
loops

– When you run your
program it will not stop

– Use Ctrl+c to force quit it

int i=0, n=10;
while (i < n)
{
 cout << "Iteration " << i << endl;
 // Oops, forgot to change i
}
cout << "Done" << endl;

int i=0, n=5;
while (i = n) // oops, meant i==n
{
 cin >> i;
}
cout << "Done" << endl;

int i=0;
// want to print "Hi" 5 times
while (i <= 5) // oops, meant i < n
{
 cout << "Hi" << endl;
 i++;
}

2b.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common 'for' Loop Mistakes

• Updating the inductive
variable in the wrong
direction

• Off by one error

• Missing the exit condition

int i=0, n=10;
for (i=n; i>0; i++) // oops, meant i--
{
 cout << "Iteration " << i << endl;
}

// Goal: print "Hello" 5 times
for (i=0; i<=5; i++) // oops, meant <
{
 cout << "Hello" << endl;
}

// Print "0", "2", and "4"
for (i=0; i!=5; i+=2) // oops, infinite
{
 cout << i << endl;
}

2b.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Flags: A Common while Structure

• A Boolean flag

– Two values: true or false

– Pattern: Initialize to a value
that will cause the while
loop to be true the first
time and then check for
the ending condition in an
if statement and update
the flag

– Up to you to determine the
meaning of the flag (e.g.
done or again)

int guess, secretNum;
bool done = false;
while (! done)
{
 cin >> guess;
 if(guess == secretNum) {
 done = true;
 }
}
cout << "You got it!" << endl;

int guess, secretNum;
bool again = true;
while (again)
{
 cin >> guess;
 if(guess == secretNum) {
 again = false;
 }
}
cout << "You got it!" << endl;

2b.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises 4

• For each of the following exercise, talk about
the problem and identify which idioms can be
used to solve the problem

– polydeg

– turn360

2b.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Non-Comparison Conditions

• If the expression in the
if, while, or for
loop does not result in
a Boolean, it will try to
convert the expression
to a Boolean

– 0 = false

– Non-0 = true

int main()
{
 int x, y, val;
 bool done;
 cin >> x >> y >> val >> done;
 // Uses Boolean result of comparison
 while(x > 0) { /* code */ }

 // Uses value of bool variable.
 // Executes if done == false.
 while(!done) { /* code */ }

 // Interprets number as a bool
 // Executes if val is non-zero
 while(val) { /* code */ }

 // Interprets return value as bool
 // Executes if the min is non-zero
 while(min(x,y)) { /* code */ }

 return 0;
}

2b.35

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Should I Use do..while

• We generally prefer while loops

• We can use do..while loops when we know we
want to execute the code at least one time
(and then check at the end)

• Even then…

– See next slide

2b.36

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Converting do..while to while Loops

do
{
 cin >> guess;
} while (guess != secretnum);
cout << "You got it!" << endl;

cin >> guess;
while (guess != secretnum)
{
 cin >> guess;
} // go to top, eval cond1 again
cout << "You got it!" << endl;

guess = secretnum + 1;
while (guess != secretnum)
{
 cin >> guess;
} // go to top, eval cond1 again
cout << "You got it!" << endl;

We can duplicate the body of the loop

once before we start the loop.

We can set our variables to ensure

the while condition is true the first

time.

We need to get one guess at least

and then determine if we should

repeat. This seems a natural fit for the

do..while structure but we can easily

mimic this behavior with a normal

while loop.

2b.37

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises 5

• cpp/for/rps-bestof3

2b.38

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 2a Solutions

• Write a for loop to
generate all the
elements of the
specified sets

for(int i=0; i < 8; i++)
{
 cout << 4*i+3 << endl;
}
//or
for(int i=3; i <=31; i+=4)
{
 cout << i << endl;
}

𝑺 = 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, 𝟐𝟕, 𝟑𝟏

for(int i=1; i <= 5; i++)
{
 cout << i << endl;

 cout << 10-i << endl;
}

𝟏, 𝟗, 𝟐, 𝟖, 𝟑, 𝟕, 𝟒, 𝟔, 𝟓, 𝟓

2b.39

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 2b Solutions

• Write a loop to generate and
output this sequence:

– 0,0,1,1,2,2,3,3,4,4

– Trying doing so using only the
inductive variable

for(int i=0; i < 10; i++)
{
 cout << i/2 << endl;

}

2b.40

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 3b: Calculating ex

• Write a loop to generate the first n terms
of the approximation of ex

– 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯

• Tips:

– Generalize: Look at the pattern and write
out the expression for the i-th term

– Since 0! is a bit strange and just defined to
be 1, pull out the first term and let the
loop calculate the remaining terms

– The first time around you can use the
pow(base, exp) function; then try to see
how you'd do it without using pow()

– Keep a variable for i! updating it each
iteration to be ready for the next

double x, e_x = 1;
int n, fact = 1;

cin >> x >> n;
for(int i=1; i < n; i++)
{
 fact *= i;
 e_x += pow(x,i)/fact;
}

Attempt 1

double x, e_x = 1, x_i = 1;
int n, fact = 1;

cin >> x >> n;
for(int i=1; i < n; i++)
{
 x_i *= x;
 fact *= i;
 e_x += x_i / fact;
}

Attempt 2

	Default Section
	Slide 1: Unit 2b – Coding with Loops and Loop Idioms
	Slide 2: Unit 2
	Slide 3: Linear (1D) Processing Programs
	Slide 4: Choosing the Type of LOOp
	Slide 5: When Do I Use a While Loop (1)
	Slide 6: When Do I Use a While Loop (2)
	Slide 7: Practice: Until to While Not
	Slide 8: When Do I Use a For Loop (1)
	Slide 9: for Loop Example
	Slide 10: break Statement
	Slide 11: Multiple Ways to Exit
	Slide 12: We Can Use A While Loop
	Slide 13: Converting while to for Loops
	Slide 14: 'while' or 'for'
	Slide 15: Problems Solving Idioms
	Slide 16: Map Idiom
	Slide 17: Map Idiom Examples (2)
	Slide 18: Reduce Idiom
	Slide 19: Selection Idiom
	Slide 20: Selection Idiom Examples
	Slide 21: Exercise Set 1
	Slide 22: Side Topic: Pre-/Post- Increment/Decrement
	Slide 23: More mAP and Reduce Examples (Generalizing Patterns)
	Slide 24: More Map Examples
	Slide 25: Exercise 2a
	Slide 26: Exercise 2b
	Slide 27: Map / Reduce Example: Series Approximations
	Slide 28: Reduce Exercise 3a: Factorials
	Slide 29: Exercise 3b: Calculating ex
	Slide 30: Common 'while' Loop Mistakes
	Slide 31: Common 'for' Loop Mistakes
	Slide 32: Flags: A Common while Structure
	Slide 33: Exercises 4
	Slide 34: Non-Comparison Conditions
	Slide 35: When Should I Use do..while
	Slide 36: Converting do..while to while Loops
	Slide 37: Exercises 5
	Slide 38: Exercise 2a Solutions
	Slide 39: Exercise 2b Solutions
	Slide 40: Exercise 3b: Calculating ex

