
2a.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2a – Loop Syntax and
Semantics

Mark Redekopp

2a.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 2

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

2a.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Linear (1D) Processing Programs

• Process an arbitrary length (or large
fixed-length) sequence or set of data

• The distinguishing feature is the use of
a LOOP to perform the same/similar
processing repetitively on each data
item

• We will likely still keep our general
structure but with some sequence of
those operations be repeated via the
loop:

– Prompt

– Input

– Process

– Output

Enter student scores (end with -1)

80

90

72

-1

The average score is 80.6667

1

2

4

3

2 3

2 3

2 3

For each day of the week, indicate

if you worked out at the gym:

yes no yes yes yes no yes

You worked out 5 days with a max

streak of 3 days in a row.

1

2

4

32 32 32 3

2a.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Control Structures

• We need ways of making decisions in our program

– To repeat code until we want it to stop

– To only execute certain code if a condition is true

– To execute one segment of code or another

• Language constructs that allow us to make decisions
are referred to as control structures

• The common ones are:

– if statements

– switch statements

– while loops

– for loops

2a.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Loops
• Loops are structures of code that may be repeated

some number of times

• Examples:

– Sum each student's grades (for all students in the class)

– Search through a sequence of numbers for a particular
value

– Attend lecture ☺

• We need some condition to tell us when to stop
looping, otherwise we'll repeat our code forever
and never stop (a.k.a. an infinite loop)

• Several kinds of loops: 'while', 'do..while', and 'for'

2a.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MOTIVATION FOR LOOPS
Generalizing and repeating code

2a.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation for Loops

• Take a simple task such
as outputting the first
1000 positive integers

– We could write 1000
cout statements

– Yikes! We could do it
but it would be painful!

• Or we could use a loop

#include <iostream>
using namespace std;
int main()
{
 cout << 1 << endl;
 cout << 2 << endl;
 cout << 3 << endl;
 // hundreds more cout statements

 cout << 999 << endl;
 cout << 1000 << endl;

 return 0;
}

#include <iostream>
using namespace std;
int main()
{
 for(int i=1; i <= 1000; i+=1)
 {
 cout << i << endl;
 }
 return 0;
}

2a.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why We Need Loops (1)

• Suppose we are writing
a program for a simple
turn-based guessing
game where the user
must guess a secret
number

• If they guess incorrectly
what should we do?

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 /* What should we do here? */

 }
 return 0;
}

2a.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why We Need Loops (2)

• What if they guess
wrong a second time?
What should we do?

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 /* What should we do here? */

 }
 }
 return 0;
}

2a.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why We Need Loops (3)

• We can never write
enough if statements
because someone might
always use one more
turn than we have if
statements

• But we see there is a
repetitive structure in
this code

• Let's use a loop

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 /* What should we do here? */
 }
 } }
 return 0;
}

2a.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

4 Necessary Parts of a Loop
• Loops involve writing a task to be repeated

• Regardless of that task, there must be
 4 parts to a make a loop work

• Initialization

– Initialization of the variable(s) that will control
how many iterations (repetitions) the loop will
executed

• Condition

– Condition to decide whether to repeat the task
or stop the loop

• Body

– Code to repeat for each iteration

• Update

– Modify the variable(s) related to the condition
(without the update, the condition could be
TRUE forever leading to an "infinite loop")

Condition
(e.g. i <= 1000)

Body
(cout << i << endl;)

True

Code after the loop

Initialization
(e.g. i = 1)

F
a

ls
e

Update Statement
(e.g. i += 1)

Loop

for(int i=1; i <= 1000; i+=1) {
 cout << i << endl;
}

2a.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Types of Loops

• There are 2 (and a half) kinds of loops

• for loops and while (do..while) loops

int i = 1;
while (i <= 1000)
{
 // repetitive task
 cout << i << endl;
 i++; // update
}
// following statements

int i;
for (i = 1; i <= 1000; i++)
{
 cout << i << endl;
}
// following statements

There is a variant of the while loop which is
the do..while loop which we'll cover later.

4 parts:

• Initialization

• Condition

• Body

• Update

2a.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Type 1: while Loops

• A while loop is essentially a repeating 'if' statement

// initialization
if (condition)
{
 // executed if condition1 is true
}
// following statements

condition

If Block
Statements

True

False

Following
statements

// initialization
while (condition)
{
 // executed if condition1 is true
 // update statement
} // go to top, eval cond1 again

// following statements

condition

while Block Statements
Update Statement

True

False

Following
statements

InitializationInitialization

2a.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Type 1: while Loops

• A while loop is essentially a repeating 'if' statement

initialization
while (condition1)
{

 // Body: if condition1 is true

} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

2

4

5

7

8

9

T T F

1

Condition
(e.g. i <= 1000)

Loop task
(cout << i << endl;)

True

Code after the loop

Initialization
(e.g. i = 1)

F
a

ls
e

Update Statement
(e.g. i += 1)

Loop
3 6

2a.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Deriving the Loop
#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 /* What should we do here? */
 }
 } }
 return 0;
}

guess ==
secretNum

int secretNum=…;
cin >> guess

cin >> guessYou got it

Yes No

guess ==
secretNum

cin >> guessYou got it

Yes No

guess ==
secretNum

cin >> guessYou got it

Yes No

initialization
while (condition1)
{
 body
 update
}

2a.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Applying the 4 Parts

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */

 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Wrong, guess again: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

Always make sure you have the 4 parts
 (it's easy to forget initialization and/or update)

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 cin >> guess;
 if(guess == secretNum) {
 cout << "You got it!" << endl;
 }
 else {
 /* What should we do here? */
 }
 } }
 return 0;
}

2a.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Goes In a Loop Body

• What do we put in a
while or for loop
body?

• ANYTHING!

– Expressions & variable
assignment

– Function calls

– if..else statements

– Even other loops!

#include <iostream>
using namespace std;
int main()
{
 int guess;

 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

2a.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (1)

• Ensure you understand
the meaning (semantics)
of a while loop by tracing
through the code to the
right

• Show all changes to x and
y for:

– x = 24

– y = 18

int main()
{
 int x, y;
 cin >> x;
 while((x % 2) == 0){
 x = x/2;
 }

 cin >> y;
 while(y > 0){
 if(y >= 10){
 y -= 5;
 }
 else if(y >= 5){
 y -= 3;
 }
 else {
 y -= 1;
 }
 cout << y << endl;
 }
 return 0;
}

2a.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (2)

• Trace through the code
and show all changes to x
and y for:

– x = 27

– y = 6

int main()
{
 int x, y;
 cin >> x;
 while((x % 2) == 0){
 x = x/2;
 }

 cin >> y;
 while(y > 0){
 if(y >= 10){
 y -= 5;
 }
 else if(y >= 5){
 y -= 3;
 }
 else {
 y -= 1;
 }
 cout << y << endl;
 }
 return 0;
}

2a.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Type 2: for Loops

• 'for' loops have the same ability as a 'while' loop but make the
4 parts of a loop EXPLICIT

// initialization
while (condition)
{
 // executed if condition is true
 // Update statement
}
// following statements

condition

while Block
Update Statement

True

F
a
ls

e
Following

statements

condition

For Block
Statements

True

F
a
ls

e

Following

init

Update

for(init; condition; update)
{
 // executed if condition is true
} // go to top, do update, eval cond. again

// following statements

for(int i=1; i < 1000; i++)
{
 cout << i << endl;
}

Example

init

2a.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Type 2: 'for' Loop Sequencing

• 'for' loop

– performs initialization
statement once

– checks the condition
each iteration before
deciding to execute the
body or end the loop

– performs the update
statement after each
execution of the body

condition

For Block
Statements

True

Following

init

Update

for(init; condition; update)
{
 // executed if condition is true
} // go to top, do update, eval cond. again

// following statements
// only gets here when cond. is false

1
Condition:

3

4

9

T T F
2

6

75 8

False

2a.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Some Examples
#include <iostream>
using namespace std;
int main()
{
 int i;
 for(i=0; i < 5; i++)
 {
 cout << i << endl;
 }
 return 0;
}

0
1
2
3
4

Program Output:

#include <iostream>
using namespace std;
int main()
{
 int i;
 for(i=8; i > 0; i=i/2)
 {
 cout << i << endl;
 }
 return 0;
}

8
4
2
1

Program Output:

The initial value, condition, and update statement can be any valid expression!

2a.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tangent: Scope

• A tangent that will be relative in
our discussion of for loops is the
idea of scope

• Scope refers to the lifetime and
visibility of a variable
– Recall variables are just memory

slots in the computer

– The program will reclaim those
memory spots when a variable "dies"

• In C/C++, a variable's scope is the
curly braces {} it is declared within

• Main Point: A variable dies at the
end of the {…} it was declared in

#include <iostream>
using namespace std;
int main()
{
 int i;
 cin >> i;

 if(i > 0){
 int temp = 2*i;
 cout << temp << endl;
 } // temp died here
 temp = i++; // won't compile
 cout << temp << endl;

 return 0;
} // i dies here

void f1()
{
 // is i visible here?
 cout << i << endl;
}

2a.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Last Note on Variables: Scope
• "Scope" of a variable refers to the

– Visibility (who can access it) and

– Lifetime of a variable (how long is the
memory reserved

• For now, there are 2 scopes we will
learn

– Global: Variables are declared
outside of any function and are
visible to all the code/functions in
the program

• For various reasons, it is "bad" practice
to use global variables. You MAY NOT use
them in CS 102.

– Local: Variables are declared inside
of a function and are only visible in
that function and die when the
function ends

#include <iostream>
using namespace std;

// Global Variable
int x=1;

int add_x()
{
 int n; // n is a "local" variable
 cin >> n;
 // y and z NOT visible (in scope) here
 // but x is since it is global
 return (n + x);
} // n dies here
int main()
{
 // y and z are "local" variables
 int y=0, z;

 z = add_x();
 y += z / x; // n is NOT visible
 cout << x << " " << y << endl;
 return 0;
} // y and z die here

2a.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Declaring the Inductive Variable

• The initialization statement can be
used to declare a control/inductive
variable but its scope is considered
to be the for loop (even though it is
not technically declared in the {..}
of the for loop
– Just realize that variable will die at

the end of the loop

• However, because it dies after the
first loop you can use that same
variable name in a subsequent loop

#include <iostream>
using namespace std;
int main()
{
 int n;
 cin >> n;
 for(int i=0; i < n; i++){
 cout << 3*i << endl;
 } // i dies here

 // won't compile
 cout << i << endl;

 // okay to reuse i
 for(int i=0; i < n; i++){
 cout << 4*i << endl;
 } // reincarnated i dies again

 return 0;
} // n dies here

2a.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (1)
• For the first program,

trace through the code
and show all changes to i
for:

– n = 2;

• For the second program,
trace through the code
and show the output for:

– t = PI/2, T = 2*PI

int main()
{
 int n;
 cin >> n;
 for(int i = -n; i <= n; i++)
 {
 cout << i << endl;
 }
 return 0;
}

int main()
{
 double t, T;
 cin >> t >> T;
 for(double th = 0 ; th < T; th += t)
 {
 cout << sin(th) << endl;
 }
 return 0;
}

2a.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (2)
• For the first program,

trace through the code
and show all changes to i
and y for:

– x = 10

– y = 2

• For the second program,
trace through the code
and show all changes to i
and y for:

– x = 4

– y = 11

int main()
{
 int x, y;
 cin >> x >> y;
 for(int i=1; i <= x; i=i+y)
 {
 cout << i << endl;
 y++;
 }
 return 0;
}

int main()
{
 int x, y;
 cin >> x >> y;
 for(; x < y; x++)
 {
 cout << x << " " << y << endl;
 y--;
 }
 return 0;
}

2a.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• cpp/while/blastoff

• cpp/for/blastoff

2a.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

do..while Loops (1)

• while loops have a sibling
known as do..while loops

• do..while loops

– Start with keyword do

– Followed by the body of code
to be executed repeatedly in
brackets { }

– Ends with while condition
and semicolon (;)

• do..while loops will execute
the body at least once

int main()
{
 int x, y, val;
 bool quit;

 // a while loop
 while(x < val)
 {
 /* body of code */
 }

 // a do..while loop
 do
 {
 /* body of code */
 } while(x < val);

 return 0;
}

2a.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

do..while Loops (2)

• do..while loops check the condition after executing at least
once and repeat if the condition is true

while (condition)
{
 // executed if condition1 is true
} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

do
{
 // executed at least once
} while (condition);// go to 'do' (top)
 //if cond1 evals to true
// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

2a.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

do..while Loops (3)

• do..while loops check the condition after executing at least
once and repeat if the condition is true

do
{
 // executed at least once
} while (condition);// go to 'do' (top)
 //if cond1 evals to true
// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

1

Condition:
2

3

4

5

7

T T F
6

2a.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solutions 0

X: 24, 12, 6, 3
Y: 18, 13, 8, 5, 2, 1, 0

Program Output for input of 24 18:int main()
{
 int x, y;
 cin >> x;
 while((x % 2) == 0){
 x = x/2;
 }

 cin >> y;
 while(y > 0){
 if(y >= 10){
 y -= 5;
 }
 else if(y >= 5){
 y -= 3;
 }
 else {
 y -= 1;
 }
 }
 return 0;
}

X: 27
Y: 6, 3, 2, 1, 0

Program Output for input of 27 6:

2a.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solutions 1

-2
-1
0
1
2

Program Output for input of 2:

0
1
0
-1

Program Output for input π /2 and 2π:

int main()
{
 int n;
 cin >> n;
 for(int i = -n; i <= n; i++)
 {
 cout << i << endl;
 }
 return 0;
}

int main()
{
 double t, T;
 cin >> t >> T;
 for(double th = 0 ; th < T; th += t)
 {
 cout << sin(th) << endl;
 }
 return 0;
}

2a.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solutions 2

1
4
8

Program Output for input of 10 2:

4 11
5 10
6 9
7 8

Program Output for input 4 11:

int main()
{
 int x, y;
 cin >> x >> y;
 for(int i=1; i <= x; i=i+y)
 {
 cout << i << endl;
 y++;
 }
 return 0;
}

int main()
{
 int x, y;
 cin >> x >> y;
 for(; x < y; x++)
 {
 cout << x << " " << y << endl;
 y--;
 }
 return 0;
}

	Default Section
	Slide 1: Unit 2a – Loop Syntax and Semantics
	Slide 2: Unit 2
	Slide 3: Linear (1D) Processing Programs
	Slide 4: Control Structures
	Slide 5: Loops

	Motivation
	Slide 6: Motivation for Loops
	Slide 7: Motivation for Loops
	Slide 8: Why We Need Loops (1)
	Slide 9: Why We Need Loops (2)
	Slide 10: Why We Need Loops (3)

	while loops: Syntax & Semantics
	Slide 11: 4 Necessary Parts of a Loop
	Slide 12: Types of Loops
	Slide 13: Type 1: while Loops
	Slide 14: Type 1: while Loops
	Slide 15: Deriving the Loop
	Slide 16: Applying the 4 Parts
	Slide 17: What Goes In a Loop Body
	Slide 18: Hand Tracing (1)
	Slide 19: Hand Tracing (2)

	for loops: Syntax & Semantics
	Slide 20: Type 2: for Loops
	Slide 21: Type 2: 'for' Loop Sequencing
	Slide 22: Some Examples
	Slide 23: Tangent: Scope
	Slide 24: A Last Note on Variables: Scope
	Slide 25: Declaring the Inductive Variable
	Slide 26: Hand Tracing (1)
	Slide 27: Hand Tracing (2)
	Slide 28: Exercises

	do..while loop: Syntax and Semantics
	Slide 29: do..while Loops (1)
	Slide 30: do..while Loops (2)
	Slide 31: do..while Loops (3)
	Slide 32: Solutions 0
	Slide 33: Solutions 1
	Slide 34: Solutions 2

