
1c.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 1c – Idioms and Algorithmic
Thinking Examples

Mark Redekopp

1c.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit Objectives

• Understand chars and ints and how cout
uses types to determine how it will interpret
the numbers being stored.

• Dive deeper into C++ aspects of cin and cout

• Understand assignment and correctly identify
errors when using assignment

• See applications of division and modulo such
as unit conversion, extracting
digits/coordinates, divisibility and factoring

1c.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of Data Types

• bool
– true or false values

• int or unsigned int
– Integer values

• char
– A single ASCII character

– Or a small integer (but just use 'int')

• double
– A real number (usually if a decimal/fraction is needed) but also for

very large numbers

• string
– Multiple text characters, ending with the null ('\0' = 00) character

1c.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MORE CIN AND COUT

1c.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I/O Streams
• C++ and the OS use the notion of streams to temporarily store (aka buffer)

data to be input or output and then uses the cin and cout objects (from
the <iostream> library) to access those streams

• cin extracts data from the input stream [stdin] (skipping over preceding
whitespace then stopping at following whitespace)

• cout inserts data into the output stream [stdout] for display by the OS

7 5 y ... #include<iostream>
int main()
{
 int x;
 std::cin >> x;
 return 0;
}

I t w a s t h e

output stream

memory (aka stdout):

#include<iostream>
int main()
{
 std::cout << "It was the" << std::endl;
 std::cout << "best of times.";
 return 0;
}

b\n
It was the

This Photo by Unknown Author is licensed under CC BY-NC

OS

cin

OS

e

cout
input stream

memory (aka stdin):

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/

1c.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

std:: and the using namespace statement

• Most C++ library components "live"
in the std namespace
– Think of a namespace like folders on

your laptop or a classification hierarchy

– So cout and endl are technically
std::cout and std::endl

– To avoid all that typing, we can tell the
C++ compiler to look for components in
the std namespace when it can't find
any definition earlier in our code by
writing the using namespace std;

• Demo: Try to compile the top program
WITHOUT the using statement.

#include<iostream>
using namespace std;
int main()
{
 cout << "It was the" << endl;
 cout << "best of times.";
 return 0;
}

#include<iostream>
// no using namespace std; statement
int main()
{
 std::cout << "It was the" << std::endl;
 std::cout << "best of times.";
 return 0;
}

std

cout

endl

cin

/

1c.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Error without 'using' statement

1c.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Newlines, endl, and Flushing

• To move the cursor to the next line
we need to print a new line, '\n'
(char)

• cout only gives the characters to
the OS which then copies them to
the screen.

• The OS may choose to delay and not
print immediately causing strange
issues (see bottom)

• endl = '\n' + a flush of the output
stream which forces the OS to print
immediately

OScout

cout << "Hi" << endl;

OS, could you
print this for me.
Oh and btw, I'm

flushing!

Your wish is
my

command!

OScout

cout << "Hi\n";

_

OS, could
you print

this for me?

Pshh! I'm busy.
Maybe I'll do it

now, maybe later.

Hi

_

1c.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Newlines, endl, and Flushing

• To move the cursor to the next line
we need to print a new line, '\n'
(char)

• cout only gives the characters to
the OS which then copies them to
the screen.

• The OS may choose to delay and not
print immediately causing strange
issues (see bottom)

• endl = '\n' + a flush of the output
stream

OScout

cout << "Hi" << endl;

OS, could you
print this for me.
Oh and btw, I'm

flushing!

Your wish is
my

command!

OScout

cout << "Hi\n";

_

OS, could
you print

this for me?

Pshh! I'm busy.
Maybe I'll do it

now, maybe later.

Hi

_

int main() {
 task_that_might_crash(); // Doesn't crash
 cout << "Got Here 1\n";
 task_that_might_crash(); // Does crash!
 cout << "Got Here 2\n";
 return 0;
} <Segmentation fault>

int main() {
 task_that_might_crash(); // Doesn't crash
 cout << "Got Here 1" << endl;
 task_that_might_crash(); // Does crash!
 cout << "Got Here 2" << endl;
 return 0;
} Got Here 1

<Segmentation fault>

Use descriptive
messages and
endls when
debugging.

1c.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I/O Manipulators
• Manipulators control HOW cout handles

certain output options and how cin
interprets the input data (but print
nothing themselves)

– Must #include <iomanip>

• Common examples

– setw(n): Separate consecutive outputs by
n spaces

– setprecision(n): Use n digits to
display doubles (both the integral +
decimal parts)

– fixed: Uses the precision for only the
digits after the decimal point

– boolalpha: Show Booleans as true and
false rather than 1 and 0, respectively

• Separated by << or >> and used inline with
actual data

• Other than setw, manipulators continue
to apply to later output until changed

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 double pi = 3.14159;

cout << pi << endl;
// Prints: 3.14159

cout << setprecision(2) << pi << endl;
// Prints: 3.1

cout << setprecision(2) << fixed << pi << endl;
// Prints: 3.14

 return 0;
}

http://en.cppreference.com/w/cpp/io/manip

See "iomanip" in-class exercise to
explore various options

http://en.cppreference.com/w/cpp/io/manip

1c.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding ASCII and chars

• A char is just an integer type that

– Is only 1 byte (limited range 0 to 255 or -128 to +127)

– cout uses the type, char or int, to infer if we want the
ASCII character or integer

• We can perform arithmetic/comparison operations on
ASCII chars since they are converted to integers

char c = 'a'; // same as char c = 97;
cout << c << endl; // prints 'a'
c = 97;
cout << c << endl; // prints 'a'
int x = c;
cout << x << endl; // prints 97

char d = 'a' + 1; // d now contains 98 (ASCII 'b')
cout << d << endl; // prints 'b' on the screen
if(c >= 'a' && c <= 'z') { } // && means AND
 // better than if(c >= 97 && c <= 122)
x = '1'
cout << x << endl; // prints: 49

97

char c

98

char d

97

int x

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

49

int x

https://commons.wikimedia.org/wiki/File:Circularly_polarized_glasses.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://nookipedia.com/wiki/Item:3D_Glasses_(New_Horizons)
https://creativecommons.org/licenses/by-sa/3.0/

1c.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unexpected Inputs

#include <iostream>
using namespace std;

int main()
{
 double b, h;
 cin >> b >> h;
 cout << "Area of rect: " <<
 << b * h << endl;
 cout << "Area of triangle: " <<
 << 0.5 * b * h << endl;
 return 0;
}

• The '>>' operator can be
used to input any number
of variables you want to
read

• If unexpected non-
whitespace characters are
encountered, cin simply
stops and leaves the
variable values unchanged

– It does not discard the
unexpected characters so
they will likely cause
another error on the next
read, too.

– More on error handling
and input validation in
CS103

xy 1.25 2
Area of rect: 5.428E35
Area of triangle: 2.714E35

yx

cin

??

input stream:

??

b h

.1 …2

yx .1 …2

1c.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

cin Question

#include <iostream>
#include <string>
using namespace std;

int main()
{
 int x;
 cin >> x; // User types 1.5 42

 double y, z;
 cin >> y >> z;

 string s;
 cin >> s; // User types 103.25

 cout << "x = " << x << endl;
 cout << "y,z= " << y << " " << z << endl;
 cout << "s = " << s << endl;
 return 0;

}

• What do you think would
happen if the user typed
a double when an
integer was expected?

• What happens if you
type numeric digits when
a string is expected?

.

cin

5 4 2 \n

1

x

input stream:

1

1.5 42
103.25
x =
y,z=
s =

cin

.5

input stream:

42

y z

0

cin

3 . 2 5 \n

103.25

s

input stream:

1

1c.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ASSIGNMENT AND ORDERING
Common Idioms and Potential Pitfalls

1c.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Temporal/Sequential Nature of Assignment

• It is critical to remember that
assignment:
– Does NOT create a permanent

relationship that causes one variable to
update if another does

– Uses the variable values at the time the
line of code is executed

– Copies (not moves) data to the
destination variable

• So, the result of assignment
statements depend on the order
(timing) in which they are executed
because one statement may affect
the next

int main()
{
 int x = 5;

 // Performs a one-time
 // update of y to 2*5+1=11
 int y = 2 * x + 1;

 // This assignment will
 // NOT cause y to be
 // re-evaluated
 x = 7;

 // y is still 11 and not 15
 cout << "y = " << y << endl;

 // Copies the value of x into y
 y = x;

 // both x and y are 7 now
 cout << x << " " << y << endl;
 return 0;
}

1c.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Problem Solving Idioms

• An idiom is a colloquial or common
mode of expression

– Example: "raining cats and dogs"

• Programming has common modes of
expression that are used quite often to
solve problems algorithmically

• We have developed a repository of these
common programming idioms. We
STRONGLY suggest you

– Reference them when attempting to
solve programming problems

– Familiarize yourself with them and their
structure until you feel comfortable
identifying them

http://bytes.usc.edu/cs102/idioms.html

1c.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Shifting and Rotation Assignment Idioms

• The shifting idiom shifts data among variables usually
replacing/dropping some elements to make room for
new ones

– The key pattern is some elements get dropped/overwritten
and other elements are reassigned/moved

– It is important to start by assigning the variable to be
replaced/dropped and then move in order to variables
receiving newer data

– Examples: Top k items (high score list)

• The rotation idiom reorders or rearranges data among
variables without replacing/dropping elements

– Swap is simply a rotation of 2 elements

– The key pattern is all elements are kept but just reordered

– It is usually necessary to declare and maintain some
temporary variable to avoid elements getting
dropped/overwritten

10 11 12

13
x1 x2 x3

10 11 12

x1 x2 x3

11 12 13

11 12 13

Shifting Idiom

Rotation Idiom

11 12

x1 x2

12 11

Swap

1c.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Shifting Idiom Ex. (Insertion)
• Suppose a business represents each client

with a 3-digit integer ID (and -1 to mean
"free")

– Lower IDs are given to more important
clients

– Client's with lower ID's always get the
appointment time they want

– Suppose client 105 calls and wants a 2 p.m.
appointment, will the highlighted code
below work?

• Shifting or rotation?

– Are we adding/dropping values or keeping
all the originals?

• Recall that statements execute one at a
time in sequential order

– Earlier statements complete fully before the
next starts

int main()
{
 // Original appointment
 // schedule
 // Lower client ID gets
 // earlier appointment
 int apt_1pm = 5;
 int apt_2pm = 12;
 int apt_3pm = 17;
 int apt_4pm = -1;

 // Now client 8 wants
 // a 2 p.m. appointment
 apt_2pm = 8;
 apt_3pm = apt_2pm;
 apt_4pm = apt_3pm;

 return 0;
}

1c.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Shifting Idiom Ex. (Insertion)

• To correctly code the shift, we must
start with the variable to be dropped

• The code to the right does not follow
this guideline
– Perform each highlighted operation one

at a time, marking up the diagram
below to see the error that results

int main()
{
 // Original appointment
 // schedule
 // Lower client ID gets
 // earlier appointment
 int apt_1pm = 5;
 int apt_2pm = 12;
 int apt_3pm = 17;
 int apt_4pm = -1;

 // Now client 8 wants
 // a 2 p.m. appointment
 apt_2pm = 8;
 apt_3pm = apt_2pm;
 apt_4pm = apt_3pm;

 return 0;
}

5

apt_1pm

12

apt_2pm

17

apt_3pm

-1

apt_4pm

5

apt_1pm apt_2pm apt_3pm apt_4pm

8
32

1

1c.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Shifting Idiom Ex. (Insertion)

• To correctly code the shift, we must
start with the variable to be dropped
– Move items in reverse order

int main()
{
 // Original appointment
 // schedule
 // Lower client ID gets
 // earlier appointment
 int apt_1pm = 5;
 int apt_2pm = 12;
 int apt_3pm = 17;
 int apt_4pm = -1;

 // Now client 8 wants
 // a 2 p.m. appointment
 apt_4pm = apt_3pm;
 apt_3pm = apt_2pm;
 apt_2pm = 8;

 return 0;
}

5

apt_1pm

12

apt_2pm

17

apt_3pm apt_4pm

5

apt_1pm apt_2pm apt_3pm apt_4pm

8
12

3

1c.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

APPLICATIONS OF DIVISION AND
MODULO

Arithmetic Idioms

1c.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Integer Division and Modulo Operations

• Recall integer division yields only the quotient and discards the
remainder (fractional portion)
– As we apply division to consecutive values, they map to the same output

• Modulo operation yields the remainder (and discards the quotient)
– As we apply modulo to consecutive values, they map to different output

– x mod m will yield numbers in the range [0 to m-1]

• Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3x/5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

x

x%5

input

output

input

output

What if we had
used 10 rather
than 5? What
would / and %

operations yield?

1c.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Integer Division and Modulo Operations

• What if we had replaced 5 with 10?

• Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1x/10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

x

x%10

input

output

input

output

1c.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extracting/Isolating Digits Idiom

• To extract or isolate
individual digits of a number
we can simply divide by the
base

• Use modulus (%) to extract
the least-significant digits

• Use integer division (/) to
extract the most-significant
digits

10100 1

59 7.957 dec. =

957 % 10 = 7
957 / 10 = 95

957 % 100 = 57
957 / 100 = 9

1c.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extracting Coordinates

This Photo by Unknown Author is licensed under CC BY-NC

• Suppose you check into a hotel
and are told you are in room 632.

– What floor do you go to?

• A city has odd addresses on one
side of the street and even on the
other.

– Given an address (e.g. 3749), how
could you determine what side of
the street you are on?

3742 3743

3744 3745

3746 3747

3748 3749

https://www.pngall.com/hotel-png/
https://creativecommons.org/licenses/by-nc/3.0/

1c.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dimensions

• Consider a 2D grid with 3 rows and 4 columns

• Suppose we assign a linear number to each location as shown

• Given the cell number, how can we determine which row and
column it is in?

• Given a row and column, can we construct the cell number?

8 9

0 1 2

4 5 6

11

3

7

102

0

1

0 1 2 3

Row:

Col:

8

1

6

112

0

1

0 1 2 3

Row:

Col:

1c.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Divisibility / Factoring Idiom

• Modulo can be used to
check if n is divisible by k

– Definition of divisibility is if
k divides n, meaning
remainder is 0

• To factor a number we
can divide n by any of its
divisors

12 % 3 = 0
=> 12 is divisible by 3

12 % 5 = 2
=> 12 is NOT divisible by 5

12 / 3 = 4
=> 4 remains after
=> factoring 3 from 12

1c.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit Conversion Idiom

• The unit conversion idiom can be used to convert one value to
integral number of larger units and some number of
remaining items
– Examples:

• Ounces to Pounds and ounces

• Inches to Feet and inches

• Cents to Quarters, dimes, nickels, pennies

• Approach:
– Suppose we have n smaller units (e.g. 15 inches) and a conversion

factor of k small units = 1 large unit, (e.g. 12 inches = 1 foot) then…

– Using integer division (n/k) yields the integral number of larger units
(15/12 = 1 foot)

– Using modulo (n%k) will yield the remaining number of smaller units
(15 % 12 = 3 inches)

1c.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 1: Unit Conversion Idiom Ex.
(Making Change)

• Make change (given 0-100 cents) convert to
quarters, dimes, pennies

• cpp/var-expr/change

1c.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 2: Unit Conversion

• Suppose a knob or slider
generates a number x in the
range 0-255

• Use division or modulo to
convert x to a new value, y, in
the range 0-9 proportionally

• y = x ___________________

0=x

0=y

255

9

1

4
6

7

8

3

2

5

0 1 2 3 51 52 25525 26 53x

Each of the 10 bins

= ______ small units

1c.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise 3: Isolating Digits Idiom

• Simulate 2 random coin flips producing
2 outcomes (H or T with 50/50 prob.)

• Use rand() to generate a random
number.
– rand() is defined in <cstdlib>

– Returns a random integer between 0 and
about 231

• Really +231-1

– Your job to convert r1 and r2 to either 0 or
1 (i.e. heads/tails) and save those values in
flip1 and flip2

0 1 2 3 +231.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{

// Generate a random number
int r1 = rand();
// And another
int r2 = rand();
int flip1 = _____________
int flip2 = _____________
cout << flip1 << flip2 << endl;

 return 0;
}

flip1 = ______________

flip2 = ______________

1c.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Challenge Exercise: Weekdays
• cpp/var-expr/in_n_days

– Given the current day of the
week (1-7) add n days and
indicate what day of the week
(1-7) it will be then

• Write out table of examples
– Input => Desired Output

• Test any potential solution with
some inputs
– Cday = 1, n = 2…desired outcome = 3

– Cday = 1, n = 6…desired outcome = 7

• Plug in several values, especially
edge cases

int main()
{
 int cday, n;
 cin >> cday >> n;
 int day_plus_n = __________________________;
 cout << day_plus_n << endl;
 return 0;
}

n
(assuming
c_day=1)

Day_plus_n
(desired)

1 2

2 3

3 4

4 5

5 6

6 7

7 1

8 2

n
(assuming
c_day=4)

Day_plus_n
(desired)

1 5

2 6

3 7

4 1

5 2

6 3

7 4

8 5

1c.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

1c.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extracting Coordinates

This Photo by Unknown Author is licensed under CC BY-NC

• Suppose you check into a hotel
and are told you are in room 632.

– What floor do you go to?

– Room 632 / 100 rooms/floor = 6th
floor

• A city has odd addresses on one
side of the street and even on the
other.

– Given an address (e.g. 3749), how
could you determine what side of
the street you are on?

– 3749 % 2 rooms

3742 3743

3744 3745

3746 3747

3748 3749

https://www.pngall.com/hotel-png/
https://creativecommons.org/licenses/by-nc/3.0/

1c.35

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dimensions

• Consider a 2D grid with 3 rows and 4 columns

• Suppose we assign a linear number to each location as shown

• Given the cell number, how can we determine which row and
column it is in? [row = cell / 4 and column = cell % 4

• Given a row and column, can we construct the cell number?
cell = 4*row + column

8 9

0 1 2

4 5 6

11

3

7

102

0

1

0 1 2 3

Row:

Col:

8

1

6

112

0

1

0 1 2 3

Row:

Col:

	Slide 1: Unit 1c – Idioms and Algorithmic Thinking Examples
	Slide 2: Unit Objectives
	Slide 3: Review of Data Types
	Slide 4: More CIN and COUt
	Slide 5: I/O Streams
	Slide 6: std:: and the using namespace statement
	Slide 7: Error without 'using' statement
	Slide 8: Newlines, endl, and Flushing
	Slide 9: Newlines, endl, and Flushing
	Slide 10: I/O Manipulators
	Slide 11: Understanding ASCII and chars
	Slide 12: Unexpected Inputs
	Slide 13: cin Question
	Slide 14: Assignment and Ordering
	Slide 15: Temporal/Sequential Nature of Assignment
	Slide 16: Problem Solving Idioms
	Slide 17: Shifting and Rotation Assignment Idioms
	Slide 18: Shifting Idiom Ex. (Insertion)
	Slide 19: Shifting Idiom Ex. (Insertion)
	Slide 20: Shifting Idiom Ex. (Insertion)
	Slide 21: Applications of Division and Modulo
	Slide 22: Integer Division and Modulo Operations
	Slide 23: Integer Division and Modulo Operations
	Slide 24: Extracting/Isolating Digits Idiom
	Slide 25: Extracting Coordinates
	Slide 26: Dimensions
	Slide 27: Divisibility / Factoring Idiom
	Slide 28: Unit Conversion Idiom
	Slide 29: Exercise 1: Unit Conversion Idiom Ex. (Making Change)
	Slide 30: Exercise 2: Unit Conversion
	Slide 31: Exercise 3: Isolating Digits Idiom
	Slide 32: Challenge Exercise: Weekdays
	Slide 33: solutions
	Slide 34: Extracting Coordinates
	Slide 35: Dimensions

