
1b.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 1b – Processing Information
using Expressions

Mark Redekopp

1b.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VARIABLES AND ASSIGNMENT

1b.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variable Review: I Do Declare
• Unlike some other languages (e.g.

Python) you must do a one-time
declaration of a variable before using it
– Like renting an apartment or storage unit

• C++ is a strongly-typed language which
means…

– You cannot change what type of value
the variable stores); this is because in C++
a variable name corresponds to a
reserved, fixed-size memory location that
only fits that specific type

#include <iostream>
using namespace std;
int main() {
 v = 2; // ERROR: x assigned before
 // it is declared
 int y = 2; // Must declare with type first

 y = "pi is"; // Error: y declared as int
 // cannot be assigned a string
 y = 3; // Change value stored in y

 cout << y << endl;
 return 0;
}

def main():
 y = 2 # x stores an integer
 y = "pi is" # x changes to store a string
 print(y)

Python does not require explicitly

declaring and typing a variable

C++ is "strongly-typed" and requires

variables to be declared before being used.

y 2
3

1b.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ Types, Storage, and Range

C Type Usage Byte(s)/Bits Range

int
unsigned int

Integer values 4 / 32 -2 billion to +2 billion
0 to +4 billion

char Text character or
(small integral

value)

1 / 8 ASCII characters
-128 to +127

float
double

Rational/real
values

4 / 32
8 / 64

7 significant digits *
10+/-308

16 significant digits *
10+/-308

string
char[]

Arbitrary text Arbitrary
1 byte per

char

-

bool True/False value 1 / 8 true / false

#include <string>
using namespace std;

int main()
{

 int a = -1;
 unsigned int b = 2;
 char c = 'A'; // 'A'=65

 float d1 = 1.5;
 double d2 = 3.14;

 char e[6] = "Hello";
 string f = "Goodbye";

 bool g = true;

 // ...

}

Constant

Variable Constant

1b.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When To Introduce a Variable

• When a value will be input (via cin)
and/or change at run-time (as the
program executes)

• When a value is computed/updated
at one time and used (many times)
later

• To make the code more readable by
another human

double a = (x+34) * (n*6.25);

// readability of above vs. below

double height = x + 34;
double width = n * 6.25;
double area = height * width;

______ username, password;
cin >> username >> password;

1b.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Variables Might Be Needed

• Video playback (YouTube player)

–

• Calculator App

–

1b.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Variables

• Variables have a:

– type [int, char, unsigned int, float, double, etc.]

– name/identifier that the programmer will use to
reference the value in that memory location
[e.g. x, myVariable, num_dozens, etc.]
• Identifiers must start with [A-Z, a-z, or an underscore ‘_’] and can

then contain any alphanumeric character [0-9, A-Z, a-z, _] (but no
punctuation other than underscores)

• Use descriptive names (e.g. numStudents, doneFlag)

• Avoid cryptic names (myvar1, a_thing)

– location [the address in memory where it is allocated
which the computer will use to access the value]

– Value

• Reminder: You must declare a variable before using it

int quantity = 4;
double cost = 5.75;
cout << quantity*cost << endl; 4

quantity

1008412

cost

287144 5.75

Code

What's in a name?
To give descriptive names we often
need to use more than 1 word/term.
But we can't use spaces in our
identifier names. Thus, most
programmers use either camel-case or
snake-case to write compound names
Camel case: Capitalize the first letter
of each word (with the possible
exception of the first word)
 myVariable, isHighEnough
Snake case: Separate each word with
an underscore '_'
 my_variable, is_high_enough

Address

name

value

1b.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VARIABLE ASSIGNMENT USING '='
OPERATOR

1b.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment operator (=)

• Assignment operator ('=') updates
what is stored in a variable's memory
(storage location)

• Key to understanding assignment:

– tfel ot thgir krow

int x = 1;
x = x + 3;

1b.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment operator (=)

• Syntax:

 variable = expression;

 (LHS) (RHS)
– LHS = Left Hand-Side, RHS = Right Hand Side

• Should be read: Store the value of
<expression> into memory location
of <variable>

– z = x + y – (2*z);
– If variable appears on both sides, we use the old/current

 value of the variable on the RHS

• = does NOT mean "compare for equality"; that is the == operator

int x = 1;
x = x + 3;

current-value of x

(1)

new-value of x

(4)

Evaluate everything on
the right-hand side (RHS)
before considering the
left-hand side (LHS)

1b.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Mistake: Forgetting to Assign

• Without assignment values are computed and then
forgotten
– x + 1; // Takes x's value and adds 1 but DOES NOT

 // update x (just throws the result away)

– x = x + 1; // Using assignment, x actually updates

x

0 + 1

0
x + 1

x 0

Before

After

x

0 + 1

0
x = x + 1

x 1

Before

After

https://amazon.com/Security-Screening-DSA-Hi-Traction-Checkpoint

This Photo by Unknown Author is licensed under CC BY

You write: You write:

https://www.freeimageslive.co.uk/free_stock_image/waste-paper-concept-jpg
https://www.freeimageslive.co.uk/free_stock_image/waste-paper-concept-jpg
https://creativecommons.org/licenses/by/3.0/

1b.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Mistake: Forgetting to Initialize

• Declaring a variable DOES NOT initialize
its value to 0 or some other known
value.

• In fact, an uninitialized variable will
contain random data/garbage.

• It is at least good practice, if not
necessary, to initialize your variables
– Exception: If you are just going to perform a

cin command to that variable it is probably
fine to leave it uninitialized (but you are
welcome to set it to 0 or other value).

#include <iostream>
using namespace std;
int main() {
 int x; // BAD: x has random garbage
 // value
 x = x + 3; // What will x be after adding 3?

 int y = 2; // GOOD: declare and init.
 // together
 y = y + 3; // What will y be after adding 3?

 int z; // OK: z is random garbage...
 cin >> z; // ...but cin will init z

 return 0;
}

C++ is "strongly-typed" and requires

variables to be declared before being used.
01101000

11010001

104

105

01101000

11010001

106

107

int x;

?x

1b.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment (=) Operator Summary

• We can use `=` to update a variable as often as we like

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
 int w=0; // variables don't have to
 char x='z'; // be initialized when declared

 w = 300;
 x = 'a';
 cout << w << " " << x << endl;

 w = -75;
 x = '!';
 cout << w << " " << x << endl;
 return 0;
}

Assignment is one of the most common operations in programs

Output:
300 a
-75 !

1b.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise: Trace the Code Below

• Variables can be used in expressions and be operands for arithmetic and logic

• See inset below on how to interpret a variable's usage based on which side of
the assignment operator it is used

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
 int dozens = 3;
 double gpa = 2.0;

 int num = 12 * dozens;
 gpa = (2 * 4.0) + (4 * 3.7); // gpa updated to 22.8
 gpa = gpa / 6; // integer or double division?

 cout << dozens << " dozen is " << num << " items." << endl;
 cout << "Your gpa is " << gpa << endl;
 return 0;
}

int x = 0;
x = x + 3;

Order of evaluation: right to left

Semantics of variable usage:

• Right-side of assignment: Substitute/use

the current value stored in the variable

• Left-side of assignment: variable is the

destination location where the result of

the right side will be stored

current-value of x

(0)

new-value of x

(3)

1b.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Exercises

• What is printed by the following two programs?

#include <iostream>
using namespace std;

int main()
{
 int value = 1;
 value = (value + 5) * (value – 3);
 cout << value << endl;

 double amount = 2.5;
 value = 7;
 amount = value + 6 / amount;
 cout << amount << endl;

 cout << value % 3 << endl;
 return 0;
}

#include <iostream>
using namespace std;

int main()
{
 int x = 5;
 int y = 3;
 double z = x % y * 6 + x / y;

 cout << z << endl;

 z = 1.0 / 4 * (z – x) + y;
 cout << z << endl;

 return 0;
}

1b.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Important: Assignment Means Copy

• Assigning a variable makes a copy
– It leaves the source variable unchanged

– Is performed immediately and takes effect
before the next statement

• Order/sequence MATTERS!
– 1 assignment statement affects subsequent

expressions

• Challenge: Swap the value of 2 variables

int main()
{
 int x = 5, y = 3;
 x = y; // copy y into x
 // y still has 3
 return 0;
}

3

y

5

x

7

a

9

b

9

a

9

b

int main()
{
 int a = 7, b = 9;

 // now consider swapping
 // the value of 2 variables
 a = b;
 b = a;

 return 0;
}

1b.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Assignments

• Assigning a variable makes a copy
– It leaves the source variable unchanged

• Example: Swap the value of 2 variables
– Easiest method: Use a 3rd temporary variable to save one value and

then replace that variable

• Challenge: 4swap exercise
int main()
{
 int a = 7, b = 9, temp;

 // let's try again
 temp = a;
 a = b;
 b = temp;

 cout << a << " " << b << endl;
 return 0;
}

7

a

9

b

9

a

9

b

7

temp

9

a

7

b

1

2

3

1b.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Shortcut Assignment Statements

• A common task is to update a variable by
adding, subtracting, multiplying, etc. some
value to it

– x = x + 4;

– y = y * 2.5;

• C/C++ provide a shortcut for writing these
statements:

– x += 4;

– y *= 2.5;

• The substitution is:

– var op= expr;

– Becomes var = var op expr;

• Shorthand operators exist for most operators:
 +=, -=, *=, /=, %=, &=, …

#include <iostream>
using namespace std;

int main()
{
 int x = 1;
 double y = 3.75;

 x += 5; // x updates to 6
 y -= 2.25; // y updates to 1.5
 x /= 3; // x updates to 2
 y *= 2.0 // y updates to 3.0

 return 0;
}

1b.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Post-Increment/Decrement

• Adding 1 to a variable (e.g. x += 1) and subtracting 1 from a
variable (e.g. x -= 1) are extremely common operations
(especially when we cover loops).

• The ++ and -- operators offer a shortcut to "increment-by-1" or
"decrement-by-1"
– Performs (x += 1) or (x -= 1)

– x++; // If x was 2 it will be updated to 3 (x = x + 1)

– x--; // If x was 2 it will be updated to 1 (x = x – 1)

• Note: There are some nuances to this operator and an
alternative known as PRE-increment/decrement that we will
discuss in future lectures, but this is sufficient for now.

1b.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CASTING AND USING MATH
LIBRARY FUNCTIONS

1b.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Casting Motivation
• Def. casting: Temporarily converting the type of a data value

• What is the result of 5 + 3/2 ?
• To achieve the correct answer for 5 + 3 / 2 we could…

• Use implicit casting (mixed expression)
– Could just write 5 + 3.0 / 2

• If an operator is applied to mixed type inputs, less expressive type is automatically and

implicitly cast (promoted) to the more expressive (int is promoted to double)

• But what if instead of constants we have variables
– int x=5, y=3, z=2;

x + y/z; // Won't work & you can't write y.0

• We can perform an explicit cast using either the C or C++ syntax
– x + (double) y / z; // C style casting method

– x + static_cast<double>(y) / z ; // C++ style casting method

• BE CAREFUL!! This won't yield the 6.5 answer you expect.
– x + static_cast<double>(y/z); // Why not?

1b.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Math & Other Library Functions

• C++ predefines a variety of functions for you. Here are
a few of them:

– sqrt(x): returns the square root of x (in <cmath>)

– pow(x, y): returns xy, or x to the power y
(in <cmath>)

– sin(x)/cos(x)/tan(s): returns the sine of x if x is in
radians (in <cmath>)

– abs(x): returns the absolute value of x (in <cstdlib>)

– max(x, y) and min(x,y): returns the
maximum/minimum of x and y (in <algorithm>)

• You call these by writing them similarly to how you
would use a function in mathematics [using
parentheses for the inputs (aka) arguments]

• Result is replaced into bigger expression

• Must #include the correct library
– #includes tell the compiler about the various pre-defined

functions that your program may choose to call

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
{
 // can call functions
 // in an assignment
 double res = cos(0); // res = 1.0

// can call functions in an
// expression
res = sqrt(2) / 2; // res = 1.414/2

cout << max(34, 56) << endl;
 // outputs 56

 return 0;
}

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

1b.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

#include Directive
• Common usage: To include “header files” that allow us to

access functions defined in a separate file or library

• For pure C compilers, we include a C header file with its
filename: #include <stdlib.h>

• For C++ compilers, we include a C header file without the .h
extension and prepend a ‘c’: #include <cstdlib>

C Description C++ Description

stdio.h
cstdio

C Input/Output/File access (printf,
fopen, snprintf, etc.)

iostream I/O and File streams (cin, cout, cerr)

stdlib.h
cstdlib

rand(), Memory allocation, etc. algorithm Common data processing
tasks/algorithms (find, sort, min/max)

string.h
cstring

C-string library functions that operate
on character arrays

string C++ string class that defines the ‘string’
object

math.h
cmath

Math functions: sin(), pow(), etc. vector Array-like container class

1b.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Casting Errors

• Only changes the type temporarily for
the sake of the expression (not a
permanent type change)

• Casting only really works on numeric
types and NOT strings
– Different than many other languages like

Python

– When converting to/from a string, do NOT
use casting, but functions from the string
library (to_string(), stoi(), stod(), etc.)

#include <iostream>
#include <string>
using namespace std;
int main() {

 double a = 3.6;
 int b = static_cast<int>(a) / 2;
 // Works! b = 1 (casts 3.6 to 3)
 // but a is still a double: 3.6
 int c = 123;
 string d = static_cast<string>(c);
 // Error! Doesn't compile.
 string d = to_string(c);
 // Works!

 string e = "42";
 int f = static_cast<int>(e);
 // Error! Doesn't compile.
 int f = stoi(e); // string-to-int
 // Works!
 // use stod() for string-to-double
 return 0;
}

52 50

'4' '2'

"42" 00 0042 00 42

42

42static_cast<int>("42")

00

'\0'
null

1b.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Statements
• C/C++ functions are composed of statements

• Most common kinds of statements end with a semicolon

• Declarations (e.g. int x=3;)

• Assignment + Expression (suppose int x=3; int y;)
– x = x * 5 / 9; // compute the expression & place result in x

 // x = (3*5)/9 = 15/9 = 1

• Assignment + Function Call (+ Expression)
– x = cos(0.0) + 1.5;

– sin(3.14); // Must save or print out the result (x = sin(3.14), etc.)

• cin, cout statements + Expressions

– cout << cos(0.0) + 1.5 << " is the answer." << endl;

• Return statement (immediately ends a function)
– return expression; // (more on this later)

1b.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• Exercises:

– average

– rad2deg

• Write a program to convert temperature from Celsius

to Fahrenheit [𝐹 =
9

5
∙ 𝐶 + 32]

– Use http://cpp.sh or http://onlinegdb.com (or EdStem
Workspace, if available)

http://cpp.sh/
http://onlinegdb.com/

1b.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

1b.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When To Introduce a Variable

• When a value will be input (via cin)
and/or change at run-time (as the
program executes)

• When a value is computed/updated
at one time and used (many times)
later

• To make the code more readable by
another human

double a = (x+34) * (n*6.25);

// readability of above vs. below

double height = x + 34;
double width = n * 6.25;
double area = height * width;

string username, password;
cin >> username >> password;

int currentSum = 0;

1b.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Variables Might Be Needed

• Video playback (YouTube player)

–

• Calculator App

–

string url int volume bool fullScreen

double ans char operator double nextValue

1b.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• What is printed by the following two programs?

#include <iostream>
using namespace std;

int main()
{
 int value = 1;
 value = (value + 5) * (value – 3);
 cout << value << endl;

 double amount = 2.5;
 value = 7;
 amount = value + 6 / amount;
 cout << amount << endl;

 cout << value % 3 << endl;
 return 0;
}

#include <iostream>
using namespace std;

int main()
{
 int x = 5;
 int y = 3;
 double z = x % y * 6 + x / y;

 cout << z << endl;

 z = 1.0 / 4 * (z – x) + y;
 cout << z << endl;

 return 0;
}

-12
9.4
1

13 // or 13.0
5 // or 5.0

1b.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Variable Types
• A type indicates how many bits / bytes of storage

(memory) are required and how to interpret the
number being stored

• Integer (int) types

– Are signed (numbers can be positive or negative) by
default, or unsigned (positive-only...including 0)

– A character (more on this later)

• Floating point types: Very large 6.02E23 & very
small numbers 6.626E-34)

– A float or double

• String/Text types

– A single char (1 character)

– character arrays (C-Strings) /
string (preferred…C++ string type)

• Boolean type

– bool (true / false)

#include <string>
using namespace std;

int main()
{

 int a = -1;
 unsigned int b = 2;
 char c = 'A'; // 'A'=65

 float d1 = 1.5;
 double d2 = 3.14;

 char e[6] = "Hello";
 string f = "Goodbye";

 bool g = true;

 // ...

}

ConstantVariable

Variable

Constant

1b.32

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variable Review: I Do Declare
• (Unlike Python) you must do a one-time

declaration of a variable before using it
– Like renting an apartment or storage unit

• If NOT initialized via assignment ('='),
variables will NOT default to a value like
0, but will contain random data/garbage.
– Good practice to initialize your variables

• C++ is a strongly-typed language which
means…

– You cannot change what type of value
the variable stores); this is because in C++
a variable name corresponds to a
reserved, fixed-size memory location that
only fits that specific type

#include <iostream>
using namespace std;
int main() {
 v = 5; // ERROR: x assigned before
 // it is declared
 int x; // OK: Declared first but
 // has random garbage value
 x = 1; // Need to come back and
 // initialize later
 int y = 2; // BEST: declare and init.
 // together
 double z = 3.14; // Good! Declare and init.

 y = "pi is"; // Error: y declared as int
 // cannot be assigned a string
 y = 5; // Change value stored in y
 cout << w << " " << y << " " << z << endl;
 return 0;
}

def main():
 y = 5 # x stores an integer
 z = 3.14
 z = "pi is" # x changes to store a string
 print(x, y)

Python does not require explicitly

declaring and typing a variable

C++ is "strongly-typed" and requires

variables to be declared before being used.

01101000

11010001

104

105

01101000

11010001

106

107

int z;

1b.33

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Last Note on Variables: Scope
• "Scope" of a variable refers to the

– Visibility (who can access it) and

– Lifetime of a variable (how long is the
memory reserved

• For now, there are 2 scopes we will
learn

– Global: Variables are declared
outside of any function and are
visible to all the code/functions in
the program
• For various reasons, it is "bad" practice

to use global variables. You MAY NOT use
them in CS 102.

– Local: Variables are declared inside
of a function and are only visible in
that function and die when the
function ends

#include <iostream>
using namespace std;

// Global Variable
int x=1;

int add_x()
{
 int n; // n is a "local" variable
 cin >> n;
 // y and z NOT visible (in scope) here
 // but x is since it is global
 return (n + x);
} // n dies here
int main()
{
 // y and z are "local" variables
 int y=0, z;

 z = add_x();
 y += z / x; // n is NOT visible
 cout << x << " " << y << endl;
 return 0;
} // y and z die here

1b.34

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

This Photo by Unknown Author is licensed under CC BY-NC

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/box-png/
https://creativecommons.org/licenses/by-nc/3.0/
https://www.pngall.com/box-png/
https://creativecommons.org/licenses/by-nc/3.0/

	Slide 1: Unit 1b – Processing Information using Expressions
	Slide 2: Variables and assignment
	Slide 3: Variable Review: I Do Declare
	Slide 4: C++ Types, Storage, and Range
	Slide 5: When To Introduce a Variable
	Slide 6: What Variables Might Be Needed
	Slide 7: C/C++ Variables
	Slide 8: Variable Assignment Using '=' operator
	Slide 9: Assignment operator (=)
	Slide 10: Assignment operator (=)
	Slide 11: Common Mistake: Forgetting to Assign
	Slide 12: Common Mistake: Forgetting to Initialize
	Slide 13: Assignment (=) Operator Summary
	Slide 14: Exercise: Trace the Code Below
	Slide 15: More Exercises
	Slide 16: Important: Assignment Means Copy
	Slide 17: More Assignments
	Slide 18: Shortcut Assignment Statements
	Slide 19: Post-Increment/Decrement
	Slide 20: Casting and Using MATH Library Functions
	Slide 21: Casting Motivation
	Slide 22: Math & Other Library Functions
	Slide 23: #include Directive
	Slide 24: Common Casting Errors
	Slide 25: Statements
	Slide 26: Exercises
	Slide 27: Solutions
	Slide 28: When To Introduce a Variable
	Slide 29: What Variables Might Be Needed
	Slide 30: Exercises
	Slide 31: C/C++ Variable Types
	Slide 32: Variable Review: I Do Declare
	Slide 33: A Last Note on Variables: Scope
	Slide 34

