
1a.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 1a – Basic Output and Input
(with 'cout' and 'cin')

Mark Redekopp

1a.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit Objectives

• List the various C data types

• Identify what type a constant is

• Know how to write constants in the appropriate C++ syntax

• Know the C++ operators and their order of operations

• Write basic output statements of text and constants using
cout

• Use cin statement to get keyboard input from the user

• Predict how cin will treat input with whitespaces and extract
data

• Know how variables are declared and assigned

• Trace the operation of assignment statements, expressions,
and cin and cout commands

1a.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit

• Unit 1: Scalar processing

– aka IPO=Input-Process-Output
Programs

• Unit 2: Linear (1D) Processing

• Unit 3: Multidimensional Processing

• Unit 4: Divide & Conquer
(Functional Decomposition)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

1a.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

UNIT 1: SCALAR PROCESSING

1a.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Scalar Processing Programs

• Scalar processing programs follow
a simple sequence: Prompt-Input-
Process-Output (PIPO)

1. Prompt the user for 1 or more
(some constant amount of) input
values

2. Receive the input value(s)

3. Using the input, perform operations
(processing) to produce 1 or more
(some constant amount of) desired
output values

4. Display the output value(s)

How many eggs do you have?

30

You have 2.5 dozen eggs

Enrolled units:

18

USC tuition: 4.78E14 USD$

Base & height:

10 4

Area if rectangle: 40

Area if triangle: 20

Examples of Input-Process-
Outptut programs.
Where is the processing?

1

2

4

1

2

4

1

2

4

1a.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PROCESSING

1a.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Processing

• To start, we will write programs to do simple
processing similar to what we would use a
calculator to perform.

• Let us briefly review the constants we
introduced you to in an earlier unit.

1a.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review: Constants (aka Literals)
• Integer: 496, 10005, -234

• Double: 12.0, -16., 0.23, 6.02E23, 4e-2
– Both very large and very small numbers (i.e. fractions/decimals)

• Characters (char type): enclosed in single quotes (')
– Printing characters: 'a', '5', 'B', '!'

– Each quoted value is converted to appropriate ASCII number (e.g. 'a' => 97)

– Non-printing special characters use "escape" sequences (i.e. preceded by a \):
'\n' (newline/enter), '\t' (tab) , '\\' (slash), '\'' (apostrophe)

• C-Strings (Note: there is also a C++ string type…)
– 0 or more characters between double quotes (")

 "hi1\n", "12345", "b", "\tAns. is %d"

– Ends with a '\0'=0 (aka NULL character) added as the last
byte/character to allow code to delimit the end of the string

• Boolean (C++ only): false, true
– Physical representation: 0 = false, Non-zero (1, -5, 300) = true C-String Example

(Memory Layout)

C/C++ handling of
single characters

and strings is
different than most

other languages
and a major source
of confusion in C++.

104

105

49

10

00

35

100

…

7420

7421

7422

7423

7424

7425

7426

...

Address Mem.

'h'

'i'

'1'

'\n'
newline

'\0'
null

'#'

'd'

1a.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You're Just My Type

• Indicate which constants are matched with the
correct type.

Constant Type Right / Wrong

4.0 int

5 int

'a' string

"abc" string

5. double

5 char

"5.0" double

'5' int

Solutions are provided at the end of the slide packet.

1a.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Arithmetic Operators

• Addition, subtraction, multiplication work as expected for
both integer and floating point types

• Modulus is only defined for integers

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division
(Integer vs. Double division)

% Modulus (remainder)
[for integers only]

10 % 3 = __
17 % 10 = __

1a.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Precedence
• Order of operations/

evaluation of an expression

• Higher level (level 16 in table) done
first

• Notice operations with the same
level or precedence usually are
evaluated left to right)

• Evaluate:
– 2*-4-3+5/2;

• Tips:

– Use parenthesis to add clarity

– Add a space between literals
(2 * -4) – 3 + (5 / 2)

https://discuss.codechef.com/upfiles/CPP.PNG

1a.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review: Division

• Computers perform division differently based on the
type of values used as inputs

• Integer Division:

– When dividing two integral values, the result will also be
an integer (any remainder/fraction will be dropped)

– 10 / 4 = 2 52 / 10 = 5 6 / 7 = 0

• Floating-point (Double) & Mixed Division

– 10.0 / 4.0 = 2.5 52.0 / 10 = 5.2 6 / 7.0 = 0.8571

– Note: If one input is a double, the other will be promoted
temporarily to compute the result as a double

1a.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise Review

• Evaluate the following:

25 / 3

20 - 12 / 4 * 2

3 - 15 % 7

18.0 / 4

28 - 5 / 2.0

Exercises from: D.S. Malik, C++ Programming, 5th Ed., Ch. 2, Q6.

1a.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OUTPUT

1a.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

5 dozen is 60

C++ Output

• The most basic programming
command is usually printing
something to the screen

• In C++, this is done with a cout
(short for character output)
command
– Different constants (and later variables)

can be specified for output and cout will
convert it all to text

– The text is then handed to the OS to be
printed

– endl = '\n' (newline)

5 d o z e n i s

output stream

memory (aka stdout):

#include<iostream>
using namespace std;
int main()
{
 cout << "5 dozen is: " << 5*12 << endl;
 cout << "The end";
 return 0;
}

6

This Photo by Unknown Author is licensed under CC BY-NC

OS

0

cout

\n T …

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/

1a.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Output From Your Program

• To see output in C++ we need
to explicitly tell the computer
to output the value using
'cout'
– So what happens to the result of

12*3 on the first line?

• Note: 'endl' stands for
end-line and causes the cursor
to move to the next line of the
screen similar to '\n'

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
 12 * 3; // No result printed

 cout << 12 * 3 << endl; // 36 printed

 return 0;
}

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown Author is licensed under CC BY-SA-NC

Performing computation is

like having a thought. No

output is generated unless

you explicitly write it down.

To output a result to the

screen in C++ (i.e. "write it

down") we use the 'cout'

command

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://maclic.wordpress.com/category/competition/
https://creativecommons.org/licenses/by-nc-sa/3.0/

1a.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Printing Different Values & Types

• 'cout' requires appropriate use of
separators between consecutive
values or different types of values

• 'cout' does not add spaces between
consecutive values; you must do so
explicitly

– Since text strings are a different
value we must separate it with the

'<<' operator

• Generally good practice to give some
descriptive text with your numeric
output
– Note: You may divide up output over

multiple 'cout' statements. Unless an
'endl' or '\n' is used, the next 'cout'
statement will resume where the last
one left off

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

int main()
{
 cout << 102 1889 << endl; // Compile Error!
 cout << 102 << 1889 << endl; // Better, but no spaces
 cout << 102 << " " << 1889 << endl; // Best
 cout << "102 1889" << endl; // or as a string

 cout << "There are " << 60*24*365 << " ";
 cout << "minutes in a year." << endl;
 return 0;
}

1021889
102 1889
102 1889
There are 525600 minutes in a year.

The << operator has multiple (aka "overloaded")
meanings. In C (and still in C++) it is used to shift bits
in a variable to the left, but C++ also uses it for output.
In that (output) context, it is NOT known as the shift
operator but the "stream insertion" operator!

1a.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Challenge 1

• Write a program that incorporates:

– Processing

– Output

• Think of simple converters/calculator
operations to work with a fixed input

– Example: How many hours will it take to drive 850
miles at 110 km/h?

1a.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VARIABLES AND RECEIVING INPUT
WITH CIN

1a.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Need For Variables & Input
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
 cout << "3 dozen is " << 3*12 << " items." << endl;

 // the above results in the same output as below

 cout << "3 dozen is 36 items." << endl;

 return 0;
}

• Printing out constants is not very
useful (nor exciting)

• In fact, we could just as easily
compute the value ourselves in
many situations

• The real power of computation
comes when we introduce
variables and user input via cin
– Variables provide the ability to

remember and name a value for use
at a later time

– User input allows us to write
general programs that work for
"any" input values

– Thus, a more powerful program
would allow us to enter an arbitrary
number and perform conversion to
dozens

#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
 int dozen;
 cout << "How many dozen do you have: " << endl;
 cin >> dozen;
 cout << "You have" << 12*dozen << " items." << endl;
 return 0;
}

1a.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Variables

• A variable is a reserved memory location that
– Stores a value that can be read (retrieved) or

written (changed) as often as desired

– Associates a descriptive name (e.g. x) the
programmer will use with that memory location
(aka address) and the value stored in that location

• It's like renting an apartment or storage unit

• You must "declare" (allocate) your variables
before using/assigning to them

– A variable is not allocated (aka "in scope") until
the computer executes the line with the
declaration

– The declaration must give the type of the
variable and a name/identifier

01000001

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

char gr = 'B';

A single-byte

variable

01101000

11010001

6

7

int x;

A four-byte

variable

#include <iostream>
using namespace std;

int main()
{ // Sample variable declarations
 gr = 'A'; // BAD! must declare first
 char gr = 'A'; // GOOD! Declared 'gr'
 int x; // uninitialized variables
 // will have a (random) garbage
 // value until we initialize it
 x = 1; // Initialize x's value to 1
 gr = 'B'; // Change gr's value to 'B'
}

Variables are actually allocated in

RAM when the program is run

A picture of computer memory

(aka RAM)

Difference: C required that variables be declared at the
beginning of a function before any operations.
C++ relaxes this and allows declarations anywhere in the code.

1a.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Keyboard Input

#include <iostream>
using namespace std;

int main()
{
 int dozens;

 cout << "Enter number of dozen: " << endl;

 cin >> dozens;

 cout << 12 * dozens << " eggs" << endl;
 return 0;
}

1 5

• In C++, the 'cin' object is
responsible for receiving
input from the keyboard

• Keyboard input is captured
and stored by the OS (in an
"input stream") until cin is
called upon to "extract" info
into a variable in your
program

• 'cin' converts text input to
desired format (e.g. integer,
double, etc.)

cin

\n

15dozens

input stream:

input stream:

\n
The >> operator also has multiple (aka "overloaded") meanings. In
C (and still in C++) it is used to shift bits in a variable to the right,
but C++ also uses it for input. In that (input) context, it is known
not as the shift operator but the "stream extraction" operator!

OS

1a.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dealing With Whitespace

#include <iostream>
using namespace std;

int main()
{
 int dozens;

 cout << "Enter number of dozen: "
 << endl;
 cin >> dozens;

 cout << dozens << " dozen "
 << " is " << 12*dozens
 << "items." << endl;

 return 0;
}

• Whitespace (def.):
– Characters that represent

horizontal or vertical blank
space. Examples: newline ('\n'),
TAB ('\t'), spacebar (' ')

• cin sequentially discards
leading whitespace characters
until it hits a non-whitespace.

• cin then checks the characters
can be converted to the
appropriate variable type and
keeps scanning for more

• cin will STOP at the first
trailing whitespace (or on a
character unable to be
converted to the desired type)
and await the next cin
command

5

cin

\n

15

dozens

input stream:

input stream:

Suppose at the prompt

the user types:

1

\n

\t

Main Take-aways:

cin SKIPS leading whitespace
cin STOPS on the first trailing whitespace

Space ≠ Whitespace (Whitespace = ' ', '\t', '\n', etc.)

1a.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Timing of Execution

#include <iostream>
using namespace std;

int main()
{
 int dozens;

 cout << "Enter number of dozen: "
 << endl;
 cin >> dozens; // input stream empty
 // so wait for input

 cout << 12*dozens << " eggs" << endl;

 double gpa;
 cout << "What is your gpa?" << endl;
 cin >> gpa; // input stream has text
 // so do not wait…
 // just use next text

 cout << "GPA = " << gpa << endl;
 return 0;
}

• When execution reaches a
'cin' statement, it will
either:

– Wait for input if nothing
is available in the input
stream
• OS will capture what is

typed until the next 'Enter'
key is hit

• User can type as little or
much as desired until Enter
(\n)

– Immediately extract from
the input stream if some
text is available and
convert it to the desired
type of data

5

cin

3 . 7 \n

3 . 7

15

dozens

input stream:

input stream:

cin

input stream:

No input available. Wait

for user to type and hit

Enter

1

\n

cin

\n

3.7

gpa

\t

1a.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiple Inputs and Unexpected Inputs

#include <iostream>
using namespace std;

int main()
{
 int score;
 double multiplier;
 cin >> score >> multiplier;

 cout << "Your new score is "
 << score * multiplier << endl;

 return 0;
}

• Use the '>>' operator to
separate any number of
variables you want to read

• For now let us make the
unreasonable assumption
that the user always types
in the write "format" of
information
– We'll learn more about how

cin handles errors later

5

cin

2 . 4 \n

15

score

input stream:

1

\n

2.4

multiplier

\t

15 2.4
Your new score is 36

1a.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Challenge 2

• Write a program that incorporates all 3
aspects:

– Input

– Processing

– Output

• Example: Compute and output how far an
object with initial downward velocity, v, has
fallen after t seconds?

1a.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

1a.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You're Just My Type

• Indicate which constants are matched with
the correct type.

Constant Type Right / Wrong

4.0 int double (.0)

5 int int

'a' string char

"abc" string C-string

5. double float/double (. = non-integer)

5 char Int…but if you store 5 in a char
variable it'd be okay (char = some
number that fits in 8-bits/1-byte

"5.0" double C-string

'5' int char

1a.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise Review

• Evaluate the following:

– 25 / 3 = 8

– 20 - 12 / 4 * 2 = 14

– 3 - 15 % 7 = 2

– 18.0 / 4 = 2.5

– 28 - 5 / 2.0 = 25.5

Exercises from: D.S. Malik, C++ Programming, 5th Ed., Ch. 2, Q6.

	Slide 1: Unit 1a – Basic Output and Input (with 'cout' and 'cin')
	Slide 2: Unit Objectives
	Slide 3: Unit
	Slide 4: Unit 1: Scalar Processing
	Slide 5: Scalar Processing Programs
	Slide 6: Processing
	Slide 7: Basic Processing
	Slide 8: Review: Constants (aka Literals)
	Slide 9: You're Just My Type
	Slide 10: Arithmetic Operators
	Slide 11: Precedence
	Slide 12: Review: Division
	Slide 13: Exercise Review
	Slide 14: Output
	Slide 15: C++ Output
	Slide 16: Output From Your Program
	Slide 17: Printing Different Values & Types
	Slide 18: Challenge 1
	Slide 19: Variables and Receiving Input with CIN
	Slide 20: The Need For Variables & Input
	Slide 21: C/C++ Variables
	Slide 22: Keyboard Input
	Slide 23: Dealing With Whitespace
	Slide 24: Timing of Execution
	Slide 25: Multiple Inputs and Unexpected Inputs
	Slide 26: Challenge 2
	Slide 27: Solutions
	Slide 28: You're Just My Type
	Slide 29: Exercise Review

