
0c.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS102 Unit 0c –
Programming Languages and

C++ Program Structure

Mark Redekopp

0c.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit Objectives

• Define: algorithm, syntax, and semantics

• Know that statements in a program execute
sequentially by default

• Know the basic parts of a C++ program

– Inclusion of library "headers"

– Comments

– Code is partitioned into functions

– main() function as the starting point

0c.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ALGORITHMS & PROGRAMMING
LANGUAGES

0c.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Humans and Computers

• Humans understand instructions differently than
computers

• Humans easily tolerate ambiguity and abstract
concepts using context to help.

– “Add a pinch of salt.” How much is a pinch?

– “Steph Curry can shoot the lights out.”

• Computers must be precise, only executing well-
defined instructions (no ambiguity) and operating on
digital information which is finite and discrete (a fixed
number of options)

0c.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Algorithms

• Algorithms are at the heart of computer
systems, both in HW and SW
– They are fundamental to Computer Science and

Computer Engineering

• Informal definition
– An algorithm is a precise way to accomplish a

task or solve a problem

• A more formal definition:
– An ordered set of

– unambiguous,

– executable steps that defines

– a terminating process

• Examples: What is the algorithm for
– Brushing your teeth?

– Calculating your GPA?

Hardware

Software

0c.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Algorithm Representation

• An algorithm is NOT a program or programming
language

• Just as a story may be represented as a book, movie,
or spoken by a story-teller, an algorithm may be
represented in many ways

– Flow chart

– Pseudocode (English-like syntax using primitives that most
programming languages would have)

– A specific program implementation in a given
programming language

• The skill we REALLY want to help you build is
algorithmic thinking (i.e. developing algorithms)

0c.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Syntax and Semantics
• Programming languages have syntax and semantics

• Syntax: refers to the rules of a language for how it will be expressed and
parsed (decomposed)

– Specific to the language

• Semantics: refers to the meaning of what is written

– Often transcends the language (same concept in many languages)

• Example: A sentence

– The syntax refers to the proper grammatical rules for writing a sentence:
capitalize the first word, have a subject and verb, ending with a period, etc.

– The semantics refer to the meaning conveyed by the sentence

• C++ Code Example

– if (<condition>) { <action> } is the syntax.

– The semantics (meaning) is “the action will only be performed if condition is
true”

0c.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CODE ORGANIZATION AND
SEQUENCE OF EXECUTION

0c.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequence & Executability

• Let's learn a bit more about program
execution by using another language
named Scratch
– http://scratch.mit.edu

• Write a Scratch program to walk forward,
turn right, then walk forward again

• Remember computers need executable
steps
– How far forward?

– Turn right by how much?

http://scratch.mit.edu/

0c.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Executability

• Scratch handles the syntax by providing a
menu of specific "blocks" that define what the
language allows you to do

– Anything you want to do that doesn't have a
specific block, requires you to compose use
multiple blocks

– Some blocks have certain aspects you can set to
control their behavior.

• Go to the Scratch website, click on Create, and
close the tutorial

• Write a Scratch program to walk forward, turn
right, then walk forward again

• Remember computers and algorithms need
executable steps

– How far forward?

– Turn right by how much?

0c.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequence & Executability

• You must compose a program
from the "menu" of available
blocks

• Create the program shown to the
right and then click the green flag
to the left of the red stop sign

– What happens?

• Click the green flag again

– What happens?

0c.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Explicit Content

• Computers do only what you tell
them, no more, no less

• What additional details might we
want to instruct the computer?

– Where to start and what direction to
face?

– To provide some delay between steps
• Remember computers execute code very

quickly compared to what a human can
see

0c.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Big Idea: Sequential Execution

• Notice…

– Program is executed 1 operation at a
time in sequential fashion

– Each operation is ordered (a definite
first, second, third, … operation)

1

2

3

0c.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Repetition 1

• Computers are good at repeating
tasks quickly

• If we can find repeated structure,
we can use a loop to repeat a set of
actions multiple times

• What actions can we repeat and
how many times to have our cat
friend walk in a square?

1

2

3

<actions>

0c.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Repetition 2

• Computers are good at repeating
tasks quickly

• If we can find repeated structure,
we can use a loop to repeat a set of
actions multiple times

1

2

3

0c.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GROUPING CODE IN FUNCTIONS
(AKA BLOCKS)

Only if time allows!

0c.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Organizing Code - Functions

• Another way to allow reuse
and easy modification is to
give a name to sequence of
code/actions
– Wherever we use the name,

the associated sequence of
code/actions will be execute

• Most programming
languages call these
functions, methods,
procedures, subroutines, etc.

• Scratch calls them "Blocks"

• Create a block named:
WalkForwardAndTurn

0c.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Organizing Code - Functions

• We can take the
actions in our loop and
drag them to the
definition of
WalkForwardAndTurn

• Then click on "My
Blocks", find your new
block and drag it into
the repeat loop

4
4

0c.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sequence of Execution With Functions

• We said we execute sequentially, but
with loops and functions is our code
still executed sequentially (top-
down)?

• No.
– Loops cause execution to go back and

repeat code and

– Functions may cause us to jump to a
new set of actions, execute them, and
the return back and resume the main
program

1

2

3

4

5

5a

Do we execute
Sequentially ??

5b

5c

5d

6

7

7a

7b

7c

7d

4

0c.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Functions & Parameters/Arguments

• Our function "DelayedMove" is useful for the
simple task we gave you to implement, but what
if I wanted to walk in a rectangle?
– We now need to walk different lengths

• Q: What might make it more useful and "general"
so that we could reuse it in the future more
easily?

• A: The ability to generalize how many steps to
take and how long to wait might be helpful
– We call these "input parameters"

• Let's allow different values of steps and the delay
to be input.
– Right click on the WalkForwardAndTurn and choose Edit

– Click on "Add an Input (number or Text)" once and give
the newly appearing box the name: distance and the
click on "Add an Input" again and give the new box the
name: delay

0c.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Parameters/Arguments

• Back in the main window, two new
entries "distance" and "delay"

• Drag these in place of the constants
(100 or 1) in the move / wait blocks

• Back in the main program, fill in the
two text boxes with 100 and 1

• How could you modify the main
program only to make the cat walk in a
rectangle of 200 wide and 100 long?

0c.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FIRST C++ PROGRAMS

0c.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Program Format/Structure
• Comments

– Anywhere in the code

– Multiline C-Style => /* and */

– Single line C++ Style => //

• Include Libraries and Compiler Directives

– #include's tell the compiler what other library
functions you plan on using

– using namespace std; -- Just do it for now!

• main() function

– Starting point of execution for the program

– All code/statements in C must be inside a
function

– Statements execute sequentially (one after
the next) and end with a semicolon (;)

– main() ends with a return 0; statement

• Other functions

– printName() is a function that can be
"called"/"invoked" from main or any other
function

/* Anything between slash-star and
star-slash is ignored even across
multiple lines of text or code */

// Anything after "//" is ignored on a line

// #includes allow access to library functions
#include <iostream>
#include <cmath>
using namespace std;

// Code is organized into units called functions
void printName()
{
 cout << "Tommy Trojan" << endl;
}

// Execution always starts at the main() function
int main()
{
 cout << "Hello: " << endl;
 printName();
 printName();
 double y = sin(M_PI/4);
 cout << y << endl;
 return 0;
}

Hello
Tommy Trojan
Tommy Trojan
0.7071

0c.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Software Process

Executable

Binary Image

("test")

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

C++ file(s)

(test.cpp)

Compiler

#include <iostream>
using namespace std;

int main()

{ int x = 5;
 cout << "Hello" << endl;
 cout << "x=" << x;
 return 0;

}

g++
Load &

Execute

2 Compile & fix syntax

(compile-time) errors
1 Edit & write

code
3 Load & run the

executable program

looking for and fixing

semantic (runtime)

errors

Std C++ & Other

Libraries

Hello
x=5

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

0c.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Try it

• Go to http://cpp.sh or EdStem Workspaces

• Enter this program to print "Hello!" five times

• Introduce some syntax errors

• Introduce a semantic error

#include <iostream>
using namespace std;
int main()
{
 for(int i=0; i < 5; i++) {
 cout << "Hello!" << endl;
 }
 return 0;
}

C++ syntax requires statement to
end with a semicolon (;) and
grouped by curly braces { }.
Removing one would lead to a
syntax error.

A semantic error is when I tell the
computer to do the wrong thing
but it still meets the correct syntax.
Change "i=0" to "i=1" and see it
print only 4 times rather than the
desired 5.

http://cpp.sh/

0c.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Formatting/Spacing and C++

• The C++ compiler does NOT care about spaces, tabs, and newlines.

• The following two programs both compile and run equivalently.

• There is even an annual contest to see who can write the most
obfuscated but legal C program:
– https://www.ioccc.org/years.html and https://www.ioccc.org/2020/yang/prog.c

#include <iostream>
using namespace std;
int main()
{
 for(int i=0; i < 5; i++) {
 cout << "Hello!" << endl;
 }
 return 0;
}

#include <iostream>
using namespace std;
int
main(
) {
 for(int i=
 0; i < 5; i++)
{ cout << "Hello!" << endl; } return

 0 ; }

https://www.ioccc.org/years.html
https://www.ioccc.org/2020/yang/prog.c

	Slide 1: CS102 Unit 0c – Programming Languages and C++ Program Structure
	Slide 2: Unit Objectives
	Slide 3: Algorithms & Programming Languages
	Slide 4: Humans and Computers
	Slide 5: Algorithms
	Slide 6: Algorithm Representation
	Slide 7: Syntax and Semantics
	Slide 8: Code Organization and Sequence of Execution
	Slide 9: Sequence & Executability
	Slide 10: Executability
	Slide 11: Sequence & Executability
	Slide 12: Explicit Content
	Slide 13: Big Idea: Sequential Execution
	Slide 14: Repetition 1
	Slide 15: Repetition 2
	Slide 16: Grouping code in Functions (aka blocks)
	Slide 17: Organizing Code - Functions
	Slide 18: Organizing Code - Functions
	Slide 19: Sequence of Execution With Functions
	Slide 20: Functions & Parameters/Arguments
	Slide 21: Parameters/Arguments
	Slide 22: First C++ programs
	Slide 23: C/C++ Program Format/Structure
	Slide 24: Software Process
	Slide 25: Try it
	Slide 26: Formatting/Spacing and C++

