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Programming Languages and 

C++ Program Structure
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Unit Objectives

• Define:  algorithm, syntax, and semantics

• Know that statements in a program execute 
sequentially by default

• Know the basic parts of a C++ program

– Inclusion of library "headers"

– Comments

– Code is partitioned into functions

– main() function as the starting point
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ALGORITHMS & PROGRAMMING 
LANGUAGES
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Humans and Computers

• Humans understand instructions differently than 
computers

• Humans easily tolerate ambiguity and abstract 
concepts using context to help.

– “Add a pinch of salt.”  How much is a pinch?

– “Steph Curry can shoot the lights out.” 

• Computers must be precise, only executing well-
defined instructions (no ambiguity) and operating on 
digital information which is finite and discrete (a fixed 
number of options)
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Algorithms

• Algorithms are at the heart of computer 
systems, both in HW and SW 
– They are fundamental to Computer Science and 

Computer Engineering

• Informal definition
– An algorithm is a precise way to accomplish a 

task or solve a problem

• A more formal definition:
– An ordered set of

– unambiguous, 

– executable steps that defines 

– a terminating process

• Examples: What is the algorithm for 
– Brushing your teeth?

– Calculating your GPA?

Hardware

Software
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Algorithm Representation

• An algorithm is NOT a program or programming 
language

• Just as a story may be represented as a book, movie, 
or spoken by a story-teller, an algorithm may be 
represented in many ways

– Flow chart

– Pseudocode (English-like syntax using primitives that most 
programming languages would have)

– A specific program implementation in a given 
programming language

• The skill we REALLY want to help you build is 
algorithmic thinking (i.e. developing algorithms)
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Syntax and Semantics
• Programming languages have syntax and semantics

• Syntax: refers to the rules of a language for how it will be expressed and 
parsed (decomposed) 

– Specific to the language

• Semantics: refers to the meaning of what is written

– Often transcends the language (same concept in many languages)

• Example: A sentence

– The syntax refers to the proper grammatical rules for writing a sentence: 
capitalize the first word, have a subject and verb, ending with a period, etc.

– The semantics refer to the meaning conveyed by the sentence

• C++ Code Example

– if ( <condition> ) { <action> }   is the syntax.  

– The semantics (meaning) is “the action will only be performed if condition is 
true”
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CODE ORGANIZATION AND 
SEQUENCE OF EXECUTION
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Sequence & Executability

• Let's learn a bit more about program 
execution by using another language 
named Scratch
– http://scratch.mit.edu

• Write a Scratch program to walk forward, 
turn right, then walk forward again

• Remember computers need executable 
steps
– How far forward?

– Turn right by how much?

http://scratch.mit.edu/
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Executability

• Scratch handles the syntax by providing a 
menu of specific "blocks" that define what the 
language allows you to do

– Anything you want to do that doesn't have a 
specific block, requires you to compose use 
multiple blocks

– Some blocks have certain aspects you can set to 
control their behavior.

• Go to the Scratch website, click on Create, and 
close the tutorial

• Write a Scratch program to walk forward, turn 
right, then walk forward again

• Remember computers and algorithms need 
executable steps

– How far forward?

– Turn right by how much?
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Sequence & Executability

• You must compose a program 
from the "menu" of available 
blocks

• Create the program shown to the 
right and then click the green flag 
to the left of the red stop sign

– What happens?

• Click the green flag again

– What happens?
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Explicit Content

• Computers do only what you tell 
them, no more, no less

• What additional details might we 
want to instruct the computer?

– Where to start and what direction to 
face?

– To provide some delay between steps 
• Remember computers execute code very 

quickly compared to what a human can 
see
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Big Idea: Sequential Execution

• Notice…

– Program is executed 1 operation at a 
time in sequential fashion 

– Each operation is ordered (a definite  
first, second, third, … operation)

1

2

3



0c.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Repetition 1

• Computers are good at repeating 
tasks quickly

• If we can find repeated structure, 
we can use a loop to repeat a set of 
actions multiple times

• What actions can we repeat and 
how many times to have our cat 
friend walk in a square?

1

2

3

<actions>
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Repetition 2

• Computers are good at repeating 
tasks quickly

• If we can find repeated structure, 
we can use a loop to repeat a set of 
actions multiple times

1

2

3
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GROUPING CODE IN FUNCTIONS 
(AKA BLOCKS)

Only if time allows!
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Organizing Code - Functions

• Another way to allow reuse 
and easy modification is to 
give a name to sequence of 
code/actions
– Wherever we use the name, 

the associated sequence of 
code/actions will be execute

• Most programming 
languages call these 
functions, methods, 
procedures, subroutines, etc.

• Scratch calls them "Blocks"

• Create a block named: 
WalkForwardAndTurn
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Organizing Code - Functions

• We can take the 
actions in our loop and 
drag them to the 
definition of 
WalkForwardAndTurn

• Then click on "My 
Blocks", find your new 
block and drag it into 
the repeat loop

4
4
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Sequence of Execution With Functions

• We said we execute sequentially, but 
with loops and functions is our code 
still executed sequentially (top-
down)?

• No.  
– Loops cause execution to go back and 

repeat code and 

– Functions may cause us to jump to a 
new set of actions, execute them, and 
the return back and resume the main 
program

1

2

3

4

5

5a

Do we execute 
Sequentially ??

5b

5c

5d

6

7

7a

7b

7c

7d

4
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Functions & Parameters/Arguments

• Our function "DelayedMove" is useful for the 
simple task we gave you to implement, but what 
if I wanted to walk in a rectangle?
– We now need to walk different lengths

• Q: What might make it more useful and "general" 
so that we could reuse it in the future more 
easily?

• A: The ability to generalize how many steps to 
take and how long to wait might be helpful
– We call these "input parameters"

• Let's allow different values of steps and the delay 
to be input.
– Right click on the WalkForwardAndTurn and choose Edit

– Click on "Add an Input (number or Text)" once and give 
the newly appearing box the name: distance and the 
click on "Add an Input" again and give the new box the 
name: delay
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Parameters/Arguments

• Back in the main window, two new 
entries "distance" and "delay"

• Drag these in place of the constants 
(100 or 1) in the move / wait blocks 

• Back in the main program, fill in the 
two text boxes with 100 and 1

• How could you modify the main 
program only to make the cat walk in a 
rectangle of 200 wide and 100 long?



0c.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FIRST C++ PROGRAMS



0c.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Program Format/Structure
• Comments

– Anywhere in the code

– Multiline C-Style =>  /* and */  

– Single line C++ Style => //

• Include Libraries and Compiler Directives 

– #include's tell the compiler what other library 
functions you plan on using

– using namespace std;  -- Just do it for now!

• main() function

– Starting point of execution for the program 

– All code/statements  in C must be inside a 
function

– Statements execute sequentially (one after 
the next) and end with a semicolon (;)

– main() ends with a return 0; statement

• Other functions

– printName() is a function that can be 
"called"/"invoked" from main or any other 
function

/* Anything between slash-star and 
star-slash is ignored even across
multiple lines of text or code */

// Anything after "//" is ignored on a line

// #includes allow access to library functions
#include <iostream>
#include <cmath>
using namespace std;

// Code is organized into units called functions
void printName()
{ 
  cout << "Tommy Trojan" << endl;
}

// Execution always starts at the main() function
int main()
{
  cout << "Hello: " << endl;
  printName();
  printName();
  double y = sin(M_PI/4);
  cout << y << endl;
  return 0;
}

Hello
Tommy Trojan
Tommy Trojan
0.7071
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Software Process

Executable 

Binary Image

("test")

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

C++ file(s)

(test.cpp)

Compiler

#include <iostream>
using namespace std;

int main()

{  int x = 5;
   cout << "Hello" << endl;
   cout << "x=" << x;
   return 0;

}

g++
Load &

Execute

2 Compile & fix syntax 

(compile-time) errors
1 Edit & write 

code
3 Load & run the 

executable program 

looking for and fixing 

semantic (runtime) 

errors

Std C++ & Other

Libraries

Hello
x=5

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
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Try it

• Go to http://cpp.sh  or   EdStem Workspaces

• Enter this program to print "Hello!" five times

• Introduce some syntax errors

• Introduce a semantic error

#include <iostream>
using namespace std;
int main()
{
  for(int i=0; i < 5; i++) {
    cout << "Hello!" << endl;
  }
  return 0;
}

C++ syntax requires statement to 
end with a semicolon (;) and 
grouped by curly braces { }.  
Removing one would lead to a 
syntax error.

A semantic error is when I tell the 
computer to do the wrong thing 
but it still meets the correct syntax. 
Change "i=0" to "i=1" and see it 
print only 4 times rather than the 
desired 5.

http://cpp.sh/
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Formatting/Spacing and C++

• The C++ compiler does NOT care about spaces, tabs, and newlines. 

• The following two programs both compile and run equivalently.

• There is even an annual contest to see who can write the most 
obfuscated but legal C program:
– https://www.ioccc.org/years.html and https://www.ioccc.org/2020/yang/prog.c 

#include <iostream>
using namespace std;
int main()
{
  for(int i=0; i < 5; i++) {
    cout << "Hello!" << endl;
  }
  return 0;
}

#include <iostream>
using namespace std;
int 
main(
            )  {
  for(int i=
  0; i <               5; i++) 
{ cout << "Hello!" << endl; } return

                 0             ;   }

https://www.ioccc.org/years.html
https://www.ioccc.org/2020/yang/prog.c
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