CS102 Unit Oa — Course Intro

Mark Redekopp

i, TS(“Viterbi

School of Engineering

Introduction

 This is how we often see
and interact with
software

— In truth we interact with
it far more than we think

— We are interacting with
software when we drive,
fly, turn on the lights,
watch TV, go to the bank,
or buy something with
our credit card

 So what s it really?

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Introduction

* This is how the movies
think computers see 1 | :
software

.awmlll‘ww”

It N ETE ' 1‘aLaLUUDJ‘lULDLf;Ur
—_ i i i L 003302003303011100010
The far right picture is o 11300010300030303. 11
1010001010301010101
reasonably accurate 100300301,
, ULULLLLDLULDLE
aDDULLUlDLDv ,

F oo

o Wh i I e a I I p rog ra m S " Si'r||:-'.E HelloButton() method.

¥ @version 1.0
* @author john doe <doe.j@example.com>

eventually end up as 1s o oautton()

{
JButton hello = new JButton{ "Hello, wor
a nd OS, We genera | |y hello.addActionlistener({ new HelloBtnList
J/ use the JFrame type until support for t

program USing some fo 'Mm // new component is finished

JFrame frame = new JFrame{ "Hello Button"
Container pane = frame.getContentPane();

f " h . h I | 1 pane.add{ hello);
O Ig = eve Or frame.pack();
frame.show(); Jf display the fra
L] L]’
© 2023 by M gadel!cgthllsgrgt is protectegﬂym rgtgshared, uploaded, or distributed. This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Comment_(computer_programming)#Uses
https://creativecommons.org/licenses/by-sa/3.0/

e — 5 Viterbi (>
Computer Abstractions

* Computer systems can be viewed

as a layered stack of abstractions " mime ey
from basic HW to complex SW :zf::(:é:;sz;;-;;..'gg;ﬁgéfst:z. ll_—llgh Level Applications
* Assembly and machine x ?ﬁﬁgg?
code are the fundamental Compilers / Java | Cit
: : Interpreters OS Libraries
instructions a computer processs P Assembly /
can execute Machine Code

— Too low level

| Processor
* Enter high level languages Memory (RAM)
— More powerful and succinct I/O (Disk, Net, Keyboard, Graphics)
descriptive abilities HW Digital Circuits
* Because of how the hardware (Transistors)
works, our software must be Voltage / Currents
written using certain structures -

— This class is intended to teach you
those programming structures.

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

This Class

* The goal of this class is two-fold
— Teach you the basics of
programming

— Develop mathematical and
algorithmic thinking skills needed
to excel in future courses

http://climbingla.blogspot.com/2010/05/walk-6-hermon-and-highland-park.html
© 2023 by Mark Redekopp. This content is protected and maytipol/epgsheved:. agfinder, phpdistieb2@42_Diamond_Interchanges

USC Viterbi

School of Engineering

Course Structure

* The course is broken into 4 units each consisting of:

)

Yi X B O

Lectures Lab Portfolio Homework
(Tools + Practice + (Self-selected (Individual practice and
Teamwork) programming problems) programming
\ assignments)

————————

-y
=L
=

-['El—{é}»@} {O D:D—-i?}ﬂ@} { }

;
Scalar Processing Linear (1D) Processing Multidimensional Divide & Conquer
(Expressions & (Loops) Processing (Functions and
Conditionals) (Nested Loops) Abstraction)

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

Exams and Grading

* The course will utilize 3 exams during our Quiz section
Midterm 1 —Oct. 6
. gilp
Midterm 2 — Nov. 3 v —
Final — Dec. 9 X

* Grading will be as follows:

/ Labs 6% \

Portfolio 6%
Homework 32%

Lowest Midterm 12%
Highest Midterm 22%
Final Exam 22%
Total 100% /

© 2023 by Mark Redekopp. This content is p y

i, TS(“Viterbi

School of Engineering

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Expectations

e Attend lectures & be
engaged
— Ask questions
— We're a team...| need youl!
— I'll give you my best. Try to
give me yours!
e Catch the wave!

— Start assignments early, =
schedule weekly e e
practice time, read and
review other sources of
input

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.flickr.com/photos/neeravbhatt/6878110355/
https://creativecommons.org/licenses/by-nc-sa/3.0/

20-Second Timeout

* Who Am |?
— Teaching faculty in EE and CS
— Undergrad at USC in CECS
— Grad at USC in EE
— Work(ed) at Raytheon
— Learning Spanish (and Chinese?)

— Sports enthusiast!
e Basketball
e Baseball

e Ultimate Frisbee?

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Programming Languages 1
* Declarative Languages HTML
— Describe the what but not the how E E
— Examples: HTML, CSS

himl

My webpage

Introduction
In a land far, far away...

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi ¢

I (/S C Viterbi @2

© 2023

School of Engineering

Programming Languages 2

Imperative/Structured Languages
— Describe the what (data) and how (instructions/algorithm)
— Examples: C/C++, Java, Javascript, Python (which I'll use today)

— The focus of most programming courses

— Programs are like a recipe for how to operate on data

import math Quadratic Equation Solver

int{input{"Enter a: "))

= int(input("Enter b: ")) FLemen Recipeletinrey
= int(input(“Enter c: ")) £ Combine 2c. Flour § =
z Mix in 3 eggs)
det = b*b - A*a*c Instructions ™~
if(det »= @): \ \l >
r1 = (-b - math.sqrt(det)) / (2*a) %
r2 = {(-b + math.sqrt{det)} / (2*a) = \\
. LT P R . = " 1Yy L
print{f'Roots are {rl} and {ri}") Data
Computer

(Reads instructions,

rint"Imaginary roots")
? ! - i :1 operates on data)

ted.

i, TS(“Viterbi

High Level Languages

Mother
Tongues

Just like hllf nf the world’s spoken tengues, musl of the 2,300-plus computer
are either end. d or extinct. As h CiC++,
Visual Basic, Cobol, Java and other medern source codes dominate our systems,
hundreds of older languages are running out nf life.
An ad hoc collection of i

s, if you will-aim to

Code-raker Grady Booch, s chief , is working with the Computer
History Musuem in Silicon Vallly to record and, in some cases, rnalmain languages by writing
new S0 our h can grok the code. Why bother? “They tell
us about the state of software practice, the minds of their inventors, and the technical, social,
and economic forces that shaped history at the time," Booch e:plalns “They'll provide the

1954 Year Introduced
Active: thousands of usars
Protected: taught at universities; compiers

available
save, or at least document the lingo of classic software. They're combing the globe's raw material for and pers to learn what worked, Endangerad; usage cropging off
9 million developers in search of coders still fluent in these nearly forgotten lingua what was brilliant, and what was an uthr failure.” Here's a peek at the strongest branches Extinet: no known Bctive users or up-to-dals
i frangas. Among the most endangered are Ada, APL, B (the predecessor of C), Lsp, of programming’s family tree. Fora noarly exhaustive rundown, check out the Language List complens
TraClng the roots of comPUter ‘Oberon, Smalltalk, and Simula. at HTTP:/www.informatik.uni-freibt _list.html. - Michael Mendeno Lineage continuss
languages through the ages

1954 1855 1956 1857 1850 1950 1960 1961 1862 1863 1964 1065 1966 1967 1868 1888 1970 1871 1972 19T 1ST4 1975 1976

1976 1979 1880 1881 1982 1983 1904 1985 186G 1887 1988 | 969 1990 | 1881 g2

1984 1985 1996 1897 1990

19 20 2001

T
‘Greatad for the IBM 7090194
used languages offshoot
e e pEEEmEr g S i S 6
23, ECITE Sk el T —
Oriented Language. Io cambing e best pempatcs "'""
tures of Fertran,
Cobol,and Algel §0. % // \% Common Lisp
— Comnes Lo + Cenmon e
e - sorio 3
" releasod o the
e o, - i, \ O s s
: al LanguagsiMicrocomputars 3
A e wasmrahudul < w ot ranuly ¥ Smaltalk 0 = b LI o T
nwd, depending on whom you ask. \ \ \ I’ \ ance, run anywhers” portabllity across
B e, .
= - ancapts Group, daven RostcturodExonged Exsctor_ Anobfoctoloiod angiags. i smpietangiage % AY Java 2(11.3) o
hoped-for Esparanto S S—ry g S
the. world. Designed =
P fiibes \ basicvalue, C'= 7). Jancuace \ \
based commitive 5 a unbvarsal Prolog Marea and answer to Java,
. was 4 of the first ooy ke s S
mp%m an Em"" g Hew AU paten | it
International Language. Evv.r}aral.n; mn mmm‘u Galled Cusir. ks = ‘thom by w \
2o Didofan Dant. Populat for Al programs. scadamic angua \ Python 1.6
incering skils. -
Possibly the most
comman language
ey, Acds sbject-
- - oriented features to C.
Survival of the Fittest
Reasons a language endures, with examples of some classic tongues Mdhﬂm]
— — B e o8
Appeals to a wide audience C (bolstered by the popularity of Unix) Yl] l
I Updates G4+ for the
Gets a job done Cobol (designed for business-report writing) T\ v e
Delivers new functionality Java (runs on any hardware platform) ADAS3 - ADASS wo‘,'w".::‘,,f"“
SR . iveSeript it
Fills a niche (speeds up ions) for for its work. Named aftes Ada workd's first was 1y Netscape marketers whe I
- ; - Used primasily by m a-aamwn-m team of Honeywell o ride Java's buzz. It has tte in common with that language.
Offers a modicum of elegance Icon (has friendly, line-oriented syntax) for nen-numwric g Al Modula 2150 3
programming
Has a powerful user base or backer C# (developed by Microsoft for .Net) B, | ol \ / \ h T EW‘
IHI supicomputers.
Has a charismatic leader Perl (programmer-author Larry Wall)
‘Tha swiss Army Knife of ka Pactal Exracton an
[o#-‘ Regorl Language) — usad for aching i Perl 1.000
- e ‘The kitchen sink of commandline
King of the also referred Imovm for %ﬂmmtmm-u Standard ML, a ! .
2 IS e Faeh 2 e e o R g B S0 fanguage. (el) mgane.
z 13 Ml(n kaMi«h Saell).
Jrspirls gt - Susr o3
W Word-basad langiua Meta wﬁﬁ"’?"" 2
beaeson ot Harvard. frs used 1 puiie e Language Cecis b I L Bl Caml 26.1 Objective Caml O Cami 2 0 Caml 3.00
Hatonal Rl Astceay
moched by “eal” ki Az, [Fo PostSeript, PostSeript Lovel 28
e ey M AL i I LR
mate advanced asguages, s weilas
3 househo word Mh%ﬂ\ SR s Basic 20 Oengartild of programning
m bu
Al-Purposs [Basic lmumm Stuo ooks.
Sources: Paul Boutin; Brent Hailpern, associate director of computer science at IEM i The puting Todd ing, senior at ; Gio Wik P scientist, Stanford University

© 2023 by Mark RedAUfR: WY Eligibarn.com/collections/ipasierstengues/ComputerLanguagesChart-med.png

 C++is used widely

e C++is "close" to the hardware (HW)
— Makes it fast
— Makes it flexible (Near direct control of the HW)
— Makes it dangerous (Near direct control of the HW)
— In fact, many other languages are themselves written in C/C++

* Because if you learn C++ you can likely learn MOST
languages very quickly

e Because that's what we use in CS 103

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e USCVlterbl

What Language Aspects .
Will We Learn?

* Programming skills in C/C++
— Overlaps with the first 20% of CS 103
— Data Representation
— Basics of discrete mathematics
— Expressions
— Conditional Statements
— lterative Statements (Loops)
— Functions
— Arrays

* Problem solving using common programming ‘idioms'

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

More than just "Coding"...

Level

Specification

[

O

IS .

= Problem Solving

o

<
Idioms

(]

(@)]

®

o

(@)]

=)

- Semantics
Syntax

Description

A precise problem statement to capture what the
application requires (often requires the designer to make
choices)

Understanding specification

Planning, especially partitioning into sub-problems
Identifying and using appropriate idioms

Solving difficult sub-problems

Writing "glue code" to tie everything together

Simple programming patterns/templates for solving specific
tasks that can be used to connect your problem solving
approach to actual code

Meaning of a program or any of its parts

Rules/grammar of the language

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

_USCViterbi
Problem Solving Idioms

 Anidiom is a colloquial or common
mode of expression

— Example: "raining cats and dogs"

* Programming has common modes of
expression that are used quite often to
solve problems algorithmically

 We have developed a repository of these
common programming idioms. We
STRONGLY suggest you...

— Reference them when attempting to
solve programming problems

— Familiarize yourself with them and their
structure as we cite them until you feel
comfortable identifying them

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Rule / Exception Idiom

« Name : Rule/Exception

« Description : Perform a default action and then us an if to corre:

o Structure: Code for some default action (i.e. the rule) is followed b
exceptional case

o Example(s):
o Base pay plus bonus for certain exceptional employees

bool earnedBonus = /% set somehow */;

int bonus = /* set somehow */;

int basePay = 100;
if(earnedBonus == true)

{

basePay += bonus;

}

o Notes: This can be implemented with an if/else where an
else implements the other.

http://bytes.usc.edu/cs102/idioms.html

i, TS(“Viterbi

School of Engineering

STARTING TO THINK LIKE A
COMPUTER

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

It’s A Numbers Game

Fact 1: Everything in a computer is a number
— Sure. Things like 102 and 3.9 are numbers
— But what about text and images and sound?

— Everything!

Fact 2: Computers can only work with or "see" 1 or 2 numbers
at a time (i.e. they can only do 1 thing at a time)

$oi Y Recipe st

:.; Combine 2c. Flour

Humans process information m B i3 eoos
differently YO ... wwvi

det = b*b - 4%a*c

— Therein lies some of the
difficultly of learning programming

Example (1)

* What do you see?
— The letter 'a'l

 What does the computer see?

— A number; each text character is
coded to a number

* Example: Character map / Insert
symbol

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Text Representation

* Most common
character code is
ASCII (UTF-8)

* Every character,
even non-printing,
characters have a
corresponding
numbers

— Decimal (base 10) /
Hexadecimal (base 16)

School of Engineering

Dec Hex Name Char Ctrl-char |Dec Hex Char |Dec Hex Char|Dec Hex Char
0 0 Null NUL CTRL-@ |32 20 Spacs |64 4«9 @ 96 60 ;
1 1 Startcfheading SOM CTRL-A |33 21 | E'B a1 A 19 oI 2
2 2 Startof text STX CTRL-B |34 22 " EE A I . T
3 3 End of text ETX CTRLC 3B 23 # 67 43 C 99 63 ¢
4 = End of xmit EOT CTRL-D 3B 24 ¢ 68 4 D 100 64 d
S S Enquiry ENQ CTRL-E 37 25 % 69 45 E 101 65 @
6 6 Ackrowledos ACK CTRL-F 38 26 & 70 4 F 102 66 f
7 7 Bell BEL CTRL-G 39 27 ' 71 47 G 103 67 g
8 8 Backspace BS CTRL-H |80 28 (72 48 H 104 68 h
9 G Horizortd tab HT CTRL-I 41 29) 73 ¥ 1 1085 69 |
10 0A Line feed LF CTRL-) 42 24 * 74 4A) 106 6a)
11 08 Vverticd tab VT CTRL-K 43 28 «+ 759 48 K 107 6B kK
12 0OC Form feed FF CTRL-L 44 2C 76 4C L 108 6C |
13 0D Carriage feed CR CTRL-M 45 20 77 4D M 109 60 m
14 (€ Shftout SO CTRL-N 46 2E 3 78 4 N 110 6E n
1S OF Shitin St CTRL-O 4 2F / 79 & O 111 &F 0
16 10 Dataline escape DLE CTRL-P 4 30 0 B0 SO0 p 112 70 p
17 11 Devicecontrol 1 DC1 CTRL-Q 49 31 1 g1 Si Q 113 71 q
18 12 Devicecontrol 2 DC2 CTRL-R B 32 2 g2 S2 R 114 72 r
19 13 Devicecontrol 3 DC3 CTRL-S L33 3 83 S3 S 11S 73 s
20 14 Devicecontral 4 DC4 CTRL-T 52 34 4 B4 S4 T 116 74 t
21 1S Negacknowledge NAK CTRL-U BN 3S S BgS SS U 117 7S u
22 16 Synchronousidle SYN CTRL-V |54 36 6 B6 S5 V 118 76 v
23 17 End of xrmt block ETE CTRL-W S 37 7 87 S7 W 119 77 w
24 18 Cancel CAN CTRL-X o6 38 8 88 S8 X 120 78 "
25 19 End of medum EM CTRL-Y NI 39 9 g9 %9 Y 121 79 vy
26 14 Subshtute S8 CTRL-Z 58 34 90 Sa Z 122 74 2
27 18 Escape ESC CTRL-[S 38 91 S8 [123 786 {
28 1C File separator FS CTRL-\ 60 3C < 92 SC \ 124 7C |
29 1D Group separator GS CTRL-] 61 30 = 93 Sb) 125 7D }
30 1E Recordseparator RS CTRL-~ |62 3E > 94 SE - 126 7E ~
31 IF Unit separator Us CTRL- 63 3F ? 95 S 127 7F DEL

https://www.commfront.com/paqges/ascii-chart

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://www.commfront.com/pages/ascii-chart

Example (2)

* What do you see?
— Acircle!

* What does the computer see?
— Coordinate pairs of each "pixel”
— ...0r...
— r=120; origin = (10, 14)

— Computer has to enumerate and visit
each location and color it black

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

(x,y)=(56,103)
(x,y)=(57,102)
(x,y)=(59,101)
(x,y)=(60,100)

i, TS(“Viterbi

 What do you see?

— A man's face!

— Many numbers
(aka pixels)

Individual
Pixels

— Value corresponds
to color

g Image taken from the photo "Robin Jeffers at Ton
S House" (1927) by Edward Weston

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

The Connection with Mathematics

Output
Pixel

* Brightness

— Each pixel value is
increased/decreased by a constant

amount
. B > O = brighter
e B<O=less bright
* Contrast

— Each pixel value is multiplied by a
constant amount

. C > 1 = more contrast
e 0<C<1=lesscontrast
e Same operations performed on
all pixels

- Brightness Original + Brightness

- Contrast

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Enough” is NOT enough

* As we program we must be explicit

— Example: drawing the circle on the screen

* Being general is not sufficient; we must be explicit!

— Imagine a recipe for cinnamon rolls that simply read:

* Mix and bake the following: butter, that white powdery baking
substance, eggs, just enough sugar, and cinnamon. Enjoy!

— How much of each, how much is "enough", how long, in
what order?
* We will try to work on some of discrete math skills
that help us explicitly define and analyze our
programs

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Integers and floating-point types; Division and modulus operations

WORKING WITH NUMBERS IN C++

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data Types

* How should the numbers (actually the bits: 1s and 0Os)
the computer is storing be interpreted: as a letter, an
integer (aka an 'int'), a number with decimals (aka
'floating point' or 'double’)

e C/C++ types help tell the computer hardware how to
interpret the bits/numbers being stored in computer
memory and what circuits to use to process them

e Let's learn the first two C++ data types:

— int —integers only; no decimals (e.g. 4750, -18,
1908734)

— double —very large numbers all the way down to very small
fractions (e.g. 6.02E23, 1.5, -0.000248)

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Division

School of Engineering

e Computers perform division differently based on the
types used as inputs

* Integer Division:

— When dividing two integer values, the result will also be an
integer (any remainder/fraction will be dropped)

—10/4=2 52/10=5 6/7=0
* Floating-point (Double) & Mixed Division
—10.0/4.0=25 52.0/10=52 6/7.0=0.8571

— Note: If one input is a double, the other will be promoted
temporarily (aka implicitly "casted") to compute the result
as a double

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modulus

* Dividing two integers yields an integer
guotient

* Using the modulus operator (%) will divide
two integers but yield the remainder!

 Examples:

7/ 3 =2 pout 7 % 3 =1
75 / 10 = 7 out 75 % 10 = 5
27 /4 = but 27 %4 =
59 / 12 = put 59 % 12 =

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

HOMEWORK AND SURVEY

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

* Dividing two integers yields an integer

Modulus

guotient

* Using the modulus operator (%) will divide

two numbers but yield the remainder!

 Examples:
7/ 3 =2 but 7 % 3 =
75 / 10 = 7 but 75 7% 10
27 / 4 = 6 but 27 % 4 =

59 / 12 = 4 but 59 % 12

© 2023 by Mark Redekopp. This content is

protected and may not be shared, uploaded, or distributed.

3

11

	Slide 1: CS102 Unit 0a – Course Intro
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Computer Abstractions
	Slide 5: This Class
	Slide 6: Course Structure
	Slide 7: Exams and Grading
	Slide 8: Syllabus
	Slide 9: Expectations
	Slide 10: 20-Second Timeout
	Slide 11: Programming Languages 1
	Slide 12: Programming Languages 2
	Slide 13: High Level Languages
	Slide 14: Why C++
	Slide 15: What Language Aspects Will We Learn?
	Slide 16: More than just "Coding"…
	Slide 17: Problem Solving Idioms
	Slide 18: Starting to think like a computer
	Slide 19: It’s A Numbers Game
	Slide 20: Example (1)
	Slide 21: Text Representation
	Slide 22: Example (2)
	Slide 23: Example (3)
	Slide 24: The Connection with Mathematics
	Slide 25: "Enough" is NOT enough
	Slide 26: Working with Numbers in C++
	Slide 27: Data Types
	Slide 28: Division
	Slide 29: Modulus
	Slide 30: Homework and Survey
	Slide 31: Modulus

