
0a.1

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS102 Unit 0a – Course Intro

Mark Redekopp

0a.2

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Introduction

• This is how we often see
and interact with
software

– In truth we interact with
it far more than we think

– We are interacting with
software when we drive,
fly, turn on the lights,
watch TV, go to the bank,
or buy something with
our credit card

• So what is it really?

0a.3

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Introduction

• This is how the movies
think computers see
software

– The far right picture is
reasonably accurate

• While all programs
eventually end up as 1s
and 0s, we generally
program using some form
of "high-level" or
scripting language This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Comment_(computer_programming)#Uses
https://creativecommons.org/licenses/by-sa/3.0/

0a.4

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Computer Abstractions

• Computer systems can be viewed
as a layered stack of abstractions
from basic HW to complex SW

• Assembly and machine
code are the fundamental
instructions a computer processor
can execute

– Too low level

• Enter high level languages

– More powerful and succinct
descriptive abilities

• Because of how the hardware
works, our software must be
written using certain structures

– This class is intended to teach you
those programming structures.

High Level

Languages:

Python /

Java / C++

Digital Circuits

(Transistors)

HW

SW

Voltage / Currents

Assembly /

Machine Code

Applications

LibrariesOS

Processor

Memory (RAM)

I/O (Disk, Net, Keyboard, Graphics)

Compilers /

Interpreters

0a.5

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

This Class

• The goal of this class is two-fold

– Teach you the basics of
programming

– Develop mathematical and
algorithmic thinking skills needed
to excel in future courses

http://climbingla.blogspot.com/2010/05/walk-6-hermon-and-highland-park.html

http://epg.modot.org/index.php?title=234.2_Diamond_Interchanges

0a.6

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Course Structure

• The course is broken into 4 units each consisting of:

Lectures Portfolio
(Self-selected

programming problems)

Homework
(Individual practice and

programming

assignments)

Lab
(Tools + Practice +

Teamwork)

Scalar Processing

(Expressions &

Conditionals)

1

Linear (1D) Processing

(Loops)

2

Multidimensional

Processing

(Nested Loops)

3 4

Divide & Conquer

(Functions and

Abstraction)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/51071-microcontroller-hd-image-free-png
https://creativecommons.org/licenses/by-nc/3.0/

0a.7

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exams and Grading

• The course will utilize 3 exams during our Quiz section

 Midterm 1 – Oct. 6

 Midterm 2 – Nov. 3

 Final – Dec. 9

• Grading will be as follows:

Labs
Portfolio
Homework

Lowest Midterm
Highest Midterm

 Final Exam
Total

6%
 6%
 32%
 12%
 22%
22%
100%

0a.8

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Syllabus

0a.9

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Expectations

• Attend lectures & be
engaged
– Ask questions

– We're a team…I need you!

– I'll give you my best. Try to
give me yours!

• Catch the wave!

– Start assignments early,
schedule weekly
practice time, read and
review other sources of
input

This Photo by Unknown Author is licensed under CC BY-SA-NC

http://www.flickr.com/photos/neeravbhatt/6878110355/
https://creativecommons.org/licenses/by-nc-sa/3.0/

0a.10

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

20-Second Timeout
• Who Am I?

– Teaching faculty in EE and CS

– Undergrad at USC in CECS

– Grad at USC in EE

– Work(ed) at Raytheon

– Learning Spanish (and Chinese?)

– Sports enthusiast!

• Basketball

• Baseball

• Ultimate Frisbee?

0a.11

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Programming Languages 1

• Declarative Languages

– Describe the what but not the how

– Examples: HTML, CSS

0a.12

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Programming Languages 2

• Imperative/Structured Languages
– Describe the what (data) and how (instructions/algorithm)

– Examples: C/C++, Java, Javascript, Python (which I'll use today)

– The focus of most programming courses

– Programs are like a recipe for how to operate on data

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Computer

(Reads instructions,

operates on data)

Quadratic Equation Solver

0a.13

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

High Level Languages

http://www.digibarn.com/collections/posters/tongues/ComputerLanguagesChart-med.png

0a.14

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why C++

• C++ is used widely

• C++ is "close" to the hardware (HW)

– Makes it fast

– Makes it flexible (Near direct control of the HW)

– Makes it dangerous (Near direct control of the HW)

– In fact, many other languages are themselves written in C/C++

• Because if you learn C++ you can likely learn MOST
languages very quickly

• Because that's what we use in CS 103

0a.15

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Language Aspects
Will We Learn?

• Programming skills in C/C++

– Overlaps with the first 20% of CS 103

– Data Representation

– Basics of discrete mathematics

– Expressions

– Conditional Statements

– Iterative Statements (Loops)

– Functions

– Arrays

• Problem solving using common programming 'idioms'

0a.16

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More than just "Coding"…

Level Description

Specification • A precise problem statement to capture what the
application requires (often requires the designer to make
choices)

Problem Solving • Understanding specification
• Planning, especially partitioning into sub-problems
• Identifying and using appropriate idioms
• Solving difficult sub-problems
• Writing "glue code" to tie everything together

Idioms • Simple programming patterns/templates for solving specific
tasks that can be used to connect your problem solving
approach to actual code

Semantics • Meaning of a program or any of its parts

Syntax • Rules/grammar of the language

A
p

p
lic

a
ti
o

n
L

a
n

g
u

a
g
e

0a.17

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Problem Solving Idioms

• An idiom is a colloquial or common
mode of expression

– Example: "raining cats and dogs"

• Programming has common modes of
expression that are used quite often to
solve problems algorithmically

• We have developed a repository of these
common programming idioms. We
STRONGLY suggest you…

– Reference them when attempting to
solve programming problems

– Familiarize yourself with them and their
structure as we cite them until you feel
comfortable identifying them

http://bytes.usc.edu/cs102/idioms.html

0a.18

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

STARTING TO THINK LIKE A
COMPUTER

0a.19

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

It’s A Numbers Game

• Fact 1: Everything in a computer is a number
– Sure. Things like 102 and 3.9 are numbers

– But what about text and images and sound?

– Everything!

• Fact 2: Computers can only work with or "see" 1 or 2 numbers
at a time (i.e. they can only do 1 thing at a time)

• Humans process information
differently
– Therein lies some of the

difficultly of learning programming

Combine 2c. Flour

Mix in 3 eggs

0a.20

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (1)

• What do you see?

– The letter 'a'!

• What does the computer see?

– A number; each text character is
coded to a number

• Example: Character map / Insert
symbol

a

97

0a.21

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Text Representation

• Most common
character code is
ASCII (UTF-8)

• Every character,
even non-printing,
characters have a
corresponding
numbers
– Decimal (base 10) /

Hexadecimal (base 16)

https://www.commfront.com/pages/ascii-chart

https://www.commfront.com/pages/ascii-chart

0a.22

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (2)

• What do you see?

– A circle!

• What does the computer see?

– Coordinate pairs of each "pixel"

– …or…

– r = 120; origin = (10, 14)

– Computer has to enumerate and visit
each location and color it black

(x,y)=(60,100)

(x,y)=(59,101)

(x,y)=(57,102)

(x,y)=(56,103)

0a.23

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (3)

• What do you see?

– A man's face!

• What does the computer see?

– Many numbers
(aka pixels)

– Value corresponds
to color

Image taken f rom the photo "Robin Jef fers at Ton

House" (1927) by Edward Weston

0 0 0 0

64 64 64 0

128 192 192 0

192 192 128 64Individual

Pixels

0a.24

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Connection with Mathematics

• Brightness
– Each pixel value is

increased/decreased by a constant
amount

– Pnew = Pold + B
• B > 0 = brighter

• B < 0 = less bright

• Contrast
– Each pixel value is multiplied by a

constant amount

– Pnew = C*Pold + k
• C > 1 = more contrast

• 0 < C < 1 = less contrast

• Same operations performed on
all pixels

+ BrightnessOriginal- Brightness

- Contrast

+ Contrast

Input

Pixel

Output

Pixel

0a.25

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Enough" is NOT enough

• As we program we must be explicit

– Example: drawing the circle on the screen

• Being general is not sufficient; we must be explicit!

– Imagine a recipe for cinnamon rolls that simply read:
• Mix and bake the following: butter, that white powdery baking

substance, eggs, just enough sugar, and cinnamon. Enjoy!

– How much of each, how much is "enough", how long, in
what order?

• We will try to work on some of discrete math skills
that help us explicitly define and analyze our
programs

0a.26

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

WORKING WITH NUMBERS IN C++
Integers and floating-point types; Division and modulus operations

0a.27

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data Types

• How should the numbers (actually the bits: 1s and 0s)
the computer is storing be interpreted: as a letter, an
integer (aka an 'int'), a number with decimals (aka
'floating point' or 'double')

• C/C++ types help tell the computer hardware how to
interpret the bits/numbers being stored in computer
memory and what circuits to use to process them

• Let's learn the first two C++ data types:

– int – integers only; no decimals (e.g. 4750, -18,
1908734)

– double – very large numbers all the way down to very small
fractions (e.g. 6.02E23, 1.5, -0.000248)

0a.28

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Division

• Computers perform division differently based on the
types used as inputs

• Integer Division:

– When dividing two integer values, the result will also be an
integer (any remainder/fraction will be dropped)

– 10 / 4 = 2 52 / 10 = 5 6 / 7 = 0

• Floating-point (Double) & Mixed Division

– 10.0 / 4.0 = 2.5 52.0 / 10 = 5.2 6 / 7.0 = 0.8571

– Note: If one input is a double, the other will be promoted
temporarily (aka implicitly "casted") to compute the result
as a double

0a.29

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modulus

• Dividing two integers yields an integer
quotient

• Using the modulus operator (%) will divide
two integers but yield the remainder!

• Examples:

7 / 3 = 2 but 7 % 3 = 1

75 / 10 = 7 but 75 % 10 = 5

27 / 4 = __ but 27 % 4 = __

59 / 12 = __ but 59 % 12 = __

0a.30

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

HOMEWORK AND SURVEY

0a.31

© 2023 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modulus

• Dividing two integers yields an integer
quotient

• Using the modulus operator (%) will divide
two numbers but yield the remainder!

• Examples:

7 / 3 = 2 but 7 % 3 = 1

75 / 10 = 7 but 75 % 10 = 5

27 / 4 = 6 but 27 % 4 = 3

59 / 12 = 4 but 59 % 12 = 11

	Slide 1: CS102 Unit 0a – Course Intro
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Computer Abstractions
	Slide 5: This Class
	Slide 6: Course Structure
	Slide 7: Exams and Grading
	Slide 8: Syllabus
	Slide 9: Expectations
	Slide 10: 20-Second Timeout
	Slide 11: Programming Languages 1
	Slide 12: Programming Languages 2
	Slide 13: High Level Languages
	Slide 14: Why C++
	Slide 15: What Language Aspects Will We Learn?
	Slide 16: More than just "Coding"…
	Slide 17: Problem Solving Idioms
	Slide 18: Starting to think like a computer
	Slide 19: It’s A Numbers Game
	Slide 20: Example (1)
	Slide 21: Text Representation
	Slide 22: Example (2)
	Slide 23: Example (3)
	Slide 24: The Connection with Mathematics
	Slide 25: "Enough" is NOT enough
	Slide 26: Working with Numbers in C++
	Slide 27: Data Types
	Slide 28: Division
	Slide 29: Modulus
	Slide 30: Homework and Survey
	Slide 31: Modulus

