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Abstract— In this paper, we develop a methodology to under-
stand and analyze transient performance in adaptive switching
control systems that employ hysteresis type switching algo-
rithms. In particular, we quantify the transient performance
in terms of percent overshoot bound of the cost function
(performance metric). The overshoot essentially measures the
amount by which the achieved cost exceeds the robust cost,
which is defined as the supremum of minimum controller cost
over all possible input-output data and time. Furthermore, we
highlight the parameters that can reduce this bound, which in
turn improves the transient performance of the system. The
efficacy of the proposed ideas are validated using simulation
examples.

I. INTRODUCTION

Ensuring satisfactory transient performance of adaptive
control systems is a challenging task and is crucial, especially
for safety-critical systems. Several attempts have been made
to analyze and quantify transient performance of adaptive
control systems in the past (see for example, [1], [2]).
The most recent advancement was proposed in [3], which
advocates the use of Closed loop Reference Models (CRMs)
for transient performance improvement when compared to
the traditional Open-loop Reference model (ORM) adaptive
systems. The perspective adopted in these works follow
the Model Reference Adaptive Control framework with an
underlying state space model of the plant.

In this paper, we adopt an input-output approach to system
analysis and develop a methodology to analyze the transient
performance of the class of direct adaptive switching control
systems wherein an adaptive algorithm selects an active
controller by minimizing a cost function which depends on
data and the past history of active controllers. One such class
of adaptive systems is the one that employs purely data-
driven gain-related cost functions [4]–[10] and the celebrated
Morse-Mayne-Goodwin hysteresis type controller switching
algorithms [11], [12]. By a data-driven cost function, we
mean a performance metric that is a causal function of raw
plant input-output data, uninterpreted by plant/noise models
or other prior assumptions like ‘minimum phase property of
plant’ or ‘tunability’, which helps prevent model-mismatch
problems that can sometimes cause the adaptive algorithms
to converge to destabilizing controllers [4], [13]. Of course
plant assumptions can, and normally do, play an essential
role in determining promising candidate controllers from
which the adaptive switching control algorithm selects a
suitable controller.
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For the class of adaptive control systems considered in
this paper, convergence is well understood as shown in [4].
It was shown in [4] that when the cost functions have
the ‘cost-detectability’ property and the adaptive control
problem is ‘feasible’, the adaptive algorithm is convergent
and stabilizing. However, even with feasibility and a cost-
detectable cost function, an adaptive control system could
still sometimes have unacceptably large transients as shown
by an example in [14], illustrating that the transient response
is not very well understood for this class of systems.

Consequently, we develop a theory to understand and
quantify the transient performance in terms of a bound on
the percent overshoot of an `2 gain related cost function.
The overshoot here measures the amount by which the
achieved cost exceeds the robust cost (defined later in the
paper) of the adaptive system. Our goal is to achieve the
smallest overshoot, therefore, we highlight the parameters
that can reduce the bound on the percent overshoot, which
in turn alleviates the possibility of bad transients in the
system. Simulation examples validating the proposed ideas
are provided. Although the theoretical proofs that follow in
this paper assume discrete time systems, it is possible to
obtain similar results for continuous time systems as well.
Some of the techniques used to develop the theory in this
paper have been inspired from [15], [16], wherein a different
but, theoretically closely related problem of adaptive control
resetting was analyzed.

The contents of this paper are organized as follows.
Section II introduces the relevant notation. The structure of
the switching adaptive control system, controller realization,
preliminary concepts of a model free direct adaptive control
scheme, hysteresis switching algorithm and the transient
performance problem formulation are discussed in Section
III. Key theoretical results that derive a bound on the percent
overshoot of the cost function are presented in Section
IV. Approaches to reduce this overshoot bound along with
simulation examples are given in Section V. Conclusions are
provided in VI.

II. NOTATION

Let R+,Z+ denote the set of non-negative real numbers
and non-negative integers, respectively. Let x : Z+ → R

n,
then the `p-norm of x is defined as

‖x‖p,[t0, t] =


p
√

Σt
τ=t0Σ

n
i=1|xi(τ)|p, if p ∈ [1,∞)

maxτ∈[t0, t] maxi∈[1, n] |xi(τ)|, if p = ∞
(1)

where t ≥ t0 and xi denotes the i-th component of x. If
t0 = 0 and ‖x‖p,[0, t] < ∞ for t ∈ [0,∞), then x ∈ `n

pe and
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if limt→∞ ‖x‖p,[0, t] < ∞, then x ∈ `n
p. The `λp-norm of x is

defined as

‖x‖λp,[t0, t] =


p
√

Σt
τ=t0λ

p(t−τ){Σn
i=1|xi(τ)|p}, if p ∈ [1,∞)

maxτ∈[t0, t] λ
(t−τ){maxi∈[1, n] |xi(τ)|}, if p = ∞

(2)
where λ is called the fading memory parameter and λ ∈
(0, 1]. The `λp-norm satisfies the following property,

‖x‖λp,[0, t] ≤ ‖x‖λp,[0, τ−1]λ
t−τ+1 + ‖x‖λp,[τ, t], ∀τ ≤ t (3)

It can be verified that (3) is an immediate consequence of
(2) and triangle inequality property of norms.

The definition of λ-stability, λ-unfalsification and `λp gain
of a system are given below.

𝑟 𝜁	Γ			Γ1

Fig. 1: A general system Γ

Definition 1. (λ-stability): Given a λ ∈ (0, 1], the system
Γ : `n

pe → `m
pe, as shown in Fig. 1 with input r of size n and

output ζ of size m, is λ-stable if for every input r ∈ `n
pe, there

exist constants α ≥ 0, β ≥ 0 such that for all t ≥ 0,

‖ζ‖λp,[0, t] ≤ β‖r‖λp,[0, t] + α. (4)

When λ = 1, we simply say Γ is stable. �
Definition 2. (λ-unfalsification): Given a λ ∈ (0, 1], a
particular input r and output ζ, the stability of system Γ

is said to be λ-unfalsified by the data pair (r, ζ) if there exist
constants α ≥ 0, β ≥ 0 such that, for all t ≥ 0, we have

‖ζ‖λp,[0, t] ≤ β‖r‖λp,[0, t] + α (5)

where r ∈ `n
pe. Otherwise, the stability of Γ is λ-falsified by

(r, ζ). When λ = 1, we simply say that stability is unfalsified
if (5) holds, or falsified if (5) does not hold. �
Remark 1: The notion of λ-stability is equivalent to expo-
nential stability of systems. Suppose Γ as shown in Fig. 1
is a finite dimensional Linear Time Invariant (LTI) system
with transfer function Γ(z), then Γ is λ-stable iff every pole
of Γ(z) has magnitude strictly less than λ. Also, λ-stability
of Γ(z) is equivalent to stability of Γ(λz).
Definition 3. (`λp gain): The `λp gain of the system Γ as
shown in Fig. 1 is defined as

‖Γ‖λp = sup
‖r‖λp,[0, t],0, t≥0

‖ζ‖λp,[0, t]

‖r‖λp,[0, t]
(6)

where ζ = Γr, p ∈ [1,∞] and λ ∈ (0, 1]. When λ = 1, its
simply the `p gain of Γ. �
It follows from the above definition that the `λp gain of a
system Γ, satisfies the following property,

‖Γr‖λp,[0, t] ≤ ‖Γ‖λp‖r‖λp,[0, t] (7)

for all t ≥ 0.

III. PROBLEM FORMULATION

A. Switching Adaptive Control System

We consider a switching adaptive control system, Γ :
`n

pe → `m
pe, comprising of a high level controller called

the supervisor and a finite candidate controller set K =

{K1,K2, ....,KM} in feedback with an uncertain plant P as
shown in Fig. 2. The input to the system Γ is r ∈ `n

pe which
denotes the reference signal and the output is ζ = [u y]T ∈

`m
pe, where u and y denote the control signal and plant output

signal respectively. The set D = Graph{P} := {ζ = (u, y)|y =

Pu}. The supervisor along with the candidate controller
set forms an adaptive switching controller. The supervisor
orchestrates the switching of controllers and orders them
using a cost function denoted as V(K, ζ, t), which is defined
as a causal-in-time mapping V : K × D × Z+ −→ R+ ∪ ∞.
Given a specific ζ, we may for brevity denote Vi = V(Ki, ζ, t).
The active controller at time t is denoted as K̂(t) and the
closed loop switched system is denoted as Γ(K̂, P). The
controller switching signal is denoted as σ, therefore σ :
Z+ → {1, 2, . . .M}. The controller switching instants are
denoted as {tk} k ∈ Z+

and the k-th switching interval is denoted
as Tk = {tk, tk+1, . . . , tk+1−1}, over which σ remains constant.
The total number of controller switches is denoted as ns.
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Fig. 2: A switching adaptive control system

B. Controller Realization

Let the ordered pair (Ni,Di) denote the left Matrix Fraction
Description (MFD) of a controller Ki ∈ K. Therefore, the
following holds,

Ki = D−1
i Ni (8)

where
Ni = [Nr

i Ny
i ];

factors Ni and Di are stable, causal and Di has a causal
inverse [17]. The controller Ki can be nonlinear too, in which
case it can be factored in terms of nonlinear incrementally
stable factors [17], [18]. In this paper, the realization of the
controller given by (8) is as shown in Fig. 3.
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Fig. 3: Controller realization

With the above controller realization in place, the structure
of the switching adaptive system is as shown in Fig. (4),
Therefore, the control signal u is given by,

u = vσ − (Dσ − 1)u − Ny
σy (9)

C. Model free Adaptive Control

Concepts pertaining to a plant model free direct adaptive
control method [4] that are relevant to the current paper are
provided in this section.
Definition 4. (Fictitious/virtual Reference Signal (FRS)):
Given the plant input-output data ζ = [u y]T from an
experiment and a nonactive controller Ki having a stable
matrix fraction description Ki = D−1

i [Nr
i Ny

i ], the fictitious
reference signal ṽi is defined as a signal that would have
reproduced exactly the measured data ζ, had the unswitched
feedback controller law, ui = vi − (Di − 1)u − Ny

i y where
vi = Nr

i r, been in the loop during the entire time the data
was collected. Therefore,

ṽi = Σζ,iζ (10)

where
Σζ,i = [Di Ny

i ]. (11)

�
Remark 2: When Nr

i = Ny
i = I and Ki = D−1

i , then ṽi equals
the conventional fictitious reference signal r̃i in [19]. The use
of the more general ṽi from [17] in place of the r̃i of [19]
allows for the use of non-minimum phase controllers and
the non-uniqueness of the stable matrix fraction description
(Ni,Di) provides additional flexibility that can be used to
incorporate frequency-dependent weights in cost functions
as well.
Definition 5. (λ-cost-detectability): Consider the switching
adaptive control system Γ as shown in Fig. 2. A cost function
and controller pair (Vi,Ki) is said to be λ cost- detectable if
the following two statements are equivalent:
(1) Vi ∈ `∞.
(2) Stability of Γ(Ki, P) is λ-unfalsified by the input-output
data (r, ζ). �
Definition 6. (Robust cost): Given a particular plant P and
controller Ki, the robust cost of controller Ki is denoted
as Vrsp(Ki) and is defined as Vrsp(Ki) = supζ ∈ D, t ∈ Z+

Vi. A
robust optimal controller is the one that minimizes the robust
cost over all controllers in the candidate controller set. Let

Πrsp = minKi∈K Vrsp(Ki) denote the robust cost of the system.
�
Definition 7. (λ-feasibility): The adaptive stabilization prob-
lem is considered to be λ-feasible if there exists at least
one controller in the candidate controller set K such that the
closed loop system is λ-stable. In other words, the problem is
λ-feasible if Πrsp is finite when the controller cost function,
Vi reflects λ-stability. �

D. Hysteresis Switching Algorithm

Hysteresis switching algorithm [11], [12] is one of the
many switching algorithms used in adaptive switching con-
trol literature. The steps of the algorithm are provided below,
Hysteresis Algorithm A1

1) Initialize: Let t = 0; choose h > 0: Let K̂(t) = K0;
K0 ∈ K be the first controller in the loop.

2) t = t + 1,
If V(K̂(t − 1), ζ, t) ≥ minKi∈K V(Ki, ζ, t) + h,
then K̂(t) = arg minKi∈K V(Ki, ζ, t)
Else K̂(t) = K̂(t − 1)

3) Go to Step 2. �

The quantity h is called the hysteresis constant and is pos-
itive. The total number of controller switches for hysteresis
switching algorithm is bounded above by,

ns =
⌈
M

Πrsp

h

⌉
(12)

When the adaptive control problem is λ-feasible, ns is finite.
Definition 8. (Controller cost function): In this paper, the
following λ-cost-detectable controller cost function is used
by the supervisor to orchestrate the switching,

Vi(t) = max
τ∈[0, t]

‖ζ‖λp,[0, τ]

α + ‖ṽi‖λp,[0, τ]
(13)

where Vi(t) = V(Ki, ζ, t) and α ≥ 0. �
Definition 9. (Achieved cost): The achieved cost of the
adaptive switching system is the actual reference (vσ) to data
induced gain such as the following,

Vσ(t) =
‖ζ‖λp,[0, t]

α + ‖vσ‖λp,[0, t]
(14)

�

E. Transient Performance Analysis

When λ-feasibility holds, hysteresis switching algorithm
along with a λ-cost-detectable cost function ensures conver-
gence and λ-stability of the switching adaptive control sys-
tem. However, in some cases, a destabilizing controller may
be inserted repeatedly in the loop before finally stabilizing
the system. This results in excessively large transient control
and plant output signals. In this paper, we calculate a bound
on the percent overshoot of the achieved cost. The percent
overshoot is defined below.

Definition 10. (Percent Overshoot): Percent Overshoot
denoted as %OS is defined as the maximum value of the
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Fig. 4: Switching adaptive control system with MFD realization of controllers

achieved cost expressed as a percentage of the robust cost
within a hysteresis constant.

%OS =
maxt Vσ(t) − Π∗

Π∗
× 100% (15)

where Π∗ = Πrsp + h. �

IV. TRANSIENT PERFORMANCE BOUND

In this section, we calculate a theoretical upper bound on
the achieved cost given by (14) when the controller cost
function given by (13) and hysteresis switching algorithm
are used. Subsequently, we calculate a bound on the percent
overshoot given by (15). We begin by proving three lemmas.
These lemmas are based on the work in [15], [16], wherein
several very similar results were derived in conjunction with
the different, but theoretically closely related problem of
adaptive control resetting.

Lemma 1: Consider the controller realization as shown in
Fig. 4. Then,

ṽσ(t)(t) = vσ(t)(t), ∀t (16)

Proof: The following holds from the switching adaptive
controller realization of Fig. 4,

u(t) = vσ(t)(t) − (Dσ(t) − 1)u(t) − Ny
σ(t)y(t), ∀t

⇔ u(t) = Dσ(t)
−1(vσ(t)(t) − Ny

σ(t)y(t)), ∀t (17)

The following holds from (10) and (11),

ṽσ(t)(t) = Σζ,σ(t)ζ(t)
= Dσ(t)u(t) + Ny

σ(t)y(t), ∀t (18)

Substituting for u from (17), we get,

ṽσ(t)(t) = vσ(t)(t), ∀t (19)

�
Lemma 2: The following holds for t ∈ Tk,

‖ṽσ(tk)‖λp,[0, t] ≤ λ
t−tk+1‖Σζ,σ(tk)ζ‖λp,[0, tk−1]+‖vσ(tk)‖λp,[tk , t] (20)

Proof: Since σ remains constant over each switching interval
Tk = {tk, tk + 1, . . . , tk+1 − 1}, the following holds,

σ(t) = σ(tk), ∀t ∈ Tk (21)

Combining (10), (16) from Lemma 1 and (21), we get,

ṽσ(tk)(t) =

{
Σζ,σ(tk)ζ(t) for t < tk
vσ(tk)(t) for t ∈ Tk

(22)

From (3), we have for t ∈ Tk,

‖ṽσ(tk)‖λp,[0, t] ≤ λ
t−tk+1‖ṽσ(tk)‖λp,[0, tk−1] + ‖ṽσ(tk)‖λp,[tk , t] (23)

Substituting (22) in the above equation we finally get for
t ∈ Tk,

‖ṽσ(tk)‖λp,[0, t] ≤ λ
t−tk+1‖Σζ,σ(tk)ζ‖λp,[0, tk−1]+‖vσ(tk)‖λp,[tk , t] (24)

�
Let,

Πk := min
Ki∈K

Vi(tk+1 − 1) + h (25)

where Vi is given by (13).

Lemma 3: Consider the cost function given by (13).
If hysteresis switching algorithm is used, then the following
holds for t ∈ Tk,

‖ζ‖λp,[0, t] ≤ λ
t−tk+1Πk‖Σζ,σ(tk)‖λp‖ζ‖λp,[0, tk−1]

+ Πk
[
‖vσ(tk)‖λp,[tk , t] + α

]
.

(26)



Proof: From hysteresis switching algorithm, we have,

Vσ(tk)(t) ≤ Πk, ∀t ∈ Tk

⇔ max
τ∈[0,t]

‖ζ‖λp,[0, τ]

α + ‖ṽσ(tk)‖λp,[0, τ]
≤ Πk, ∀t ∈ Tk

⇔
‖ζ‖λp,[0, t]

α + ‖ṽσ(tk)‖λp,[0, t]
≤ Πk, ∀t ∈ Tk

⇔ ‖ζ‖λp,[0, t] ≤ Πk
[
‖ṽσ(tk)‖λp,[0, t] + α

]
, ∀t ∈ Tk (27)

Using Lemma 2 in the above equation, we get ∀t ∈ Tk,

‖ζ‖λp,[0, t] ≤ λ
t−tk+1Πk‖Σζ,σ(tk)ζ‖λp,[0, tk−1]

+ Πk
[
‖vσ(tk)‖λp,[tk , t] + α

] (28)

The following holds from (7),

‖Σζ,σ(tk)ζ‖λp,[0, tk−1] ≤ ‖Σζ,σ(tk)‖λp‖ζ‖λp,[0, tk−1] (29)

Therefore, (28) can be written as,

‖ζ‖λp,[0, t] ≤ λ
t−tk+1Πk‖Σζ,σ(tk)‖λp‖ζ‖λp,[0, tk−1]

+ Πk
[
‖vσ(tk)‖λp,[tk , t] + α

]
, ∀t ∈ Tk

(30)

�
Rewriting the result of Lemma 3 for t ∈ Tk−1 = {tk−1, tk−1 +

1, . . . , tk − 1}, we get,

‖ζ‖λp,[0, t] ≤ λ
t−tk−1+1Πk−1‖Σζ,σ(tk−1)‖λp‖ζ‖λp,[0, tk−1−1]

+ Πk−1
[
‖vσ(tk−1)‖λp,[tk−1, t] + α

]
, ∀t ∈ Tk−1

(31)

Since tk − 1 ∈ Tk−1, (31) can be written as follows,

‖ζ‖λp,[0, tk−1] ≤ λ
tk−tk−1Πk−1‖Σζ,σ(tk−1)‖λp‖ζ‖λp,[0, tk−1−1]

+ Πk−1
[
‖vσ(tk−1)‖λp,[tk−1, tk−1] + α

]
, ∀t ∈ Tk−1

(32)

Let,

xk = ‖ζ‖λp,[0, tk−1] (33)
Ak−1 = λtk−tk−1Πk−1‖Σζ,σ(tk−1)‖λp (34)

Bk−1 = Πk−1 (35)
uk−1 = ‖vσ(tk−1)‖λp,[tk−1, tk−1] + α (36)

Therefore, (32) can be written as follows:

xk ≤ Ak−1xk−1 + Bk−1uk−1 (37)

Let,

φ(k, l) =

{
Ak−1Ak−2 . . . Al if k > l ≥ 0
1 if k = l (38)

Then, (37) can be written as follows,

xk ≤ φ(k, 0)x0 +

k−1∑
i=0

φ(k, i + 1)Biui (39)

The main result of this paper which calculates a bound on
the achieved cost of adaptive switching control system and
a bound on the percent overshoot is given below.

Theorem 1 (Main Result): Consider the switching
adaptive control system shown in Fig. 2 with hysteresis

switching algorithm and the λ-cost-detectable cost function
given by (13). Let,

Π∗ = Πrsp + h (40)
Σ∗ = max

i
‖Σζ,i‖λp (41)

µ = Π∗Σ∗ (42)

where Πrsp is the robust cost as given by Definition 6. Then,
the following holds for all t ∈ Z+,

Vσ(t) ≤

 Π∗
[

1−µnt+1

1−µ

]
if µ , 1

Π∗(nt + 1) if µ = 1
(43)

and,

%OS ≤
 µ

[
1−µnt

1−µ

]
× 100% if µ , 1

nt × 100% if µ = 1
(44)

where nt is the number of controller switches till time t.
Proof: When (32) is written in the form of (39), we get,

‖ζ‖λp,[0, tk−1] ≤

k−2∑
i=0

( k−1∏
j=i+1

λt j+1−t jΠ j‖Σζ,σ(t j)‖λp

)
Πi

[
‖vσ‖λp,[ti, ti+1−1]

+ α
]
+ Πk−1

[
‖vσ‖λp,[tk−1, tk−1] + α

]
(45)

where vσ is the signal seen at the input to the summing
junction in Fig. 4. Substituting (45) in the result of Lemma
3 (26), we get for all t ∈ Tk,

‖ζ‖λp,[0, t] ≤ λ
t−tk+1Πk‖Σζ,σ(tk)‖λp[ k−2∑

i=0

( k−1∏
j=i+1

λt j+1−t jΠ j‖Σζ,σ(t j)‖λp

)
Πi

[
‖vσ‖λp,[ti, ti+1−1] + α

]
+ Πk−1

[
‖vσ‖λp,[tk−1, tk−1] + α

]]
+ Πk

[
‖vσ‖λp,[tk , t] + α

]
.

(46)

The above equation can further be written as,

‖ζ‖λp,[0, t] ≤

k−1∑
i=0

( k∏
j=i+1

Π j‖Σζ,σ(t j)‖λp
)
Πiλ

t−ti+1+1[‖vσ‖λp,[ti, ti+1−1] + α
]

+ Πk
[
‖vσ‖λp[tk , t] + α

]
, ∀t ∈ Tk

(47)

It can easily be shown that the following holds for all t ∈ Tk

and i ∈ [0, k − 1],

‖vσ‖λp,[ti, ti+1−1] ≤ λti+1−t−1‖vσ‖λp,[0, t] (48)
‖vσ‖λp,[tk , t] ≤ ‖vσ‖λp,[0, t] (49)

Therefore, (47) can be written as follows,

‖ζ‖λp,[0, t] ≤

k−1∑
i=0

( k∏
j=i+1

Π j‖Σζ,σ(t j)‖λp
)
Πi

[
‖vσ‖λp,[0, t] + α

]
+ Πk

[
‖vσ‖λp,[0, t] + α

] (50)

where t ∈ Tk.
Given (41), (42) and that Π j ≤ Π∗ for all j, the following



holds,

‖ζ‖λp,[0, t] ≤ Π∗
[
‖vσ‖λp,[0, t] + α

]
+ Π∗

[
‖vσ‖λp,[0, t] + α

] k−1∑
i=0

( k∏
j=i+1

Π∗Σ∗
)

= Π∗
[
‖vσ‖λp,[0, t] + α

]
+ Π∗

[
‖vσ‖λp,[0, t] + α

] k−1∑
i=0

( k∏
j=i+1

µ
)
∀t ∈ Tk

= Π∗
[
‖vσ‖λp,[0, t] + α

] k∑
i=0

µi

(51)

The following is true about the summation term in the above
equation,

k∑
i=0

µi =

 1−µk+1

1−µ if µ , 1
k + 1 if µ = 1

(52)

Therefore, Equation (51) can be written as follows,

‖ζ‖λp,[0, t]

α + ‖vσ‖λp,[0, t]
≤

 Π∗
[

1−µk+1

1−µ

]
if µ , 1

Π∗(k + 1) if µ = 1
(53)

where k represents the number of switches until time t ∈ Tk.
Therefore for any t ∈ Z+, the following holds true,

‖ζ‖λp,[0, t]

α + ‖vσ‖λp,[0, t]
≤

 Π∗
[

1−µnt+1

1−µ

]
if µ , 1

Π∗(nt + 1) if µ = 1
(54)

⇔ Vσ(t) ≤

 Π∗
[

1−µnt+1

1−µ

]
if µ , 1

Π∗(nt + 1) if µ = 1
(55)

where nt is the number of controller switches till time t.
Since (55) holds for all t ∈ Z+, the following holds,

max
t

Vσ(t) ≤

 Π∗
[

1−µnt+1

1−µ

]
if µ , 1

Π∗(nt + 1) if µ = 1
(56)

Substituting the above in (15), we get,

%OS ≤
 µ

[
1−µnt

1−µ

]
× 100% if µ , 1

nt × 100% if µ = 1
(57)

�
Of the parameters that appear in the bound above, Σ∗ in µ
and nt which is bounded above by ns

1 can be changed by
the designer. In the next section, we discuss the implications
of changing each of these designer controlled parameters on
the transient performance of the system.

V. SIMULATION RESULTS

A. Bad Transients

Suppose the unknown plant shown in Fig. 2 has a transfer
function, P(z) =

(e0.03−1)z
z−e0.03 , which is a discretized version of the

plant used in [14], with a sampling interval of 0.03 seconds
and the controller set is K = {K1 = −2,K2 = 2}, where
Nr

1 = Ny
1 = −2, Nr

2 = Ny
2 = 2 and D1 = D2 = 1. If the

reference signal is chosen to be r(t) = 1,∀t, the hysteresis

1ns is the upper bound on the total number of controller switches while
nt is the number of switches till time t

algorithm A1 is used with h = 0.01, K̂(0) = K1 and the cost
function (13) is used with λ = 0.99, p = 2 and α = 1, the
simulation results show that nt = 9. It can be verified2 that
Σ∗ = 2, Πrsp ≈ 1.81, therefore, Π∗ = Πrsp + h ≈ 1.82 and
µ ≈ 3.6. Therefore, the theoretical bound on %OS given by
(57) is ,

µ
[1 − µnt

1 − µ

]
× 100% ≈ 1.4 × 107%.

The simulation results are shown in Fig. 5 which indicate
large transients, maxt |u(t)| ≈ 175 and maxt |y(t)|.

B. Reducing ns

Based on Theorem 1, one strategy to reduce the overshoot
is to modify the hysteresis constant h, so as to reduce the
upper bound on the number of controller switches ns given
by (12). The bound on ns can be drastically reduced by
increasing the hysteresis constant h. If h = Πrsp, then, for
the example given in the previous subsection, we have

ns =
⌈
M

Πrsp

h

⌉
=

⌈
2

Πrsp

Πrsp

⌉
= 2

If all other parameters are the same as in the previous
subsection, we get Π∗ = Πrsp + h ≈ 3.62 and µ = 7.24.
Simulation results show that nt = 1. Therefore, the theoretical
bound on %OS given by (57) is ,

µ
[1 − µnt

1 − µ

]
× 100% ≈ 7.24 × 100%.

The simulation results are shown in Fig. 6 and it can be
seen that the transients have reduced significantly.

C. Reducing Σ∗

The bound in (57) can be reduced further by choosing
different co-prime realizations Ni,Di for the candidate con-
trollers Ki, which in turn reduces the transients. If each of
the controllers in K of (V-A) is realized using the following
co-prime factor descriptions,

Nr
1(z) = Ny

1(z) =
−2(0.33z − 0.26)

z − 0.86

Nr
2(z) = Ny

2(z) =
2(0.33z − 0.26)

z − 0.86

D1(z) = D2(z) =
0.33z − 0.26

z − 0.86

then, Σ∗ = 1.04, Πrsp ≈ 3.5, therefore Π∗ = Πrsp + h ≈ 5.31
and µ = 5.52. The bound on %OS in (57) is,

µ
[1 − µnt

1 − µ

]
× 100% ≈ 5.52 × 100%.

The simulation results with the reduced Σ∗ are shown in Fig.
7 and it can be seen that the transients have reduced further
when compared to that in (V-B).

2The `λp gain of an LTI system Γ, i.e., ‖Γ(z)‖λp is equivalent to the `p
gain of Γ(λz). When p = 2, the `2 gain and H∞ gain are equal as shown in
[20], [21]. Therefore, the MATLAB command norm can be used to calculate
the `λ2 gain as ‖Γ(z)‖λ2 = norm(Γ(λz), Inf).
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Fig. 5: Case A (Bad transients). Top-left: Controller switching signal σ, Top-right: Control signal u, Bottom-left: Plant o/p signal y,
Bottom-right: Achieved cost Vσ , Robust cost Πrsp and Π∗
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Fig. 6: Case B (With improvements). Top-left: Controller switching signal σ, Top-right: Control signal u, Bottom-left: Plant o/p signal y,
Bottom-right: Achieved cost Vσ , Robust cost Πrsp and Π∗

VI. CONCLUSIONS

A transient performance analysis for the class of adaptive
control systems with hysteresis switching algorithm and `2
gain type cost detectable cost functions was proposed. A
theoretical upper bound on the percent overshoot of the
achieved cost with respect to robust cost was obtained and
the parameters that can reduce this bound were highlighted.
Simulation results were provided that indicated improvement
in the transient performance with the proposed ideas.
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