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Part 1: Modeling 
Part 1A: Data-driven and “First-principle” 
Part 1B: General Introduction to Fractality 

Part 2: Security 

Plan of Action 



The Smart Grid has Many Facets 
 Large movement of power across geographically large areas  
 Economic dispatch 
 Line overloading  
 Stochastic fluctuations induced by renewables  
 Storage elements  
 Integration with electric vehicles  
 Phasor Measurement Unit (PMU) technology 
 Privacy concern over smart meters  
 Security (“black energy”) 
 etc. 

Lots of mathematics & new concepts 
 Is that all??? 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 



 Long-range memory is one of the characteristics of fractal 
patterns. It relates to slow decay of the correlation as the 
lag between samples increase.    
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Long-Range Dependence or Memory 
(in PMU data) 



 Number of incrementation or differentiation steps (d): 
 
 

 
 Power Spectral Density exponent (β): 

 
 

 Hurst exponent (α): 
It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.   
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 There are several parameters that quantify the severity of 
the fractal behavior in a time series: 
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Long-Range Dependence or Memory 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 



 Steps: 
1. Subtract average and integrate the data set: 
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Detrended Fluctuation Analysis (DFA) 



2. Divide the data into equal-sized boxes rach of size n and find 
the Linear Least Squares (LLS) line inside each box. 

3. Subtract the LLS fitting from the integrated data to generate the 
detrended data:  
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Detrended Fluctuation Analysis (DFA) 

N n 



4. Find the Root Mean Square (RMS) fluctuation of the detrended 
data: 

 

 

 

4. The second and third steps  
     are repeated  
     at different box sizes: 
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Detrended Fluctuation Analysis (DFA) 



For white noise, 𝛼 = 0.5 
Long range process with power law: 0.5 < 𝛼 < 1 
For 𝑃 𝑓 = 𝑓−1 pink noise, 𝛼 = 1 

For 𝑃 𝑓 = 𝑓−𝛽, 𝛼 = 𝛽+1
2

 

For Brownian motion, 𝛼 = 1.5 
 

Interpretation of Hurst Exponent 



 Several PMUs are installed at 120V and 69KV over 
several locations:  
 Baylor University (Waco),  
 Harris Substation, and  
 McDonald Observatory. 

 The data we analyzed here are  
 voltage magnitude,  
 frequency, and  
 phase angle. 

 The sampling rate of the data is  
    30 samples/second. 

Texas Synchrophasor Network 



Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Evidence of Long-Range Dependence in Power Grid, IEEE Power and Energy Society General Meeting, 2016. 

PMU Time Series (Texas) 



 

             
 
 

 
 
 
 
 

 

 Voltage Magnitude (V)                                              Pink noise (      ) 
 Frequency (f)                                                               Brownian noise (       )   
 Phase Angle (θ)                                                           Long-range/Power-law                                                                           

 

α= 0.71  

α= 1.54  

α= 1.11  (d) 

α ≈ 1.00  
α ≈ 1.50   
α ≈ 0.70  

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Evidence of Long-Range Dependence in Power Grid, IEEE Power and Energy Society General Meeting, 2016. 

Details of Long-Range Dependence in PMU Data 



α = 1.11  

α = 1.54  

α = 0.71  

α = 0.92  

α = 1.54  

α = 0.75   

0.5 ≤ α ≤1: long range with power law
        α > 1: long range but no power law

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Evidence of Long-Range Dependence in Power Grid, IEEE Power and Energy Society General Meeting, 2016. 

Hurst Exponent (Texas) 



 Frequency and angle data are consistent across the 3 stations.  
 Voltage definitely has higher Hurst exponent at McDonald… Why??? 

 Proximity of wind farm? 
 Is the Hurst exponent of voltage a sign of penetration of 

renewables in the larger grid? 

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Evidence of Long-Range Dependence in Power Grid, IEEE Power and Energy Society General Meeting, 2016. 

Hurst Exponent (Texas) 



PMUs installed in EPFL campus perform real time 
monitoring of the EPFL pilot smart grid. 

The PMUs were  
installed on medium  
voltage buses (12KV) 

The sampling rate is  
50 samples/second 
 

PMU-Based Monitoring in EPFL 
(Ecole Polytechnique Fédérale de Lausanne) 



Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Kendall’s Tau of Frequency Hurst Exponent as Blackout Proximity Margin, IEEE International Conference on Smart Grid Communications 
(SmartGridComm), 2016. 
 

PMU Time Series (EPFL) 



Voltage magnitude  Frequency  Phase angle  

 

α =1.20

 

α =1.55

 

α =1.27

Amazing consistency between the frequency α in Texas (1.54) and Switzerland (1.55)  

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Kendall’s Tau of Frequency Hurst Exponent as Blackout Proximity Margin, IEEE International Conference on Smart Grid Communications 
(SmartGridComm), 2016. 
 

Hurst Exponents (EPFL) 



Voltage magnitude  Frequency  Phase angle  

mean(α)=1.23 mean(α)=1.51 mean(α)=1.23 

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Kendall’s Tau of Frequency Hurst Exponent as Blackout Proximity Margin, IEEE International Conference on Smart Grid Communications 
(SmartGridComm), 2016. 
 

Hurst Exponent Histograms (EPFL) 
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Part I: Summary 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 



 ARFIMA model: 
The model is a generalization of the ARIMA model (d is integer) 
provided by Box and Jenkins in the sense that the differencing 
parameter (d) could have a fractional (non-integer) values. 
 
 
 
 
 

 𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀      ⇔   𝑑 = 0 
 𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀    ⇔   𝑑 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 
 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀 ⇔   𝑑 𝑖𝑖 𝑛𝑛𝑛-𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  

1 −�Φ𝑖𝐵𝑖
𝑝

𝑖=1

1 − 𝐵 𝑑𝑋𝑡 = 1 + �Θ𝑗

𝑞

𝑗=1

𝐵𝑗 𝜖𝑡 

Autoregressive Fractionally Integrated 
Moving Average (ARFIMA) Model 



PMU Time Series from EPFL 



 There are several parameters that quantify the severity of the fractal 
behavior in a time series: 
1. Scaling exponent (𝛼): [𝑎𝑎𝑎~ 𝑘(2𝛼−2)] 

It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.  

2. Power exponent (𝛽): [𝑆 𝑓 ~ 𝑓−𝛽] 
3. Differencing parameter (𝑑) :  

The number of incrementation or differentiation steps. 

1 −�Φ𝑖𝐵𝑖
𝑝

𝑖=1

1 − 𝐵 𝑑𝑋𝑡 = 1 + �Θ𝑗

𝑞

𝑗=1

𝐵𝑗 𝜖𝑡    

Fractality Parameters 



Slow (Non-exponential) Decay of 
Autocorrelation Functions of PMU data 

Voltage magnitude Frequency Phase Angle 



 There are several parameters that quantify the severity of the fractal 
behavior in a time series: 
1. Scaling exponent (𝛼): [𝑎𝑎𝑎~ 𝑘(2𝛼−2)] 

It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.  

2. Power exponent (𝛽): [𝑆 𝑓 ~ 𝑓−𝛽] 
3. Differencing parameter (𝑑) :  

The number of incrementation or differentiation steps. 

1 −�Φ𝑖𝐵𝑖
𝑝

𝑖=1

1 − 𝐵 𝑑𝑋𝑡 = 1 + �Θ𝑗

𝑞

𝑗=1

𝐵𝑗 𝜖𝑡    

Root of unity 

Fractality Parameters 



 Augmented Dickey–Fuller (ADF) Test: 
 Null hypothesis (𝐻0) → unit root exists → Non-Stationary  
 Alternative hypothesis (𝐻1) → unit root does NOT exist → Stationary 

 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: 
 Null hypothesis (𝐻0) → unit root does NOT exist → Stationary  
 Alternative hypothesis (𝐻1) → unit root exists → Non-Stationary  

Root of Unity (Non-Stationarity) of PMU Data 



 We estimate the fractality parameters of the PMU data using three 
methods:  

1. Detrended Fluctuation Analysis (DFA) method: α  
2. Geweke and Porter-Hudak (GPH) method: d 
3. Power Spectral Density (PSD) method: β 

𝛼 𝑑 𝛽 

Fractality of PMU Data 



Differencing Parameters of PMU Data  
DFA-GPH-PSD Consistency  

Voltage magnitude Frequency Phase Angle 



 There are several parameters that quantify the severity of the fractal 
behavior in a time series: 
1. Scaling exponent (𝛼): [𝑎𝑎𝑎~ 𝑘(2𝛼−2)] 

It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.  

2. Power exponent (𝛽): [𝑆 𝑓 ~ 𝑓−𝛽] 
3. Differencing parameter (𝑑) :  

The number of incrementation or differentiation steps. 

1 −�Φ𝑖𝐵𝑖
𝑝

𝑖=1

1 − 𝐵 𝑑𝑋𝑡 = 1 + �Θ𝑗

𝑞

𝑗=1

𝐵𝑗 𝜖𝑡    

Root of unity 

Fractality Parameters 



mean (standard deviation) 

Consistency of Fractality Parameters  
of PMU Data 



 There are several parameters that quantify the severity of the fractal 
behavior in a time series: 
1. Scaling exponent (𝛼): [𝑎𝑎𝑎~ 𝑘(2𝛼−2)] 

It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.  

2. Power exponent (𝛽): [𝑆 𝑓 ~ 𝑓−𝛽] 
3. Differencing parameter (𝑑) :  

The number of incrementation or differentiation steps. 

1 −�Φ𝑖𝐵𝑖
𝑝

𝑖=1

1 − 𝐵 𝑑𝑋𝑡 = 1 + �Θ𝑗

𝑞

𝑗=1

𝐵𝑗 𝜖𝑡    

AR and MA Parameters 

Auto-Regressive (AR)  
parameter 

Moving-Average (MA)  
parameter 



 The best model of 1000-sample voltage 
time series is ARFIMA (0,0.83,1): 

 
 1 − 𝐵 0.89𝑋𝑡 = 1 − 0.63𝐵 𝜖𝑡 

ARFIMA Model of Voltage (𝑉) Time Series 
(Information Criterion) 



• The best model of 1000-sample frequency 
time series is ARFIMA (1,0.94,2): 
 1 + 0.92𝐵 1 − 𝐵 0.94𝑋𝑡 = 1 − 0.18𝐵 + 0.61𝐵2 𝜖𝑡 

ARFIMA Model of Frequency (𝑓) Time Series 
(Information Criterion) 



 The best model of 1000-sample phase 
angle time series is ARFIMA (1,0.83,1): 

1 + 0.18𝐵 1 − 𝐵 0.83𝑋𝑡 = 1 + 0.18𝐵 𝜖𝑡 

ARFIMA Model of Phase Angle (𝜃) Time Series 
(Information Criterion) 



 PMU data are non-stationarity based on the two unit root 
tests (ADF and KPSS). 

 The fractality parameters prove the existence of long-
range memory in PMU data. 

 Estimating the differencing parameter is consistent 
among different methods (DFA, GPH, and PSD). 

 The next challenge is to formulate some “first principles” 
that could justify the ARFIMA model. 

Conclusions 

L. Shalalfeh, P. Bodgan, and E. Jonckheere, ̀ `Modeling of PMU data using ARFIMA models,  Clemson University Power System Conference, Paper Session T-M II: Phasor Measurement Units 
(PMUs), Charleston, SC, September, 2018. 
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Part I: Summary 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 



• Static load model: 
 

 
 Constant Power            
 Constant Current  
 Constant Impedance 

• Dynamic load model (Hill): 

 

LP = pK LV pv

 

LQ = qK LV qv

 

v
p =

v
q = 0

 

v
p =

v
q =1

 

v
p =

v
q = 2

 

TP Pd

•

+ Pd = Ps(VL ) + kp (VL )V
•

L

 

Should be 

PL VL ,ω( )

Static versus Dynamic Load Models 



Electric Reduction Furnace (Berg) Mechanical Plant (Berg) 
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Berg Data-Driven Load Modeling Experiment  
in a Real Microgrid 



Load Type pv pω qv qω 

Filament lamp 
Fluorescent lamp 
Heater 
Induction motor (HL) 
Induction motor (FL) 
Reduction furnace 
Aluminum plant 
Regulated aluminum plant 

1.6 
1.2 
2.0 
0.2 
0.1 
1.9 
1.8 
2.4 

0 
-1.0 

0 
1.5 
2.8 
-0.5 
-0.3 
0.4 

0 
3.0 
0 

1.6 
0.6 
2.1 
2.2 
1.6 

0 
-2.8 

0 
-0.3 
1.8 
0 

0.6 
0.7 

LLL jQPS +=


 

PL = KPVL
pvω pω

 

QL = KQVL
qvω qω

Berg Load Model Involves Frequency  
to a Non-integer Exponent 



Load Type Describing Function 
Filament lamp 
Fluorescent lamp 
Heater 
Induction motor (HL) 
Induction motor (FL) 
Reduction furnace 
Aluminum plant 
Regulated aluminum plant 

 

−1

( pK LV −0.4 − qjK LV −2)

 

−1

( pK LV −0.8 −1ω − qjK LV −2.8ω )

 

−1

( pK − qjK LV −2)

 

−1

( pK LV −1.8 1.5ω − qjK LV −0.4 −0.3ω )

 

−1

( pK LV −1.9 2.8ω − qjK LV −1.4 1.8ω )

 

−1

( pK LV −0.1 −0.5ω − qjK LV 0.1)

 

−1

( pK LV −0.2 −0.3ω − qjK LV 0.2 0.6ω )

 

−1

( pK LV 0.4 0.4ω − qjK LV −0.4 0.7ω )

Impedance Describing Function 



Crude way:  
Leaves some coefficients complex, not completely in line with formal circuit theory 

Better way: 
Coefficients are kept real, in line with formal circuit theory; 
However, positive realness does not hold unless the load is a heater 

 

ω →ω − jσ
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Analytic Extension of Describing Function 



Yes, but subject to correct interpretation: 
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 Caputo, D* (initial conditions in terms of integer derivatives) 
 Riemann-Liouville, D (initial conditions in terms of fractional derivatives) 
 Grunwald-Leitnikov, 𝔻 (close to ARFIMA model) 

related 

Can we replace s by 𝒅
𝒅𝒅

 ??? 
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Part I: Summary 
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Deliberately simplified  
model of the generator…  

to put the load  
in the spotlight. 

Feedback Model of Power System 



 

G =
YLine YLine

0 ω 0
2

 

 
 

 

 
 

 

F =
−ZL 0

0 −s−2

 

 
 

 

 
 

 

y = (I − GF)−1Gu

 

u = u1 u2[ ]t

 

y = y1 y2[ ]t

+
+ −
−

+

+

Simplification:  
No back-action of the load to the generator 

Feedback Model of Power System 



• Power system represented by the feedback model has a solution if  
  
 
                                    Purely harmonic solution                     

                                    Voltage collapsing solution                         
 
• The voltage collapsing solution exists if 
   

   

   

   

 
 
 
 
 

 

(I − GF)−1G = 1+ ZLYLine( )1+ω 0
2 s2( )= 0

 

1+ ZLYLine = 0

 

YL VL ,ω − jσ( )+YLine ω − jσ( )= 0
 

VLeσtcos(ωt)

 

VLcos(ω 0t)

 

1+ω 0
2 s2( )= 0

 

1+ ZLYLine( )= 0

 

pK LV pv −2
pωω− jσ( ) ω0( ) −

q
jK LV qv −2

qωω− jσ( ) ω0( ) + KLine σ + jω( )= 0

 

pK − j ω 0( )pω

LV pv −2
pω +1s −

q
jK − j ω 0( )qω

LV qv −2
qω +1s + KLine = 0

Voltage Collapse Solution 



 

s = σ + jω = αVL
β

α = (−KLine ((− j ω 0)pω (K p − jKq )))
β = (2 − pv ) ( pω −1)
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Voltage exponent (pv) 

• The voltage collapse solution exists in case of special loads  
     (pv=qv and pω=qω) if 

 
 
 
 

• Voltage collapse conditions: 
1)                 and  

2)  
 

 
 
 

   
 

 
 
 
 

Voltage Collapse Solution - Special Case 



Voltage decreases and  
damping increases 

Frequency is disrupted  
as well 

Sigma (σ) and Frequency (ω) for Different 
Special Loads (𝑠=𝜎+𝑗𝜔) 



Voltage decreases and 
damping decreases 

Frequency is disrupted 
as well 

Sigma (σ) and Frequency (ω) for  
Induction Motor (Stable)   



Voltage decreases  
and damping increases 

Frequency is disrupted 
as well 

Sigma (σ) and Frequency (ω) for 
Regulated Aluminum Plant (Unstable) 



Kline is directly 
proportional  
to maximum 

power transfer 

The Relationship Between Transmission  
Line Coefficient (KLine) and Sigma (σ) 



The Relationship Between Active Power 
Coefficient (Kp) and Sigma (σ) 



The Relationship Between Reactive 
Power Coefficient(Kq) and Sigma (σ) 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 
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Deliberately simplified  
model of the generator…  

to put the load  
in the spotlight. 

Hidden Feedback in Power Systems 



 

G =
YLine YLine

0 ω 0
2
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y = (I − GF)−1Gu

 

u = u1 u2[ ]t

 

y = y1 y2[ ]t
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Simplification:  
No back-action of the load to the generator 

Feedback Model of Power System 



Towards more Complicated  
Feedback Models of Power System 



Nominal impedance, line  Zi, Yii 

Connecting lines 1, 2, …, ≠i, …, m 

Are we sure that 

( ) ( )iii GFIGFI −Π≠− detdet

: . 

: . 

: . 

: . 

Time to Conceptualize 



D(U1) 

D(U2) 

D(U3) D(U4) 

Σ Σ ZLoads 

Ylines 

IL VL 

Vl Il 

- 

Egenerators 

Iother D(U) 

Feedback connections, if any, are lumped  
into strongly connected subsets 

No large scale feedback connections  
at the large scale of the structure graph 

Decomposition of Digraph into  
Strongly Connected Components D(Ui) 



Bus model 

Circuit model 

Graph model 



Bus model 

Circuit model 

Graph model 



Bus model 

Circuit model 

Graph model 





No loss of strong connectivity!  

Single transmission line 5-6 tripping:  

Effect of Single Contingency  



Three-phase fault at Load 1:  

Loss of strong connectivity: two strongly connected components!  

Effect of Single Contingency  



Loss of connectivity: two connected components!  

Double transmission line 5-6, 2-3 tripping:  

Effect of Double Contingency  



Two three-phase faults at Loads 1 and 4:  

Loss of strong connectivity:  four strongly connected components!  

Effect of Double Contingency 



Theorem: Under the conditions that  
 

 the bus system is connected,   
 all generators have non-vanishing internal impedance,  

 
and the contingencies are restricted to 
 

 single transmission line tripping, 
  
the graph model is strongly connected. 

Main Theorem 



The power grid is a complicated system… 
Fractional dynamics… 
Strongly connected feedback structure… 

Are “classical” methods (differential 
equations, feedback theory) appropriate? 
Or would we have to aim for another 

approach? 
The large-scale property of the grid calls 

for statistical mechanics approach. 

Conclusion 



Data driven modeling 
Detrended Fluctuation Analysis (DFA) 
Auto-Regressive Fractionally Integrated (ARFIMA) 

modeling  
Berg model (Scandinavian grid) 

“First principles” modeling 
Load aggregation 
Falsification of swing equation by PMU data 

 

Plan of Action: Part 1A – Modeling 



What grid model reproduces the fractal behavior of 
the PMU signals??? 

 There is a tendency to forget that a signal is 
generated by a dynamics, which might be very 
“complicated,” e.g., chaotic, transitive, Axiom A, … 

We develop an approach firmly rooted in the 
tradition of the great Russian dynamicists: Krylov, 
Bogoliubov, Kolmogorov, Sinai, … 

 The popular swing model is unable to reproduce this 
behavior.  

$1,000,000 Question 



Consider an abstract dynamical system,  
 

𝑋,ℬ, 𝜇 ,𝐹𝑡  
where 
 
• 𝑋,ℬ, 𝜇  is a probability space:  

• X is a sample space or state-space 
• ℬ is a Borel field of subsets of X 
• 𝜇:ℬ ⟶ ℝ≥0 is a measure 

• 𝐹𝑡:𝑋 ⟶ 𝑋  is a one-parameter family of measurable transformations of 𝑋;  
     it could be  

•  𝐹𝑡: 𝑥 0 ⟼ 𝑥 𝑡  in case of continuous dynamics 𝑑𝑑(𝑡)
𝑑𝑑

= 𝑓 𝑥 𝑡  
• 𝐹𝑘∈ℕ: 𝑥(0) ⟼ 𝑥 𝑘  in case of discrete dynamics 𝑥 𝑘 + 1 = 𝑓 𝑥 𝑘  
• the Doob stochastic shift in case of stochastic dynamics 

• The measure is invariant relative to the dynamics 
                                               𝜇 𝐹−𝑡≤0 𝐴 = µ 𝐴 ,  ∀𝐴 ∈ ℬ 

A 𝐹−𝑡 𝐴  

Krylov-Bogoliubov Invariant Measure 



An invariant measure always exists, as proved constructively by Krylov and Bogoliubov: 
Idea: 
• Start with an arbitrary measure 𝜇 
• Iterate in both 

• space ∫ 𝑑𝑑𝑋  

• time 1
𝑇 ∫ 𝑑𝑑𝑇

0  
      to make the measure invariant 
• Precisely, given 𝜇, construct 𝜇𝑇  invoking Riesz-Radon theorem 

 
 
 

• Repeat for an increasing unbounded sequence of T to get the invariant measure: 
 

1
𝑇� 𝑑𝜏� 𝜑 𝐹𝜏 𝑥 𝜇 𝑑𝑑

𝑋

𝑇

0
= � 𝜑 𝑥 𝜇𝑇 𝑑𝑑

𝑋
, 𝜑 𝑥 = 𝐼𝐴 𝑥  

𝑇1 ≤ 𝑇2 ≤ ⋯   ⟹ lim
𝑖⟶∞

𝜇𝑇𝑖 = 𝜇∗  

x 

A 

Ft(x) 

X’ 
Ft(x’) 

Krylov-Bogoliubov Construction 



lim
𝑖→∞

1
𝑇𝑖
� 𝑑𝜏� 𝜑 𝐹𝜏 𝑥 𝜇 𝑑𝑑

𝑋

𝑇𝑖

0
= � 𝜑 𝑥 𝜇∗ 𝑑𝑑

𝑋
, 𝜑 𝑥 = 𝐼𝐴 𝑥  

lim
𝑖→∞

1
𝑇𝑖
� 𝑑𝜏� 𝜑 𝐹𝜏+𝑡 𝑥 𝜇 𝑑𝑑

𝑋

𝑇𝑖

0
= � 𝜑 𝐹𝑡𝑥 𝜇∗ 𝑑𝑑

𝑋
, 𝜑 𝑥 = 𝐼𝐴 𝑥  

 

𝜇∗ 𝐴 = � 𝐼𝐴 𝐹𝑡 𝑥
𝑋

𝜇∗ 𝑑𝑑 = � 𝜇∗ 𝐹−𝑡𝑑𝑑 = 𝜇∗ 𝐹−𝑡 𝐴
𝐴

 

= 

Krylov-Bogoliubov construction 
𝜇∗is invariant 



( ) ( )1 1 1 1

, ,..., 1

( ) sup lim

log

KS A N
N

N N
i j k i j k

i j k

H T

A T A T A A T A T Aµ µ

→∞

− − + − − +

=

= −

∑    

1A

2A  NA

Kolmogorov–Sinai Entropy  
from Invariant Measure 

1A

2A  NA

A 1T A−



 The invariant measure could be singular (relative to the Lebesgue 
measure), it could be fractal, multi-fractal, etc. 

 It is argued that such properties beyond measure theory reveal qualitative 
properties of the dynamics 
 Multi-fractality ⇔ lack of ergodicity 

 Practically, we proceed with a counting measure in the ball Bc(ε) 
 
 

 Then proceed as  
 

𝜇 𝐵𝑐 𝜀 = 𝜀𝛼𝑐  

1
𝐾�

1
𝑁� 𝐼𝐵𝑐 𝜀 𝐹𝑘 𝑥0𝑛 = 𝜇𝐾,𝑁 𝐵𝑐 𝜀

𝑁

𝑛=1

𝐾

𝑘=1

 

lim
𝜀↓0

log𝜇𝐾,𝑁 𝐵𝑐 𝜀
log 𝜀 = 𝛼𝑐 ⟹ 

c 
ε 

Bc(ε) 

Invariant Measure Beyond Classical 
Measure Theory 
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 Capacity (Box Counting) 

 

where N(𝜖)  - number of cubes to cover a set  
                        embedded in a line or a surface 
          𝜖  -  cubes with sides of length 𝜖  
 
Said to be fractal for non-integer dimension dC 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Fractal Dimension 



 Pointwise Dimension 
 Time-sample the trajectory to set of N points 
 Place a sphere of radius r at some point and count the number of 

points N(r) within sphere  
 Probability of finding a point in sphere of radius r 

 

Averaged pointwise dimension 

Pointwise dimension 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Measures of Fractal Dimension 



 Correlation dimension (Grassberger and Proccacia, 1983) 
 Discretizes trajectory to set of N points  

 One can also create a pseudo-phase-space 

 Calculates distances between pairs of points xi and xj 

Correlation function: 

Fractal dimension: 

Power law dependence on r 

*slope of the log C(R) vs log r curve 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Measures of Fractal Dimension 



 Effective implementation 

 

Bounds: 

Only consider computations for C(r) within bounds  

Where: 
Heaviside function: 

Distance: 

Measures of Fractal Dimension 



 Duffing Strange Attractor 
 Two-well potential strange attractor 

Damping γ Dimension dG 

0.19 1.08 

0.15 1.14 

0.115 1.32 

Poincaré Section and Fractal Dimension 

Strange Attractor Example 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 



where 

- Mechanical power 

- Electrical power 
- Damping coefficient 
- Moment of inertia of the rotor 
- Phase angle of the rotor with respect to the rotating frame 

- Generator voltage 
- Internal resistance of generator 
- Reactance of transmission line 
- Load bus voltage magnitude 

Noise perturbation at V2 

What is usually done! Is this correct??? 

aE

2V

Swing Equation Model 



initial conditions [-0.8:0.25:0.8] 
N 10001 
size(alpha) 1089 
mean(d) 0.016572 
std(d) 0.001675 

𝑉2 𝑡 = 1 + 𝑁 0,𝜎𝑣 , 𝜎𝑣 = 0.01 Noise added at V2: 

Swing Equation Simulation Results 



N 10000 
size(alpha) 140 
mean(d) 1.506059 
std(d) 0.026241 

Indian Blackout PMU Time Series Data 



N 20000 
size(alpha) 140 
mean(d) 1.532877 
std(d) 0.017066 

Indian Blackout PMU Time Series Data 



N 10000 
size(alpha) 180 
mean(d) 0.868504 
std(d) 0.030948 

Texas (Station 1) PMU Time Series Data 



N 20000 
size(alpha) 176 
mean(d) 0.910081 
std(d) 0.019405 

Texas (Station 1) PMU Time Series Data 



  
 tries to determine if two datasets differ significantly 
 has the advantage of making no assumption about the distribution 

of data. 
 
 
 
 
 

 The K-S test was performed on the simulated swing equation data 
(with Gaussian noise (sigma = 0.01) vs. the PMU data (for both 
Indian blackout and Texas station 1) 

 Both tests reject the null hypothesis (that the two sample sets are 
from the same distribution) at the 5% significance level 

 

where: F1,n , F2,m  -  empirical distributions 
 with n and m sizes for the  
 and second samples, respectively 

Null hypothesis is rejected at level 𝛼 ( ) 





−=

2
ln

2
1 ααc

Kolmogorov-Smirnov Test (Two-Sampled) 
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Mono versus multi-fractal analysis 
Multi-fractal space-time modeling 

Plan of Action  
Part 1B – General Introduction to Fractality 



 Fractal: infinite, iterated, self-similar 
mathematical constructs 

 Geometric fractals 
 Self-similarity implies that a motif is (almost) 

preserved at all scales 
 Non-smooth, more complex: 

 In the sense of space-filling capacity 
 Characterized by fractal dimension 
 Measure of complexity 

Benoit B. Mandelbrot 
(1975) - Theory of 

roughness  (3 pages of 
algebra that changed our 
understanding of Nature) 

Andrei Nikolaevich 
Kolmogorov (1941-1965) 

– Universal Laws of 
Turbulence 

Koch “Snowflake” 

Fractals 
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( )
( )factor ionmagnificatlog

piecessimilar - selfofnumber log   dimension fractal =

f = 2 f = 1.81 

Cantor set 
Full length segment 

1 2 3 4 5 6 7 8 9 10 
Self-similar 

unit 

η = 
1/10 ( )

( ) 1
/1log

10log
==

η
f ( )

( ) 6309.0
3log
2log

==f

Fractal Dimension 



 Box-counting method 
Partition the data set with minimal 

number N (r) of boxes of size r 
Fractal dimension d is determined by 

 
 

Fractal: power-law scaling dependence 
d = 1.719 

Mono-Fractal Analysis 



 Investigate scaling behavior via 
distortion factor q  
 Partition by box B(r) of size r 
 Assign a probability measure 

 
 

 Define a partition function 
 
 
 

 Generalized fractal dimension 

q>0: Prioritize abundant patterns 

q<0: Prioritize rare patterns 

Multi-fractal scaling behavior 

What does D(q) really measures ? 

Multi-Fractal Analysis 



 The q-th order moment exhibits a time power law 
relationship with  
 A linear mass exponent function τ(q) with respect to q for a 

mono-fractal 
 A complex nonlinear mass exponent function τ(q)                              

with respect to q for a multi-fractal  
 
 
 Applying the Legendre transform to the mass exponent τ(q)  

 
 
 

 Leads to a narrow delta-like function for mono-fractals 
 Leads to a wider bell-like shape function for multi-fractals 

q 

τ(q) – mass exponent 

Multi-fractal behavior 
τ(q)  = const * q2 + 

+const * q3 +… 

Mono-fractal behavior 
f(q) = const * q 

( ) ( ) ( ) ( )
dq

qdhqq τααατ =−=    ,

Mono-fractal behavior 

α 

h(α) – multi-fractal spectrum 
Multi-fractal 

behavior 

Mono-fractality vs. Multi-fractality 



Multi-fractals 

Bi-Exponent 
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Mono versus multi-fractal analysis 
Multi-fractal space-time modeling 

Plan of Action  
Part 1B – General Introduction to Fractality 



 Analysis of the magnitude of positive and negative increments in the 
stochastic process  
 dictates the degree of nonlinearity / confidence in linearity assumption 

 Analysis of inter-event times distribution  
 dictates whether the stochastic process has short-range or long-range memory 

103 

x(t) 

t 

Inter-event time t2-t1 = Δt 

Magnitude of positive 
increments in the stochastic 

process x(t)  

Magnitude of negative 
increments in the stochastic 

process x(t)  

Magnitude and Inter-Event Times 



• Statistical properties of increments determine the degree of linearity / 
nonlinearity 
– Exponentially distributed increments indicate an almost linear behavior  

• Stochastic processes can display an asymmetric dynamics 
– Statistical properties of positive and negative magnitude increments can be different 

leading to a radically new dynamic equation 
 Quantify probability P(x,t|α,β) of process x(t) (workload)  

 to attain value x at time t whose magnitude increments and inter-event times are 
characterized by fractal dimensions α and β 

Coupling between negative increments 
and their inter-event times 

Initial condition Coupling between positive increments 
and their inter-event times 

Yuankun Xue and Paul Bogdan, Constructing Compact Causal Mathematical Models for Complex Dynamics, 8th ACM/IEEE International Conference on Cyber-Physical System (ICCPS), 2017 

Data-Driven Modeling – Learning From Data 



 Employing fractional calculus concepts 
 Riemann-Liouville fractional order integral and derivative  

 
 

 
 Allows to describe the evolution of the probability P(x,t) via a multi-

fractional space-time Fokker-Planck equation: 
 

 
 

 h(β) – distribution of fractal exponents characterizing the inter-event times 
 g(α) – distribution of fractal exponents characterizing the magnitudes 

( ) ( )txPtxPI    D tt ,,00 =αα


Yuankun Xue and Paul Bogdan, Constructing Compact Causal Mathematical Models for Complex Dynamics, 8th ACM/IEEE International Conference on Cyber-Physical System (ICCPS), 2017 

Multi-Fractal Space-Time Modeling  
(MFST) 



 Multi-fractional space-time Fokker-Planck Equation: 
 
 

 
 Bi-exponent form: 

 
 
 

 Berg Model:  
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Example: Bi-Exponent Case 
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PMU Time Series 

Single Exponent 

Multi-fractals 

ARIMA ARFIMA 
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Definition:  
Voltage collapse is critical phenomena that threatens the 
power infrastructure, and that manifests itself by a sudden 
and fast collapse of the system voltage. 
Source of problem: 
Traditionally, it is blamed on a supply-demand imbalance…    

Voltage collapses Damping increases Frequency is disrupted!!! 

Voltage Collapse 



“Wehenkel stated that better modeling of loads and demand is also needed; 
specifically, better dynamic models that respond to voltage/frequency variations 
over shorter time periods (seconds and minutes) are needed for stability analysis” 

‘’This model was motivated by voltage stability studies; frequency dependence of 
the load has not been considered’’  

‘’The differences in time constants have led many researchers to only consider 
voltage dynamics for the analysis of bifurcations problems, ignoring frequency 
dynamics. However, the previous example clearly shows that this assumption is 
not completely justifiable’’ 

Prof. Claudio Cañizares 

Prof. David Hill 

Government Report 

The Frequency Dependence Debate 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



Early warning signals for a critical transition in a time series generated by a 
model of a harvested population driven slowly across a bifurcation  
 M. Scheffer, et.al, “Early- warning signals for critical transitions,” Nature, vol. 461, pp. 53–59, 2009. 

Critical Transition in Harvested Population 



blackout! 

 The blackout occurred on July 30, 2012 and affected 
more than 300 million people living in Northern India. 

2012 Indian Blackout 
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 Concordant pair          xi > xj & yi > yj  or xi < xj  & yi < yj  
 Discordant pair           xi > xj & yi < yj  or xi < xj  & yi > yj 

 

   

 Kendall’s tau is a rank correlation coefficient that is 
used to measure—in a statistically meaningful sense—
the ordinal association between two datasets, {(ti,αi)}.  

 Assuming that we have n pairs of x and y data  
 ((x1,y1); (x2,y2); …; (xn,yn)),     
 Kendall’s tau is defined as 

 
 
 

 
 

Kendall’s tau 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 
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τ = 0.92 τ = 0.86 

Laith Shalalfe, Paul Bogdan and Edmond Jonckheere, Kendall’s Tau of Frequency Hurst Exponent as Blackout Proximity Margin, IEEE International Conference on Smart Grid Communications 
(SmartGridComm), 2016. 
 

Kendall’s Tau of  
AR(1) Coefficient versus Hurst Exponent 



Normal frequency data  Frequency data before blackout 

AR(1) versus Hurst Exponent 
Sample Distributions 



 
 
 Early investigation with more blackout data points (San Diego 

blackout) indicates that the empirical distributions of the normal 
and blackout Hurst frequency data are random draws from 
different distributions.    

Kendall tau of Hurst exponent of frequency 

normal blackout 

Early Observation 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



Note that the Hurst exponent of the frequency (under normal conditions) is 
around 1.55. This Hurst exponent is higher than the previous analysis 
because we considered the slope of the linear region only to calculate the 
Hurst exponent, as shown in the middle picture. 

Hurst Exponent Analysis of the Swing 
Equation 



Discrepancy 



 Hurst exponent of the frequency remains almost constant near the bifurcation.  
 The Hurst exponent is equal to 2 for the noiseless frequency and approximately 1.55 for 

the frequency time series with 50% and 100% noise in the middle image. 
 These results show that driving the swing equation to the unstable region by increasing 

Pm does not reproduce the increasing trend in Hurst exponent as in the 2012 Indian 
blackout.  

Hurst Exponent Analysis of the Swing Equation 



 These results show that 
driving the swing 
equation to the unstable 
region by increasing Pm 
does not reproduce the 
increasing trend in Hurst 
exponent as in the 2012 
Indian blackout 
 

 The swing equation with 
added noise does not 
show an increase in the 
Hurst exponent like the 
one in the Indian 
blackout.  

 

Hurst Exponent Analysis of the Swing Equation 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



PMU Frequency Time Series 

Single Exponent 
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Kendall-Tau Test 

Part II: Summary 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



Given a time series (could be voltage, frequency) 

How could we be warned that a statistically significant change has occurred,  
with reasonable false alarm rate???  
Change point detection algorithm: 

𝑆𝑘+1 = max 0, 𝑆𝑘 + 𝐼𝑘 − 𝐼 ,     𝑆0= 0 

where 
• 𝐼 is the nominal past/future mutual information 
• 𝐼𝑘  is the mutual information after processing 𝑦(𝑘) 

UDP flooding  
attack detected 

𝑦 1 ,𝑦 2 , 𝑦 3 , … 

K. Shah, E. Jonckheere, and S. Bohacek, ``Dynamic Modeling of Internet Traffic for Intrusion Detection,'‘ EURASIP Journal on Advances in Signal Processing, The European Association for Signal, 
Speech and Image Processing,  volume 2007, Article ID 90312, 14 pages, 2007. 

Change Point Detection 



Past at lag L: Future at lag L: 𝑦− 𝑘 =
𝑦(𝑘)
⋮

𝑦(𝑘 − 𝐿 + 1)
 𝑦+ 𝑘 =

𝑦(𝑘 + 1)
⋮

𝑦(𝑘 + 𝐿)
 

Cholesky factorizations: 

ℇ 𝑦−(𝑘)𝑦−𝑇 𝑘  =𝐿− 𝐿−𝑇  ℇ 𝑦+(𝑘)𝑦+𝑇 𝑘  =𝐿+ 𝐿+𝑇  

Canonical correlation: 

Γ 𝑦−,𝑦+ = 𝐿−−1ℇ 𝑦−(𝑘)𝑦+𝑇 𝑘  𝐿+−𝑇 

Mutual information bound: 

𝐼𝑘 ≥ −
1
2 log det 𝐼 − Γ 𝑦−,𝑦+ Γ𝑇 𝑦−,𝑦+  

K. Shah, E. Jonckheere, and S. Bohacek, ``Dynamic Modeling of Internet Traffic for Intrusion Detection,'‘ EURASIP Journal on Advances in Signal Processing, The European Association for Signal, 
Speech and Image Processing,  volume 2007, Article ID 90312, 14 pages, 2007. 

Mutual Information (MI) Bound 



Past at lag L: Future at lag L: 𝑦− 𝑘 =
𝑦(𝑘)
⋮

𝑦(𝑘 − 𝐿 + 1)
 𝑦+ 𝑘 =

𝑦(𝑘 + 1)
⋮

𝑦(𝑘 + 𝐿)
 

Cholesky factorizations: 

ℇ 𝑦−(𝑘)𝑦−𝑇 𝑘  =𝐿− 𝐿−𝑇  ℇ 𝑦+(𝑘)𝑦+𝑇 𝑘  =𝐿+ 𝐿+𝑇  

Canonical correlation: 

Γ 𝑦−,𝑦+ = 𝐿−−1ℇ 𝑦−(𝑘)𝑦+𝑇 𝑘  𝐿+−𝑇 

Mutual information bound: 

𝐼𝑘 ≥ sup𝑓,𝑔 −
1
2 log det 𝐼 − Γ 𝑓 𝑦− ,𝑔 𝑦+  Γ𝑇 𝑓 𝑦− ,𝑔 𝑦+   

K. Shah, E. Jonckheere, and S. Bohacek, ``Dynamic Modeling of Internet Traffic for Intrusion Detection,'‘ EURASIP Journal on Advances in Signal Processing, The European Association for Signal, 
Speech and Image Processing,  volume 2007, Article ID 90312, 14 pages, 2007. 

Mutual information Improved Bound 



Change Point Detection (MI) Results 



Data sampled at 50 samples/sec 
 
L (lag) = 1 min (3000 samples) 
 
From Shalalfe, et. al. (2016), it 
mentioned in the paper that the 
increase in the AR(1) starts 
around 33 mins before the 
blackout.  
 
Nominal mutual information (I) is 
computed from time series 
before this time (around t<30min) 
 
 
 

Change Point Detection Simulation 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



 Consider an iid sequence 𝑋𝑘 𝑘=1
𝑛   

with “normal” regime 
probability density 𝑝0 from  

𝑘 = [1, 𝜆 − 1] 
 and with “abnormal” 

probability density 𝑝1 from  
𝑘 = [𝜆,𝑛] 

 

 GOAL: Find 𝜆 (change point) in the 
fastest possible way subject to 
some acceptable false alarm rates 
 

normal abnormal 

Change Point Detection – Introduction 



 Shiryaev (Bayesian) Procedure 
𝜆 assumed to have an a priori distribution  
 

 Cumulative SUM (CUSUM) (minimax) 
𝜆 is deterministic, but unknown  

 

 Goal: Minimize expected detection delay subject to false 
alarm rate 

 

CPD Approaches 



 Change point - 𝜆   
  considered deterministic, but unknown 

 Probability measure - 𝑃𝜆 
 defined as 𝑝0 (on ‘normal’ regime) and 𝑝1 (on “abnormal” regime) 

 Null Hypothesis - 𝐻0  
 that there has been no changes from 𝜆 up to and including 𝑛 (based 

on the positive value of the log-likelihood ratio statistic 𝑍𝜆
𝑛). 

 
 
 

 For security reasons, the statistic 𝑈𝑛 is computed for the 
worst position of the change point. Note: 𝑧 + = max 0, 𝑧  

Change Point Detection (CUSUM) 



• Threshold ℎ 
• False Alarm Rate 

Jayson Sia, Edmond Jonckheere, Laith Shalalfeh and Paul Bogdan, “PMU Change Point Detection of Imminent Voltage Collapse and Stealthy Attacks,” to appear in 2018 IEEE CDC. 

Recursive Form of Statistic 



 “normal” density 𝑝0 is typically known 
 “abnormal” density 𝑝1 is not! 

 

 Solution: choose a family distributions 
𝑓𝜃  parametrized by 𝜃 then adjust 𝜃 

given some empirical knowledge on 𝑝1 
 Weibull Distribution  

where 𝛽 is the shape parameter, 𝜂 is the 
scale parameter, and the natural 
parameter 𝜃 = −1/𝜂𝛽 

Weibull distribution is widely used in 
failure and reliability analysis. 

 It is also known to be the probability 
density that takes the least amount of data 
to be correctly identified  

 

Unknown “abnormal” Density 𝑝1 



 
 We modify the statistic 𝑈𝑛 with a double maximization, with 𝑝1 

replaced by 𝑓_𝜃 
 
 

 In the security context, especially for stealthy attacks, max
𝜃

 𝑍𝜆
𝑛 

assumes the density 𝑓𝜃 is the worst possible given the data. 
 

 Does NOT have a recursive formulation. 
 

Simultaneous Detection and Estimation 



 Heuristically defined statistic 
 

 
 

 this dominate true statistic, 𝑈� > 𝑈, and give overly conservative results 
with high false alarm rates 

 Smoothing over arg max
𝜃

log ∙  

 
 

 
 
 

 for some gain 0 < 𝜅 < 1 
 

Jayson Sia, Edmond Jonckheere, Laith Shalalfeh and Paul Bogdan, “PMU Change Point Detection of Imminent Voltage Collapse and Stealthy Attacks,” to appear in 2018 IEEE CDC. 

Simultaneous Detection and Estimation 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



 Consider 𝑈𝑛 as a simplified Itô diffusion process with 𝑏 = 0  
over domain 𝐷 ⊂ ℝ,  
 

𝑑𝑈𝑡 = 𝑏 𝑈𝑡 𝑑𝑑 + 𝜎 𝑈𝑡 𝑑𝐵𝑡 , 𝑈0 = 𝑥 ∈ 𝐷,   
 

 Let average time 𝑇(𝑥) for the 1-D random walk starting at 𝑥 
and reflecting at −𝜖 to cross the absorption barrier at h is 
 

𝑇 𝑥 =
1

𝜎2 ℎ2 − 𝑥2
+
2𝜖
𝜎2

ℎ − 𝑥 ,   
 

 Let 𝑝0 = 𝑁 𝜇0,𝜎0 , 𝑝1 = 𝑁 𝜇1,𝜎1 . It follows up to a good 
approximation (𝜎𝛼 = 𝜎1 = 𝜎0), 

𝑈𝑛+1 − 𝑈𝑛 ≈
𝜇1 − 𝜇0
𝜎𝛼2

𝑋𝑛+1 −
𝜇0 + 𝜇1

2
 

Jayson Sia, Edmond Jonckheere, Laith Shalalfeh and Paul Bogdan, “PMU Change Point Detection of Imminent Voltage Collapse and Stealthy Attacks,” to appear in 2018 IEEE CDC. 

Threshold for False Alarm Rate 



 Note that from the continuous time model (1), 
𝔼 𝐵𝑡+Δ𝑡 − 𝐵𝑡 2 = Δ𝑡, 1/Δ𝑡 = PMU sampling rate 

 

 The discrete- and continuous-time processes yields, 

𝜎2 =
2 𝜇1 − 𝜇0 2

𝜎𝛼2Δ𝑡
 

 

 Setting 𝜖 = 0 in (2), and recall that  
FAR = 1/𝑇(𝑥 = 0) = 𝜎2/ℎ2  

 

 Threshold estimate 
 

Jayson Sia, Edmond Jonckheere, Laith Shalalfeh and Paul Bogdan, “PMU Change Point Detection of Imminent Voltage Collapse and Stealthy Attacks,” to appear in 2018 IEEE CDC. 

Threshold for False Alarm Rate 



Normal distribution fit (EPFL data)  

EPFL Campus Data under normal operating conditions 

Distribution of the Frequency Scaling Exponent under Normal Conditions 

Empirical PMU Data 



 Increase of Hurst exponent towards black-out 
Kendall tau as statistical confirmation 

AR(1) versus Hurst exponent sample distribution for 
abnormality detection 

 Falsification of swing equation by Hurst exponent 
 Change Point Detection 
Historic precedent: UDP flooding attack 
Detection and simultaneous detection & identification 
Threshold for False Alarm Rate 
 Indian blackout 

 

Plan of Action: Part II – Security 



Empirical estimates for pre- and post-
distributions  Normal regime 𝒑𝟎 

(from empirical data) 
 

𝑝0~𝑁 𝜇0,𝜎0 = 𝑁 1.488,0.055  
 

Abnormal regime 𝒑𝟏 
normal distribution 

shifted in mean 
 

𝑝1~𝑁 𝜇1,𝜎1 = 𝑁 1.7,0.055  
 

Threshold 
Δ𝑡 = 0.033, FAR = 0.1 

ℎ =  101.9 
Crosses at 𝑡 = 44.17 min 

 

2012 Indian Blackout 



Normal distributions 𝑝0(𝑥) and 𝑝1,𝑒𝑒𝑒(𝑥), family 
of Weibull distributions 𝑓𝜂 𝑥  with 𝛽 = 15, and 
envelope of Weibull distributions 

𝑝1 as Weibull distribution 
parametrized by natural 
parameter 𝜃 = −1/𝜂𝛽 
 
 
For fixed 𝛽, distribution is only 
parametrized by the scaling 
parameter 𝜂 which is related to 
the mean as 
 

𝔼 𝑥 = 𝜂Γ(1 + 1/𝛽) 

Unknown Distribution 𝒑𝟏 



Simultaneous detection and estimation 

𝜇0 = 1.488,𝜎0 = 0.055  (EPFL) 
 

ℎ = 101.9 
 

False alarms, alarm at 𝑡 = 43.56 min 

𝜇0′ = 1.5733,𝜎0′ = 0.0198 (Indian pre-blackout) 
 

ℎ = 178.76 
 

No false alarm, alarm at 𝑡 = 44.53 min 

2012 Indian Blackout 



PMU Frequency Time Series 

Single Exponent 

ARIMA ARFIMA 

Em
pi

ric
al

 

DFA 

SECURITY 
Offline 

Online 

Kendall-Tau Test 

Change Point Detection 

Part II: Summary 



• Power grid is a Cyber-Physical System (CPS) 
• Security on both the Cyber and the Physical 

layers can be approached using Change Point 
Detection (CPD) 

• On the physical side, best results are achieved 
by CPD on the Hurst exponent of the 
frequency data 

Conclusions 
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